by
Yu Kuang-ming*

## I. Abstract

Thi: paper first givesabriof review of the existing research worke on the laws governing the dissipation of wave energy by turbulance. Starting from the general theory of turbulent motion and the writer's euggestion in regard to the mixing length of water particles in two-dimensional plow and making use of the principle of dimensional analvsie and the trochidal wave theory, a formula has been derfved to compute the mean diesipation per unit time and par unit horizontal ares of wave energy due to turbulence. The formula takes the horizontal and vertical gradients of both the horizontal and vertical velocity flelds into consideration. Coefficient in the formula has been detarmined through laboratory expertmente.
2. A Brlof Roview of Former Research Works

It is not far since the presentation of the suggestion that fluid turbulance playe an important role also in wave motion. The scientific resarches on the laws governing the dissipation of wave energy by turbupence were started in the late forties of this century, but only in and after the fifties of this century had more research works been gradually done.

There are generally thres different methods to study the problen of turbulent dissipation of wave energy. The first one beees anlely on the principle of dimensional analyeie, making use of the $\pi$-theorem. The advantages of this method lie in the simpliolty of the process of derivstion, but the salection of the independent variables and the determination of the formula patiterns are to a certain degree arbltrnry. The typical example applym fing thie method of analysis can be found in literature (I).

[^0]The second method utilizes the theorntical ralationship of viscous dispipation of wave energy, replacing the coofficient of kinematic viecosity by means of the coefficient of kinematic eddy viscosity and then finds the functional relationship botwean the lattor coefficient and the relevant physicalquantitiss charactarizing wave motion, applving the principle of dimensional snalyeie. The virtues and defacts of this method are basically the same ae that of the first method. Its typical example of application can be found in literature (2).

The third method makes uae of the theory of turbulent flow. This method procoede from the internal structure of the current, givesa deoper instght into the essence of the phenomenon and therefore hae been widely used. Neverthelese, the oxisting theoriee take only the vertical gradients of the horizontal velocity field into consideration. But in wave motion, the magnitudes of the horizontal and vertical gradiante of both the horizontal and vertical velocity fields are of the same order. Thev ehould be constdered simultaneously. Literatures. (3) and (h) ean be referrer to as the examples of application of thite method.

The diecrepancieo among the resulta of the existing research works are very great. For instance, according to \%ykogeh (5), the average rate of enorgy disaipation of wave motion due to turbulence is 108 times as great ae that computed by meano of the formula suggeeted by Kpoll0B (I). Similarly, if one usea the results of 山улейкин (6) and довроKлоHCKnh̆ (3), the calculated valuee of this quantity will be several times to ngarly one hundred times as great as that of $k p b l \lambda O B$ for flat waves and ateep waree reepeotively.

## 3. Theoretical Analysis

For two-dimensional turbulent flow, one may assume (7), (8)

$$
\left.\begin{array}{l}
\tau_{x y}=\rho \varepsilon\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right)  \tag{1}\\
\tau_{x x}=-\dot{C}_{1}^{2}+2 \rho \varepsilon \frac{\partial u}{\partial x} \\
\tau_{y y}=-C_{2}^{2}+2 \rho \varepsilon \frac{\partial v}{\partial y}
\end{array}\right\}
$$

In which: $\tau_{x y}-\infty-y$ component of the turbulent strese acting on a surface elemant, the outward normal of which.ie parallel to the $X$-axiss
$\tau_{x x}$ and $\tau_{y y}$ have a similar meaning;
$\rho-\infty$ mase denaity of liquid;
$\varepsilon \rightarrow-\infty$ coefficient of kinomatic eddy viscosity;

U,V-mem component velocitios averaged over time in the $X$ and $Y$ directions;
$C_{1}, \mathrm{C}_{2}=-$ conetantes
Roferring to Prandti'e elggeation (8), in the cage of tro-dimenatonal Mow, one may put

$$
\begin{equation*}
\varepsilon=\ell^{2}|F| \tag{2}
\end{equation*}
$$

Where

$$
\begin{equation*}
F^{2}-2\left(\frac{\partial u}{\partial x}\right)^{2}+2\left(\frac{\partial v}{\partial y}\right)^{2}+\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)^{2} \tag{3}
\end{equation*}
$$

$\ell$ is the mixing length of fluid particles.
According to the trochoidal wave theory of deep water (7), the Garteaian coordinates of water particlee are:

$$
\left.\begin{array}{l}
x=a+\frac{1}{2} h e^{k b} \sin \varphi  \tag{4}\\
y=b-\frac{1}{2} h e^{k b} \cos \varphi
\end{array}\right\}
$$

where: $\quad \varphi=K a+\sigma t \quad K=\frac{2 \pi}{\lambda} \quad \sigma=\frac{2 \pi}{T}$;
$\lambda$--- wave length;
T ---- mave period;
t ---
n---- wave height;
$a, b$-a-- the Lagrangian coordinates of a water particle, bu0 at free surface;

- --- base of the nstural logarithm;
$X, Y$ - -- the horizontal and vertical coordinates of water particle (a, b) et time $t$; $X$-axia coincidea with the central line of water surface and its positive direction ie opposite to that of wave propagation; $Y$-axis is vertical and positive upwards. It paseea wave trough at $t=0$.

Differentiating $E_{q}$ ( 4 ) with reapect to $t$ Helde

$$
\left.\begin{array}{l}
u=\frac{\partial x}{\partial t}=\frac{1}{2} h \sigma e^{k b} \cos \varphi=-\sigma(y-b)  \tag{5}\\
V=\frac{\partial y}{\partial t}=\frac{1}{2} h \sigma e^{k b} \sin \varphi=\sigma(x-a)
\end{array}\right\}
$$

Differentieting Eqs. (4) and (5) with reepect to $X$ and I succesaivaly and simpifying the resulting equations gives

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}=\frac{-\sigma k_{1} \sin \varphi}{1-k_{1}^{2}}, \quad \frac{\partial u}{\partial y}=\frac{\sigma k_{1}\left(k_{1}+\cos \varphi\right)}{1-k_{1}^{2}}  \tag{6}\\
\frac{\partial V}{\partial x}=\frac{-\sigma k_{1}\left(k_{1}-\cos \varphi\right)}{1-k_{1}^{2}}, \quad \frac{\partial V}{\partial y}=\frac{\sigma k_{1} \sin \varphi}{1-k_{1}^{2}}
\end{array}\right\}
$$

$$
p_{1}=\frac{\pi h}{\lambda} e^{k b}
$$

Hence

$$
\begin{align*}
& F^{2}=\frac{4 \sigma^{2} g_{1}^{2}}{\left(1-R_{1}^{2}\right)^{2}}  \tag{7}\\
& |F|=\frac{2 \sigma \pi_{1}^{2}}{1-t_{1}^{2}}
\end{align*}
$$

Subetitutins Eqs. (2), (6) and (7) into Eq. (I) and rearranging the resulta, ome oan obtain

$$
\left.\begin{array}{l}
\tau_{x y}=\frac{4 \rho l^{2} \sigma^{2} \hat{K}_{1}^{2} \cos \varphi}{\left(1-R_{1}^{2}\right)^{2}} \\
\tau_{x x}=-C_{1}^{2}-\frac{4 \rho \phi^{2} \sigma^{2} h_{1}^{2} \sin \varphi}{\left(1-R_{1}^{2}\right)^{2}}  \tag{8}\\
\tau_{y y=x}-C_{2}^{2}+\frac{4 \rho l^{2} \sigma^{2} R_{1} \sin \varphi}{\left(1-h_{1}^{2}\right)^{2}}
\end{array}\right\}
$$

Eaeed on the thmory of turbulett flow (9), the energy loee $\psi$ of turbulent motion per unit time and per unit ilquid volune ie

$$
\begin{equation*}
\psi=\tau_{x x} \frac{\partial u}{\partial x}+\tau_{y y} \frac{\partial V}{\partial y}+\tau_{x y}\left(\frac{\partial V}{\partial x}+\frac{\partial u}{\partial y}\right) \tag{9}
\end{equation*}
$$

Substituting Eq. (6) and (8) ints. Eq. (9) yialds

$$
\begin{equation*}
\psi=\frac{8 \rho l^{2} \sigma^{3} h_{1}^{3}}{\left(1-k_{1}^{2}\right)^{3}}+\left(C_{1}^{2}-C_{2}^{2}\right) \frac{\sigma R_{1} \sin \varphi}{1-k_{1}^{2}} \tag{10}
\end{equation*}
$$

If one imaginse two vertical planee to be drawn et unit creet width apart, parallel to the direotion of wave propagation and extended from water surface to botton, the total turbulant dieaipation $E_{\lambda}$ per unit tice and per wave length of the Pluid betweon these planea is

$$
\begin{equation*}
E_{\lambda}=\iint \psi d x d y \tag{11}
\end{equation*}
$$

According to the rule of changing of veri ables (IO), it followe irmediately that

$$
\begin{equation*}
\iint \psi d x d y=\iint \psi\left|\frac{D(x, y)}{D(a, b)}\right| d a d b \tag{12}
\end{equation*}
$$

in whion $\left|\frac{D(x, y)}{D(a, b)}\right|$ is the functional determinant of $x, y$ with respect to $a, b$.
Differentiating Eq. (4) with respect to and $b$ ouoceeaively, oubetituting the
reeulte into the expression of $\left|\frac{D(x, y)}{D(a, b)}\right|$ and simplifying leeds to

$$
\begin{equation*}
\left|\frac{D(x, y)}{D(a, b)}\right|=1-k_{1}^{2} \tag{13}
\end{equation*}
$$

Prom Eqs. (IO)-(13) it may be eqen that

$$
\begin{equation*}
E_{\lambda}=8 \rho \sigma^{3} \int_{-\infty}^{0} \frac{e_{1}^{3}}{\left(1-k_{1}^{2}\right)^{2}}\left[\int_{a_{x=0}}^{a_{x=\lambda}} l^{2} d a\right] d b \tag{14}
\end{equation*}
$$

In two-dimencional flow, the writer suggeeta thet

$$
l=l\left(F, \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right)
$$

, In accordance with the prinoiple of dinanaional walyoia, patting

$$
\ell=\left|\alpha F^{\beta_{1}}\left(\frac{\partial F}{\partial x}\right)^{\beta_{2}}\left(\frac{\partial F}{\partial y}\right)^{\beta_{s}}\right|
$$

whore $\alpha$ ie admencionlee conetant, one obtaine

$$
\beta_{1}=1, \quad \beta_{2}+\beta_{3}=-1
$$

Thue

$$
\ell=2\left|\frac{\alpha F^{2}}{\frac{\partial F^{2}}{\partial Y}}\left[\frac{\frac{\partial F^{2}}{\partial X}}{\frac{\partial F^{1}}{\partial y}}\right]^{\beta_{2}}\right|
$$

Difforontiating Eq. (7) with respect to $X$ and $Y$ roopectively and substituting the rauite into Eq. (I6) giveo

$$
l=\left|\frac{a\left(1-k_{1}^{2}\right)^{2}}{k\left(1+k_{1}^{2}\right)\left(1+k_{1} \cos \varphi\right)}\left[\frac{-k_{1} \sin \varphi}{1+k_{1} \cos \varphi}\right)^{\beta_{2}}\right|
$$

$\beta_{2}$ is datermined from the following conditions: at bottom $\left(k_{1}=0\right), \ell=0$; ot watar eurface $(b=0), \ell \approx h$. Based on these conditions, one may put $\beta_{2}=1$. Hence,

$$
\begin{equation*}
l^{2}=\frac{\alpha^{2} k_{1}^{2}\left(1-k_{1}^{2}\right)^{4} \sin ^{\varphi} \varphi}{K^{2}\left(1+k_{1}^{2}\right)^{2}\left(1+k_{1} \cos \varphi\right)^{4}} \tag{18}
\end{equation*}
$$

Setting $X$ equal to $\lambda$ and 0 successivaly in the first port of Eq. (4) and eubtrscting yields

$$
\lambda=a_{x=\lambda}-a_{x=0}+\frac{1}{2} h e^{k b}\left[\sin \left(k a_{x=\lambda}+\sigma t\right)-\sin \left(k a_{x-0}+\sigma t\right)\right]
$$

Evidently, $a_{x=\lambda}-a_{x=0}=\lambda \quad$ is a eolution satisfying $E_{q}$. (I9). Utilizing thie ralationship and reeolving rational fraction into simpler partial fractions, one gats from $E_{q}$, (I8) by integration

$$
\begin{equation*}
\int_{a_{x=0}}^{a_{x=\lambda}} l^{2} d a=\frac{\pi a^{2} k_{1}^{2}\left(1-k_{1}^{2}\right)^{3 / 2}}{K^{3}\left(1+k_{1}^{2}\right)^{2}} \tag{20}
\end{equation*}
$$

Substituting Eq. (20) into Eq. (I4) and then intagreting, negleoting the minor terms and applying the relationship $\sigma=C K$ ( $C$ ie wave celerity), one finds the average dissipation $E_{T}$ of wave onergy dug to turbulence per unit time and per unit horizontal area as follows:

$$
\begin{equation*}
E_{T}=\frac{E_{\lambda}}{\lambda}-\frac{4}{5} \rho \alpha^{2} c^{3}\left(\frac{\pi h}{\lambda}\right)^{5}\left[1-\frac{15}{14}\left(\frac{\pi h}{\lambda}\right)^{2}\right] \tag{21}
\end{equation*}
$$

## 4. Exporimental Resulte

In order to find the value of the constant $\alpha$ in Eq. (2T), oxperiments were conducted in hyriraulic laboratory. The ratios of water depthe to wave lengths were controlled in these experiments in such a manner that, the condition of deep water wave was fulfilled and thus the dissipation due to bottom friction may not enter.
the wave tank is 62.40 m long, 0.80 m Wide and I .80 m deep and has glase panele on both sides throughout its length. It is provided with an ond slag mound of slope ItIO to avoid wave reflection. Two wave gauges of resietance type were used. They were placed along the center line of the tank in measuring sections I and 2 which were I8. 00 m apert. The equation of balance of wave energy between sections Iand 2 is

$$
\begin{equation*}
E_{1}-E_{2}=L\left(E_{T}+E_{\mu}+E_{a}+E_{W}\right) \tag{22}
\end{equation*}
$$

where


#### Abstract

$E_{1}, E_{2}=-\infty$ the overage quantity of energy transmitted by wavee per unit time and per unit crest widh in the direction of wave propagation through eactione $I$ and 2 reopectively;


 that of turbulent dissipation;
$E_{a-m}-t_{\text {average }}$ disct pation per unit time and per unit horisontal aroa in the boundary ourfacs between air and 1iquid when weve propagatios in calm alr;
$E_{W}-m$. the average diselpation par unit timed por unit horizontal area oeueed by the friction of ths sids walls of the wave tank;

L mon horizohtal distance between seotions I and 2, LaI8.00m;
In socordanoe with the trochoidnl weve thoory, it is well known that

$$
\left.\begin{array}{l}
E_{1}=\frac{\rho g h_{1}^{2} c}{16}\left(1-\frac{\pi^{2} h_{1}^{2}}{2 \lambda^{2}}\right)  \tag{2.3}\\
E_{2}=\frac{\rho g h_{1}^{2} c}{16}\left(1-\frac{\pi^{2} h_{1}^{2}}{2 \lambda^{2}}\right)
\end{array}\right\}
$$

In mich $h_{1}$ and $h_{2}$ ars the wave heights in sactions $I$ and 2 respectivaly, and $g$ is the acceleration of gravity. Ea ie calculeted by means of Шyлейкинל formula(6), mich was derived on the basis of wind tunnal tests.

$$
\begin{equation*}
E_{a}=\bar{X} \rho^{\prime} \frac{f c^{2}}{T} \tag{24}
\end{equation*}
$$

whare $f^{\prime}$ is the density of air and $\bar{X}$ le a dimenoionlese coefficient. Ae for the velue of $\mathrm{E}_{\mathrm{w}}$, Hunt's result (II) is applied.

$$
\begin{equation*}
E_{W}-\frac{\rho q}{4 B} \sqrt{\frac{\pi \mu}{\rho T}} h^{2} \tag{25}
\end{equation*}
$$

where B ie ths width of the wave tank and $\mu$ is the dymanic viscosity of water.
Prom Eqs. (2I)-(25), the value of $\alpha^{2}$ can be computed with the help of the weasuring data. The result of computation is shom in Toble $I$.

From Tabla $I$, the mean value of $\alpha^{2}$ can be calculsted to be $\overline{\alpha^{2}}=.0376$, its etandard deviation $\sigma=\sqrt{\frac{8\left(\alpha^{2}-\overline{\alpha^{2}}\right)^{2}}{8}}=.0209$ and 1 ts coofficient of varlation $C_{V}-55.5 \%$

Substituting $\overline{\alpha^{2}}$ into Eq.(2I) Fiolds finally

$$
\begin{equation*}
E_{T}=\frac{3}{100} \rho C^{3}\left(\frac{\pi h}{\lambda}\right)^{5}\left[1-\frac{15}{14}\left(\frac{\pi h}{\lambda}\right)^{2}\right] \tag{26}
\end{equation*}
$$

## 5. Concluetons

Three methode of otudying the problem of energy diesipation of wave motion due to turbulenoe have been reviewed and their edvantages and disadvantagse briefly discussed.

Experimental Mesults of Bnergy Losses due to Wave Motion

| Run <br> No. | Water <br> Depth <br> H <br> (cm) | Wavo <br> Period <br> T <br> (sec) | $\begin{gathered} \text { Wave } \\ \text { Celerdty } \\ G \\ (\mathrm{~cm} / \mathrm{sec}) \end{gathered}$ | Wave <br> Length <br> $\lambda$ <br> (cm) | H/入 | Wave Height (om) |  |  | Water <br> Tempar <br> ature <br> ( 6 ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $h_{1}$ | $\mathrm{h}_{2}$ | $\frac{h_{1}+h_{2}}{2}$ |  |
| I | 90. | I. 05 | 770 | 178 | 0.50 | 13.64 | 12.70 | 13.17 | 27.0 |
| $?$ | 105 | 0.96 | 156 | 150 | 0.70 | Ih. 60 | 13.10 | 13.85 | 17.0 |
| 3 | 105 | I. 07 | 180 | 193 | 0.514 | I5. 20 | 13.80 | 14. 50 | 17.0 |
| 4 | 120 | I.IO | 163 | 179 | 0.67 | 17.13 | 15.16 | 16.14 | II. 2 |
| 5 | 120 | I. 23 | 196 | $21 / 5$ | 0.50 | 17.90 | 16.33 | 17.12 | 25.0 |
| 6 | I 30 | I. 28. | 208. | 266 | 0.49 | 19.33 | 17.49 | I8.4I | II.? |
| 7 | 11,0 | I. 24 | 201 | 249 | 0.56 | 20.23 | 18.17 7 | 19.35 | 21.5 |
| 8 | IL 0 | I. 36 | 22.1 | 300 | 0.47 | 36.1/4 | 32.17 | 34.46 | 22.0 |


| Run <br> No. | Atmospherio Tomparature <br> (c) | Atmospheric <br> Preseure $\left(\begin{array}{c} \text { man } \\ \text { Uercury } \\ \text { Column } \end{array}\right)$ | Density <br> of Air $\begin{aligned} & \rho^{\prime} \times 10^{2} \\ & \left(\mathrm{~g} / \mathrm{cm}^{3}\right) \end{aligned}$ | Dymamic <br> Viscosity <br> of Water $\mu \times 10^{2}$ <br> (Pot.sem dyne-5ec/(cm ${ }^{2}$ ) | $\begin{aligned} & \mathrm{E}_{1} \times 10^{-3} \\ & \left(\mathrm{~g}-\mathrm{cm} / \mathrm{sec} \mathrm{c}^{8}\right) \end{aligned}$ | $E_{2} \times 10^{-3}$ $\left(\mathrm{g}-\mathrm{cm} / \mathrm{sfc} \mathrm{c}^{\circ}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 29.5 | 751.4 | 0.115 | $0.85 \%$ | I, 882 | I, $6 \times 8$ |
| 2 | 20.0 | 7615.9 | 0.121 | I. 08 | I, 94? | 1, 578 |
| 3 | 20.0 | 765.9 | 0.121 | I. 0 B | ?,170 | 2.018 |
| 4 | I2.0 | 759.7 | 0.124 | I. 26 | 2,800 | 2,215 |
| 5 | 24.5 | 758.4 | 0.118 | 0.891 | 3,740 | 3,130 |
| 6 | I2.0 | 759.7 | 0.124 | 1.26 | 4,645 | 3,818 |
| 7 | 22.0 | 759.2 | 0.120 | 0.969 | 4,890 | 4,090 |
| 8 | 23.0 | 759.4 | 0.119 | 0.958 | 16,700 | I3,1,60 |

Table I
Expertmental Results of Energy Losses due to Wave Motion

| Fun <br> No. | $\frac{E_{1}-E_{2}}{L}$ | $\begin{gathered} E_{a} \\ \left(g / \sec ^{3}\right) \end{gathered}$ | $\begin{gathered} \mathrm{Ew}_{w} \\ \left(\mathrm{~g} / \mathrm{sec}^{3}\right) \end{gathered}$ | $\begin{gathered} E_{T}-\frac{E_{1}-E_{2}}{L} \\ -E_{a}-E_{w} \\ \left(g / \sec ^{3}\right) \end{gathered}$ | $\alpha^{2}$ | $\left(a^{2}-\overline{a^{2}}\right)^{2} \times 10^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I | 135.6 | 9.9 | 85.2 | 40.5 | 0.0161 | 1.6? |
| 2 | 202.2 | 13.2 | III. 2 | 77.8 | OOT 28 | 5.67 |
| 3 | 234.4 | 12.8 | 155.2 | 106.4 | 0.033 ? | 0.19 |
| 4 | 325.0 | I4. 5 | 152.2 | 158.3 | 0.0274 | I. 014 |
| 5 | 339.0 | IL 42 | 136.3 | 188.5 | 00593 | 4.71 |
| 6 | 459.4 | 16.7 | 183.5 | 259.2 | 0.0783 | 16.56 |
| 7 | 444.4 | I8. 8 | 180.5 | 245.1 | 0.0465 | 0.79 |
| 8 | I800 | 59.0 | 544.5 | 1196.5 | 0.0262 | I. 30 |

$$
\overline{d^{3}}=0.0376
$$

It asems more properly to approach the subjeat by making use of the thoory of tarbulent
flow.
The importanco of considering simultaneously the horizontal and vartical gradients of both the horizontal and vertical velocity fields have been pointed out. An analytical fomula, i.e., the Eq. (26), has been derived theoreticallv, with the coefficient in it determined experimentally, which cun be used to compute the rate of turbulent diarifiation of wave energy.

Acknowledgements

The aid of corarades Chang Chia-chang, Tu Chin-man and Fu Yung-cheng in parforming the experiments is greatly appreciated.

Appendix I References
(Т) Крылов, П.М., Теорня и Расчет Ветровнх Волн Глубокого Моря, тр.ГоиНа, вмп. 26(38), 1954.
(2) Bowden, K. F., The Effect of Eddy Viscosity on Ocean Waves, The Philosophical Magazine, 1950.
(3) Доороклонскии, С . В., Турбулентная Влзкоств В Поверхностном Слое Моря . Волнение, Докл. АН СССР, 1947, T. LVIII, Ио.7.
(4) Бровиков, И.С., О Расчете Элементов Ветровых Волн Прш Переменном Ветре, Tр. ГоиНа, выा. 38, 1957.
(5) 及уковец, А. М., Определение. Потери Әне ргии Волн Зыби, Эызванных Педствием Турулент ной и Кннематнческой Влзкости, Океанологня, 1963, Ио. 2
(6) Муленкин, В.В., Теорня морскнх Волн, Тр. Морского Гидрофнзического Инстнтута, T.区, 1956.
(7) Кочин, Н.Е., Кнбель, И.А. и Розе, Н. В., Теоретнческая Гндромеханнка, 1963.
(8) Goldstein, S., Modern Developments in Fluid Dynamics, Vol. I, 9938.
(9) Lamb, H., Hydrodynanics, 6th Fdition, I9L5.
(10) омифнов, В.И., Курс Выспей Магематики, Т. II, 1952.
(II) Hunt, J. N., Viscous Damping of Waves over an Inclined Bed in a Channel of Finite Width, La Houille Blanche, 1952; No. 6.

Appendix 2 Notation


T --.. wave period
u -.... component velocity in $X$. ifrection
$\nabla$-..- component velocity in $Y$ direction
$X, Y$--- Cartesian coordinates
$\overline{\mathrm{X}}$---- dimensionless coefficiont,
$\alpha, \beta_{1}, \beta_{2}, \beta_{3}-\cdots$ dimensionless constants
$\varepsilon \cdots$ coofficient of kinematic eddy viscosity
$\lambda$-- wave length
$\mu$--- coafficient of dynamic viscosity
$\pi=3.142$
$\rho-$ mass density of liquid
$\rho^{\prime}$-_-- mass density of air
$\sigma-$ radian frequancy ( $=\frac{2 \pi}{T}$ ); standard feviation
$\tau_{x y}-$ I component of turbulent stress acting on a surface alement, the outward normal of which is parallel to $x$-axis
$\tau_{x x}, \tau_{y y}-\cdots$ similar in meaning to $\tau_{x y}$
$\varphi=K a+\sigma t, \quad E_{q} .(4)$
$\psi-$-- energy loss of turbulent motion per unit time and per unit liquitd volume


[^0]:    * Hydranlio Gngineer, Nanjing Scientific Research Institute of Hviraulic Thgingering, 34 Huchukuan, Nanjing 2T002h, China.

