
CHAPTER 50 

INTERACTIONS  OF WAVES WITH  SUBMARINE TRENCHES 

by Jiin-Jen LeeJ  Robert M.   Ayer? Wen-Li Chiang3 

ABSTRACT 

An analysis is presented for the propagation of water waves past 
a submarine trench of irregular shape.  Two dimensional, linearized 
potential flow is assumed.  The fluid domain is divided into two re- 
gions along the mouth of the trench.  Solutions in each region are 
expressed in terms of the unknown normal derivative of the potential 
function along this common boundary with the final solution obtained 
by matching.  Reflection and transmission coefficients are found for 
various submarine geometries.  The accuracy of the technique employed 
is demonstrated by comparing with previously published results for a 
rectangular trench.  In addition, results from limited laboratory exper- 
iments were included for comparison.  The result shows that for a 
particular flow configuration, there exists an infinite number of dis- 
crete wave frequencies at which waves are completely transmitted. 

INTRODUCTION 

A class of problems involving the propagation of water waves in 
a fluid of variable depth is one in which the depth is constant except 
for variations over a finite interval.  Interest in these problems is 
largely due to the phenomena associated with the passage of waves over 
submarine trenches in the ocean and wave propagation across naviga- 
tional channels, where changes in water depth are commonly the case. 
A common method employed in the solution of problems involving changes 
in water depth is that of matching the solution along a geometrical 
boundary that separates the regions of different depths.  Such an 
approach is found in the work of Bartholomeusz (1958) and Miles (1967). 
It has also been found by Newman (1965) and Black, et. al. (1971) that 
for wave propagation over submarine obstacles there exists an infinite 
set of wavelengths such that the incident wave is totally transmitted. 

Lassiter (1972) solved for the transmission and reflection coef- 
ficients in the case of monochromatic plane progressive surface waves 
over a rectangular submarine trench where the water depths before and 
after the trench are constant but not necessarily equal. Lassiter 
formulated the problem in terms of complementary variational integrals 
and solved for the velocity potential by matching the solution along 
vertical lines before and after the trench. 

In this present study, the problem considered is two-dimensional 
motion of linear periodic water waves over an arbitrarily shaped sub- 
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marine trench where the water depths before and after the trench are 
equal and constant.  By drawing a horizontal line, the authors have 
separated the domain into two subregions, namely an infinite rectangu- 
lar region of constant depth and a finite region of irregular shape 
representing the trench itself. 

An analytic solution for each region is then found explicitly in 
terms of an unknown velocity distribution along the trench — constant 
depth boundary.  By superimposing a linear periodic incident wave of 
specified frequency in the infinite constant depth region, the final 
solution is obtained by matching the solutions in each subregion along 
the common boundary. 

THEORETICAL CONSIDERATIONS 

Let (x,y) constitute a Cartesian coordinate system with y = 0 
coinciding with the impermeable boundary of the constant depth region 
as shown in the definition sketch in Fig. 1.  Assuming a steady-state 
solution for the velocity potential in the form of 

*(x,y;t) = c)>(x>y)e"
iat; (1) 

the potential function <|>(x,y) must satisfy Laplace's equation through- 
out the fluid domain and the following boundary conditions: 

31  o 4 V1 = — 9     on  y = h,  -oo<x<co 3y   g 

^ = 0        on  y=0,x<0 8y 

•P = 0        on  y = 0,  x > I (2) 9y J ' 

7T- =0        on  solid boundary in the trench 
dn 

-£-  = q(x)     on  y = 0,  0 < x < X. 
(the function q(x) is to be determined by matching) 

In Eqs. (1) and (2), a represents the circular frequency, 2fr/wave period; 
i is the complex number V  -1 . 

In order to solve for c|)(x,y) in an efficient manner, the fluid do- 
main is divided into two regions, Region I and Region II, by the common 
boundary T  shown in Fig. 1. 

The strategy used herein is to solve for <J>(x,y) in each respective 
region in terms of the unknown 3<j)/3y along the common boundary Y.    Thus, 
by matching the solutions in each region at T, one is able to obtain 
the final solution. 
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REGION I 

/.'/>/1/) /i/ii 

FIGURE 1.  Definition sketch of the trench with regions of 
consideration. 

Region I Solution 

The solution for the velocity potential in Region I assuming that 
the unknown normal derivative of the velocity potential 3<t>T/3y is equal 
to q(x) (along y = 0, 0 < x < X.) has heen obtained by Lee and Ayer 
(1980).  This solution can be summarized as follows: 

(1)  If x > x. for all j, 
1 

<f> (x,y) = £ Q 
j=l 3 

r ik (x-x.)  ik (x-x. ,)T 

[e r   3 -e * J"1] S (k ,y) 
r r'J 

+    E 

r -k (x-x. ,)  -k (x-x.)-i 
Le n   J-1 -e n   J J 

Sn(kn,y) }   (3) 

(2)  If x < x. for all j, 

* (x,y) = Y,  Q 
3=1 J 

r -ik (x-x. n)  -ik (x-x.)"| 
[e  r   J'1 -e  r   J J S (k ,y) r r J 

+   z 
r k (x-x.)   k (x-x. ,)1 

n=l 
sn(kn,y) )        W 
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(3)  If x > x.   and x < x. for some j , 

Mx.y) = ~l    Q 

j_1   |[e
ikr(x-xj) _e

ikr(x-xj-i)] 
Sr(kr,y) 

+ I 
n=l 

r -k (x-x. n)  -k (x-x.)n 
Le "   J"1 -e "   3 J W^ 

+ Q, 

1+T(y"h)  [e^^VVe^^V] 
Sr(kr,y) 

[^n^J-l^^n^J^ 
+ £ 

n=l k 
Sn(kn'^> 

„   , r ~ik (x-x. ..)  -ik (x-x.)n 

+ I Q. 
J j+1 J | k 

k^(x-x^)   k^(x-x^_1) 

+ E 

S (k ,y) 
r r'J 

r 
r k   lx-x.;   k  (.x-x. .)l 
[en   J -e"   J'1 J W^ (5) 

In Eqs. (3) - (5) the functions S  and S are defined by 

2, 
kfcosh k (y-h)l + a /g slnh[kr(y-h)] 

r r k h sech k h + slnh k h 

and 

Sn(V*> 
k [cos  k (y-h) 1 + a /g sin Tk (y-h)j 

k h sec k h + sin k h n      n        n 

The value of k and the values of k are determined by 
r n 

2 
— = k tanh (k -h) g    r       r 

— = -k tan (k *h) g     n      n 

-t th The value of Q4 is the'average value of q(x) in the j   subinter- 
val whose midpoint  is defined as (x^,0) within the common boundary 
of the trench mouth. 
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Region II Solution 

Again, the solution for the velocity potential In Region II has 
the steady-state form 

$I];(x,y;t) = <|>l:].(x,y) e_1 (6) 

and the potential <|>xi must satisfy Laplace's equation subject to the 
boundary condition of a^jj/Sn = 0 along the solid boundary of the 
trench. 

As the trench shape is considered arbitrary it can be conveniently 
solved by boundary integral method.  The potential function along the 
boundary of the trench can be expressed as follows: 

w ^fL(i)^ - *#- J.n(i)l 
Tfj [_'  r  Sn    YII 8n    r J 

ds (7) 

The term 3<))jj/3n in Eq. (7) is zero except along the mouth of the 
trench which is equal to q(x) according to Eq. (2).  This integral 
equation can be approximated by a matrix equation as used in Raichlen 
and Lee (1978). 

Therefore, the value of <j>]--|- along the trench mouth can be ex- 
pressed in terms of the unknown vector, Q^.  This unknown vector Ch 
can then be solved by matching the value of <1>II(XJ) and <J>T(x-j)+(l>^ntx.j) 
(where ^^(XJ) is a specified potential function of an incident wave 
along the trench mouth with the coordinate of (x-j,0)). 

Once the value of QJ is obtained, the velocity potential at any 
position in Region I can be computed by Eqs. (3) - (5) along with the 
superposition of the incident wave potential. 

PRESENTATION AND DISCUSSION OF RESULTS 

The effect of the trench on the propagation of waves can be demon- 
strated most easily by the transmission characteristics.  In order to 
enaure that the present analysis for Region II using the boundary inte- 
gral method can provide a reliable result, the method is applied to a 
rectangular trench, where in a separate study, the solution has been 
obtained in terms of an Eigenfunction expansion, therefore providing 
a basis for comparison.  Figure 2 shows the transmission coefficient, 
Kt, as a function of the relative wave length.  The ordinate is the 
ratio of the transmitted wave amplitude divided by the incident wave 
amplitude, while the abscissa is the ratio of the water depth, h, in 
Region I divided by the incident wave length, \.    The wave length A is 
computed from the dispersion relationship, A = (gT2/2Tr) tanh (2irh/A), 
where T is the incident wave period. 

The present theoretical results (as can be seen from Figure 2) 
come within 3% of the results of Lee and Ayer (1980).  The result of 
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Lee and Ayer (1980) was obtained by using an analytic solution in 
Region II.  The fact that the present solution is so close to the more 
exact theory demonstrates that the approximate method used can provide 
a fairly accurate result.  It is seen from Figure 2 that for h/A>0.18, 
the incident waves are almost fully transmitted.  At h/A = 0.09, the 
transmission coefficient is approximately 0.89.  To understand the 
trench effect further, one can compute the value of S./A at these criti- 
cal points.  At h/A = 0.18, it corresponds to l/X  = 0.95 while at 
h/L = 0.09, it corresponds to l/X  = 0.475.  It appears that for a rela- 
tively short trench length, the maximum reduction of transmitted wave 
occurs as IIX  approaches 0.5.  As the wave period is decreased to where 
it/A approaches 1, the effect on wave transmission due to the trench is 
negligible. 

As the trench length increases, the effect of the trench on the 
transmission characteristics of the incident waves becomes more in- 
teresting.  This is shown in Figure 3.  The trench length for this case 
is three times that shown in Figure 2 with other dimensions held con- 
stant.  Two theoretical curves, one obtained by the present analysis 
and the other obtained from Lee and Ayer (1980) are shown for compari- 
son.  The experimental data obtained by Lee and Ayer (1980) in a lab- 
oratory wave tank of 12 inches wide, 48 feet long and 18 inches deep 
are also included for comparison.  Again, it is seen that the two 
curves agree very well in every peak and trough (the results are within 
3% of each other) for the range of h/A presented.  In the range of 
0 < h/A < 0.25, there are six different wave periods at which waves are 
fully transmitted.  The results indicate that the trench does exert a 
greater influence on wave transmission characteristics in that the 
transmission coefficient at h/A = 0.042 is only about 0.70.  It is also 
seen that the experimental data in general tend to confirm the theore- 
tical prediction.  However, due to experimental errors and the unavoid- 
able wave reflections from both ends of the wave tank, the experimental 
data show considerable scattering as evident in the figure. 

An example for wave transmission over an even longer rectangular 
trench is shown in Figure 4.  The length of the rectangular trench is 
now four times of that shown in Figure 2.  Again, the present results 
using the boundary integral method agree well with the result of Lee 
and Ayer (1980) further confirming that the method designed for an 
irregular shaped trench can be used for a trench of rectangular shape. 
The number of wave periods at which waves are fully transmitted is now 
increased to nine for the same range of h/A.  For each of the troughs 
in the response curve, the effect of the trench is further dramatized. 
For example, at the first trough (h/A = 0.034), the transmission co- 
efficient is reduced to 0.68, while at the second trough (h/A = 0.081), 
the transmission coefficient is about 0.84.  These are clearly smaller 
values than those shown in Figure 3. 

An example of the transmission of waves over an irregularly shaped 
trench is presented in Figure 5. The dimension of the trench shape is 
shown in the insert of the figure.  The transmission coefficient is 
very close to one, showing that the trench does not effect the wave 
transmission drastically.  However, it is clear that there are a number 
of peaks and troughs in the transmission curve (a-similar feature as 
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that shown in Figures 2 - 5). 

CONCLUDING REMARKS 

The methods outlined in this paper for analyzing the effect of an 
arbitrarily shaped trench on the propagation of periodic incident waves 
has been shown to be quite effective as illustrated by comparison with 
the solution techniques for a rectangular trench and with experiments. 
From the results on wave transmission and reflection, it is seen that 
there exists an infinite number of wave periods at which waves are 
fully transmitted, and that the effect of the trench on wave trans- 
mission is progressively smaller for higher wave frequencies (the 
larger values of h/A). 
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