
CHAPTER 179 

On the Synthesis of Realistic Sea States 

by 

E.R. Funke* and E.p.D. Mansard** 

1.0  INTRODUCTION 

Recent investigations by some researchers (Johnson 
et al, 1978; Burchart, 1979; Gravesen and Sorensen, 1977) 
have indicated that it is no longer sufficient to match the 
variance spectral density of a simulated sea state to that 
of the prototype. When testing models of various fixed and 
floating structures, it appears to be most important to sim- 
ulate the wave grouping phenomenon as veil. Some 
researchers also believe that the wave steepness, the par- 
ticular sequencing of high and low waves (Burchart, 1979) 
and the ratio of the maximum to the significant wave height 
within a wave train are also of significance. 

Methods for the generation of 'random1 waves 
throughout the world vary greatly. One may, however, cate- 
gorize these in terms of two substantially different 
approaches. These may be referred to as "probabilistic" on 
the one hand and "deterministic" on the other. 

In the former, a random or pseudo-random noise 
source is used which will never repeat or which has a very 
long repetition period. The assumption is then made that, 
in the course of the long testing period, all possible out- 
comes of wave heights, wave periods and wave groups will 
occur. The only constraint, which is usually placed on the 
synthesis, is the shape of the variance spectral density and 
its zeroth moment. The "deterministic" approach, on the 
other hand, attempts to create very specific and typically 
extreme conditions. Subsequent analysis of structural 
response to these conditions must, of course, be related to 
the likelihood of these conditions occurring in the prevail- 
ing climate. The old standby method of testing with mono- 
chromatic waves is a typical example of this category. How- 
ever, other technigues such as Funke and Mansard (1979a) and 
the reproduction of prototype wave trains as favoured by 
several laboratories (Gravesen and Sorensen, 1977) may also 
be described as deterministic. 

* Senior Research Officer and **Assistant Research Officer, 
Hydraulics Laboratory, national Research Council of Canada, 
Ottawa, Canada. 

2974 



SEA STATES SYNTHESIS 2975 

This paper describes a method which can synthesize 
a wave train with a well defined grouping characteristic. 
Although, in principle, the wave train could be made arbi- 
trarily long, for practical reasons it will normally be lim- 
ited to a recycling period of 5 or 10 minutes in the labora- 
tory. The method, which may also be identified as 
"deterministic", can synthesize a wave train with well 
defined grouping characteristics and, at the same time, with 
a good approximation to a specified continuous variance 
spectral density. Although these two features may not be 
sufficient for a completely realistic simulation of a natu- 
ral sea state, the method is believed to be a step in the 
right direction. 

The method produces a time series which describes 
the wave train as it is to be monitored at a prespecified 
location in a wave flume or basin and in the absence of 
reflections. It is therefore assumed that there exists a 
real time signal generator, such as an on-line digital com- 
puter (Funke, Crookshank and Hingham, 1980) which is capable 
of converting a number seguence (after suitable amplitude 
and phase compensation) into a smooth driving signal to a 
servo-controlled wavemaking machine. The method described 
here addresses itself only to the synthetic creation of the 
time series. Its conversion into a train of water waves at 
a specified location in the flume is the subject of other 
publications (Funke and Hansard, 1979a; Funke and Hansard, 
1980). 

As an input to the procedure, it is necessary to 
specify: 

a) the variance spectral density S(f) of the desired water 
surface displacement (this includes, by implication, 
the characteristic wave height), 

b) the groupiness factor, GF, 
c) the SIWEH spectral density, e(f), and 
d) the desired repetition (or recycling) period of the 

wave train, Tn. 

Both the SIWEH and the groupiness factor are 
concepts which had to be developed as descriptors for the 
sea state in order to realize a systematic procedure for 
synthesis. Whereas this paper addresses itself to the sub- 
ject of how wave group activity may be defined and how this 
definition can be used to synthesize a wave train, it 
remains to be determined how important these parameters are 
in describing a wave climate and in causing severe and dam- 
aging structural response. 
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2.0     THE   SIHEH 

SIWEH is an abbreviation for Smoothed Instantane- 
ous Wave Enerqy History (Funke and Hansard, 1979b) . It is a 
function of time which describes the distribution of energy 
along the time axis. This somewhat awkward name is proposed 
(with apologies) in order to distinguish this energy func- 
tion of time from the more commonly used energy function of 
frequency and it is believed that the word history does sug- 
gest a time function. 

The SIBEH is proposed as an alternative to 
•envelope functions' for the purpose of describing group 
activity within a wave train. Fig. 1 illustrates a typical 
wave train and two envelope functions. The 'half-wave rec- 
tified' envelope has been constructed by joining all peaks 
of the wave record whereas the 'full-wave rectified' enve- 
lope requires first a folding of all negative values about 
the mean before the peaks are joined. The former does not 
properly account for wave troughs and the latter is always 
affected by the presence of non-linear waves which have 
sharp peaks and flat troughs. Therefore, the concept of 
computing the average wave energy over the period of the 
dominant wave appeals intuitively. If n(t) is the water 
surface displacement with zero mean value, then the smoothed 
instantaneous wave energy history may be defined initially 
as: 

E*(t) = -i- I '  n2(t+T)'dT (1.1) 
T, P 

'l = -Tp/z! 

This function provides a uniform, running average 
of the squared water surface displacement over the interval 
Tp = 1/fp, where fp is the frequency at which the variance 
spectral density of n(t) is a maximum. The operation 
defined by equation 1.1 may be considered convolution of a 
rectangular data window, Q0, with the function n2(t), i.e. 

E*(t) = —- n2 (t+T) «Q0(T) -dT (1.2) 
P •'-co 

Another window function is the Bartlett window, Qj, which 
has a triangular shape with a base of 2-Tp. The result of 
this smoothing operation is also included in Fig. 1. 

From Fig. 1 it may be observed that the SIHEH provides 
superior identification of groups and that the Bartlett win- 
dow achieves better smoothing without an apparent loss of 
contrast. 
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3.0  SPECTRAL COKSIDERATIOH TO SMOOTHING OF THE SIWEH 

Convolution between two functions in the time 
domain is equivalent to multiplication between their respec- 
tive Fourier transforms in the frequency domain. For this 
reason it is instructive to consider the Fourier transform 
of the smoothing windows, which were used for Fig. 1. 
Fig. 2 shows these frequency functions as a function of nor- 

^ 

v/jONS 

BARTLETT   FILTER, 
TRIANGULAR   TIME   SMOOTHING 

FIG. 2 FREQUENCY CHAKACTERSTICS OF SHOOTHING FUNCTIONS 

malized frequency f/fp where fD is the frequency ?at which 
s a maximum.  For comparison 
a JONSHAP spectrum is also 
that the rectangular window 
is quite oscillatory.   The 

tion  as a digital filter is 
its nominal pass band.  The 
hand,  has smaller side-band 

d contrast in the pass band. 

the variance spectral density l 
purposes the square root of 
included.   It should  be noted 
has a frequency response which 
consequence of using this func 
leakage of energy from outside 
Bartlett window,  on the other 
leakage but suffers from reduce 

As the filters are applied to the square of the 
water surface displacement, it is essential to assess them 
in terms of the spectrum of v,2 (t) . Fig. 3 illustrates first 
the function n (t) and then its square after removal of the 
mean value n2. The SIWEH function, which was smoothed using 
the Bartlett window, is also shown with its mean value 
removed. 
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The fourth function in Fig. 3 gives the absolute 
values of the Fourier transforms of both ri (t) and 
(n2 (t) ~ TT

2
> • The frequency response of the Bartlett filter 

function is also shown. The most surprising observation is 
the redistribution of energy in the frequency domain as a 
result of squaring in the time domain. It appears that 
energy is moved both above as well as below the band that 
was previously occupied by the variance spectral density of 
n(t) with a notable absence of energy remaining in this lat- 
ter band. The Bartlett smoothing filter which was selected 
intuitively does appear to be quite effective in separating 
the low-frequency from the high frequency part of the spec- 
trum, although as can be seen, with some attentuation in 
accordance with its filter characteristics. 

These frequency considerations suggest that convo- 
lution with a Bartlett window is superior to rectangular 
smoothing. Therefore, the following formulation for the 
computation of the SIWEH is proposed. 

E'(t)   =   ~ n 2(t+T)-Q1(T)-dT    for    Tp£t£Tn-Tp (3-1) 

and  for  the  beginning and the  tail end  of the record: 

E' (t) T  +t   j        n2(t+T)-Q1(T)'dT     for   0<t<Tp (3.2) 

E'(t)   = Tp+Tn-t n   i t+T)-Q1(T)-dT   for  Tn-Tp<t<Tn   (3.3) 

where 
Q1(T) = 1 - |r|/Tp .  for -Tp<T<Tp 

= 0 everywhere else. 

4.0  AN ALTERNATE WAY OF DEFINING AND COMPUTING THE SIWEH 

If the wave record of length Tn is given as a 
Fourier series expansion, i.e. 

n (t) = ,|  c. • cosfoK-t + (IK) (4.1) 

with u) = 2ir,i*t/T and 
c^  being the Fourier coefficients, 

then ri2 (t) may be shown to contain four distinctly different 
groups of terms (Naes, 1978) namely: 

a)  a group involving c^2. 
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b) a group including the frequencies 2u>$_, 
c) another group with frequencies Uj+u^ and 
d) finally, the fourth group with frequencies a>j-to^. 

The first and fourth group together make up the 
SIWEH of n(t) which may thus be defined for the interval 
0 < t < T , SIWEH (n(t)) = E(t) = 

1 N 
r f C.+J   C.-C.• cos [ (u). + (oo.-to.)] 1 < i < j < N  (1.2) 

The  first term  of this expansion is evidently the  mean 
square value of n(t) and must therefore be egual to the area 
under  the variance spectral density of  n(t).   In other 
words: 

E(t) »0 

Althouqh the authors are not, at the time of writing, apply- 
ing equation 4.2 for the computation of the SIWEH, it is 
believed that it will prove superior to equations 3.1 to 3.3 
as it is not dependent on smoothing windows in the time 
domain or the treatment of start-up and end transitions in 
the associated convolution operation. 

5.0  THE SIWEH SPECTROB 

The unsmoothed SIWEH variance spectral density may 
also be computed in two possible ways. By application of 
the Fourier transform to the SIWEH one obtains: 

e*(f) 
1    2 

2Af  T„ 
(E(t) 

0 
Rl-P-

Jut. dt 

(E(t) -E).e 
• joit dt 

(5.1) 

(5.2) 

where Af VTT 

The second method may be derived from equation 4.2 by 
re-ordering the difference frequencies so that all terms 
with the same difference frequency are grouped together. 
Therefore, letting j=i+k with k=1,2,...N-1, equation 4.2 may 
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be  written thus, 

E(t)   =  |     I     c   < 
Z   i=l     X 

N-l N-k 
+       I       I 

k=l i=l 
c.'C.,,-cos(k-Awt+9.   ,) 

1     x+k i/k (5.3) 

where Am = ooi+1  -   ui  =  2ir/Tn 

and 6ifk =  <},i+k  -   *i 

Equation  5.3  may be  abbreviated  as: 

N N-l -• IN vt — x 

E(t)   =  i     I     c.2   +     I     A, .cos(k-Ao)«t  +   Y. ) 
i=l k=l 

(5.4) 

where 

A,    = 
2    rN-k 

i=l 'k _/LL(Ci+k'Ci'C°S  eirk)J"+[J1
(ck+k,ci'sin8i,k)J    <5-5> 

and 

atan 

N-k 
I   C 

i=l 
. ,, -c.•sin  6.   , x+k     x x,k 

N-k 

i=l 
. ,, -c, -cos   0 .   , x+k    k i,k 

(5.6) 

The  unsmoothed  SIHEH variance  spectral  density  may  then 
be  obtained  from equation 5.5  as  follows: 

e(f) [A(k-Af)]2/(2-Af) (5.7) 

It is of particular interest to note that the SIHEH spectral 
density is completely defined in terms of the Fourier coef- 
ficients and Fourier phases of the water surface displace- 
ment n(t).  The term 

N-k 

£ ci+k' x=l 
(5.8) 

in equation 5.5 is reminiscent of the auto-covariance of the 
spectrum defined by Ci. It has been suggested by Nolte and 
Hsu (1972) that the spectrum of the envelope function is 
related to: 

H(f) = I S(x)-S(x+f)»dx 

' 0 

S2(x)-dx (5.9) 
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where S (f) is the variance spectral density of ri(t) . This 
proposition is, however, challenged on the grounds that 
according to eguation 5.9 

H(0) > H(f) 

It is known from observations that this does not describe 
reality because highly periodic wave group phenomena lead to 
a peak in the SIWEH spectral density at non-zero frequencies 
and this cannot be reproduced with equation 5.9. 

On the other hand, equation 5.5 indicates that the 
SIWEH spectral density is also affected by the Ehase differ- 
ences between adjacent frequency components. This suggests 
for the first time how the phase spectrum of wave trains may 
be related to the grouping phenomenon. 

Smoothing of SIWEH variance spectral densities may be 
implemented by the usual statistical techniques. 

6.0  THE GROOPINESS FACTOR 

The SIWEH or its spectral density may be used to 
describe the degree of group activity. The groupiness fac- 
tor is defined as 

GF (E(t) E)2'dt (6.1) 

which gives_ the standard deviation  of the SIWEH  about its 
mean value E. 

Since the variance of E(t) about its mean must equal 
the area under the variance spectral density, the groupiness 
factor may also be given as 

GF =/m=o/] '0 (6.2) 

where 
sity. "0 

is the zeroth moment of the SIWEH spectral den- 

Groupiness factors for prototype wave data so far 
observed at one location over a period of six months (Sea of 
Japan, N38 44«33", E139 39'48") fall in the range 
0.46 < GF < 0.94. 

7.0  A POSSIBLE MODEL FOR THE SIWEH SPECTRUM 

It is expected that analysis of prototype wave 
data will reveal that SIWEH spectral densities will, occa- 
sionally exhibit a more or less pronounced peak indicating a 
periodicity of groups. However, the majority of SIWEH spec- 
tral densities, particularly for low wave heights, will 
decay almost exponentially with increasing frequencies.  The 
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broadness of the SIHEH spectral densities are expected to be 
inversely related to the width of the average wave groups. 

A model which may provide enough control over the 
spectral shape has been borrowed from linear system analysis 
and is given by 

 1       X 
e( ' = /(1-X2)2 + 4-C2-X2 ' /l + \2 

This function is shown in Fig. 4 for ^ = 0.1, E = 0.1,0.3 
and 1 and the area under the function has been adjusted so 
that the groupiness factor according to the definition of 
equation 6.2 is 0.95. 

8.0  SYNTHESIS OF A SIWEH FROM ITS SPECTRAL_DEMgITY 

As it is expected that, in future, a sea state may 
be specified both in terms of its variance spectral density 
as well as its SIWEH spectral density, it must be determined 
if one can synthesize a SIHEH from the SIHEH spectral den- 
sity. It is evident from inspection of a SIHEH that this 
function is highly non-Gaussian. This fact imposes a severe 
problem on the ability to synthesize such a function through 
inverse Fourier transformation as may be seen from the fol- 
lowing argument. 

When applying the inverse Fourier transform to an 
amplitude spectrum, some arbitrary phase spectrum must first 
be assumed. It is common practice to create such a phase 
spectrum by selecting phases for each of the constituent 
frequencies from a random number generator which has a uni- 
form distribution of random numbers over the interval -TT to 
IT . As a consequence of such a phase spectrum, the function 
resulting from inverse Fourier transformation can be shown 
to have a Gaussian amplitude probability density and non- 
Gaussian functions cannot be generated in this way. 

The technigue which has been used here to overcome 
this difficulty is an iterative procedure (see Funke and 
Mansard, 1979b). After the first inverse Fourier transform 
following a random phase selection, the resulting time func- 
tion is then clipped below -a-mo so that the resultant time 
signal now looks highly distorted with all troughs being 
flat at -a-BQ. A subsequent forward Fourier transform of 
this clipped function will produce a new amplitude and phase 
spectrum. Evidently the new amplitude spectrum is wrong but 
the new phase spectrum is a better approximation of the 
unknown phase spectrum than the first guess. One therefore 
pairs up this new phase spectrum with the original amplitude 
spectrum and repeats the inverse Fourier transform. The 
resultant time function will now be non-Gaussian, however, 
there will still be exceedances  below the -ccan level.   It 
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is therefore necessary to repeat this operation of clipping 
and transforming until these exceedances no longer occur. 

Different values of a have been tried which appear 
to work equally well. For a=0.6 it was found that 20 
iterations were required. 

Fig. I gives three different SIWEHs which were 
synthesized from the three spectral densities also given in 
this fiqure. The SIWEH for C=0.1 is the one which has the 
most pronounced periodicity of groups. 

9.0  TtiE SYNTHESIS OF A GROUPED WAVE 

Fig. 5 illustrates the procedure which is now fol- 
lowed in order to create a wave train which not only has a 
given variance spectral density, but also has wave grouping 
as specified by a SIWEH, which may have been synthesized by 
the method described in section 8.0. 

With reference to Fig. 5 one will recognize the 
desired variance spectral density and the desired SIWEH. 
From the latter a phase modulating function is created which 
is also shown in Fig. 5. It may be noticed that this phase 
modulator has large values when the SIWEH is small and vice 
versa. It is being used to phase modulate a constant ampli- 
tude sinusoid with a dominant frequency of 0.5 Hz, which is 
the peak frequency of the desired variance spectral density. 
Closer observation will reveal that the dominant frequency 
has been preserved in those intervals where the SIWEH has 
large values while everywhere else the frequency is 
increased. The reasoning behind this is that each wave 
qroup should have a dominance of energy in the peak fre- 
quency band if one wishes to match the desired variance 
spectral density by this initial approximation. 

After this, the phase modulated carrier is also 
amplitude modulated by using the square root of the'SIWEH as 
the modulating function. The result of these manipulations 
is a rough approximation of the synthesized wave train. 
Fourier transformation, as shown in Fig. 5, does in fact 
show that the amplitude spectrum approximates quite well the 
desired amplitude spectrum (which has been obtained by 
sguare-rooting the spectral density). The phase spectrum, 
which has been obtained from the Fourier transform of the 
rough approximator, is now paired with the desired amplitude 
spectrum. Subsequent inverse Fourier transformation will 
then produce the desired wave train or at least something 
which comes very close to the ideal. 

By computing the SIWEH for this wave train, E2(t) 
and comparing it to the originally specified SIWEH, E1(t), a 
correcting function C(t) may be computed which is 
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C(t) = /E1(t)/E2(t) 

The first wave train is now multiplied by C(t) and 
the product is also Fourier transformed. Again one obtains 
an amplitude and a phase spectrum. The new phase spectrum 
is then paired with the original amplitude spectrum and an 
inverse Fourier transform will then provide the second 
approximation of the desired wave train. This may be 
repeated a few times wich occasionally leads to further 
improvements. Fig. 6 shows some other synthesized wave 
trains. Attention is drawn to the difference between the 
actual and the desired variance spectral density. It may be 
noticed that there are some differences, particularly in the 
higher frequency tail of the spectrum. 

Beside this. Fig. 6 illustrates how one may gener- 
ate any number of grouped wave trains from the same input 
specifications. In all three cases the same SIBEH spectral 
density and the same variance spectral densities were used. 
However, for the purpose of synthesizing the SIWEHs, three 
different random number sequences were generated. 

10.0  SPECTRAL BBOADHESS FACTOR AND GROnPIHESS 

With the availability of the synthesis tool 
described here, one may address oneself to the question of 
how the spectral broadness factor is related to wave groupi- 
ness. It has been generally accepted that waves with a nar- 
row variance spectral density also have a more pronounced 
groupiness than broad-banded waves. It may, in fact be true 
that there is a strong correlation between these two which 
is a characteristic of natural gravity waves. This could be 
explained if strong grouping occurs after waves have tra- 
velled over long distances and, as is well known, waves due 
to swell do have narrow band spectra. 

However, it should be noted that there is no 
necessary relationship between a spectral width parameter 
and groupiness. Fig. 7 illustrates three synthesized wave 
trains. Each of these were synthesized from the same SIWEH 
spectral density with the only difference that the area 
under the SIWEH spectral densities was rescaled according to 
equation 6.2 so that the groupiness factor could be varied 
from GF = 0.95 to 0.2. In all three cases the variance 
spectral densities are more or less the same. Whereas the 
wave train for GF = 0.95 shows very pronounced grouping, the 
wave train for GF =0.2 is almost of constant amplitude. 

It may, perhaps, appear unbelievable -xthat this 
latter wave record can have the variance spectral density 
which is shown. It must, however, be remembered that the 
record shown is not a pure sinusoid and that there is an 
appreciable  amount of  phase  modulation  which causes the 
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FIG. 6  THE SYNTHESIS OF GROUPED WAVES FROM COMMON SIWEH 
SPECTRAL DENSITIES 
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spectrum to be non-monochromatic. The authors have not 
attempted to reproduce this latter nave train in a wave 
flume, and it is therefore not known if this particular wave 
train is physically realizable. 
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