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ABSTRACT 

Linear and nonlinear sets of equations of long waves in the Lagrangian 
description are solved numerically to obtain run-up heights. Numerical 
results are compared -with theoretical ones in case of simple topographies 
and the agreement is quite satisfactory. As a practical application, the 
computation is carried out for the Okkirai Bay in Japan. The computed 
run-up neighs agree fairly well with the recorded ones. 

1.   INTRODUCTION 

One of the most difficult problems in the numerical simulation of 
tsunami run-ups lies in the fact that it is not easy to introduce the 
boundary condition which should precisely reflect the topography of the land 
where the tsunami arrives at. 

In the present paper, one- and two-dimensional problems are treated 
numerically by adopting both linear and nonlinear sets of equations described 
in the Lagrangian coordinates.  In this system, the boundary condition can be 
easily satisfied.  The water particles lying on the sea bottom at the 
beginning of the motion do not leave the bottom during the subsequent motion. 
The water particle at the wave front is the one which is at the shoreline at 
the initial instant. 

For the analysis, an explicit finite difference method is used.  The 
computation is first carried out for simple topographies, for which the 
linear equation gives analytical solutions. The numerical results of the 
linear theory are compared with the theoretical values and agreement is quite 
satisfactory. 

Then, the nonlinear computation is carried out.  The difference between 
linear and nonlinear theories amounts 20$ at most. 
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As an example of practical application, The computation is carried 
out for the Okkirai Bay on the South Sanriku Coast in Japan, which suffered 
much hy the attacks of tsunamis in the past. 

2.   BASIC EQUATIONS AND NUMERICAL TECHNIQUES 

Let us consider the irrotational, three-dimensional motion of an 
incompressible fluid.  The displacements of the water particle which is at 
the point (a,b,c) at the initial instant is (a+x,b+y,c+z) at the time t. 
The still water surface is taken as the a-b plane, and the c-axis is taken 
vertically positive upward. Linear and nonlinear equations of long waves 
in the Lagrangian coordinates have been derived by authors (Shuto, 1967; 
Goto, 1979; Goto and Shuto, 1979). 

The linear theory is written: 

n + h(a,b){xn + y^} + h(a+x,b+y)- .h(a,b) = 0  (l) 

tt 

'tt 

= 0 -(2) 

And the nonlinear one  is 

(i y, ){n + h(a+x,b+y)  -h(a,b)} 

-h(a,b){xa  + y    +~f^r4 } = 0         (3) 
a D       d(.a,b; 

1 + Xa    ya 

*b    1+yb 'tt 

-(h) 

where g denotes the acceleration of gravity, h(a,b) the still watevr depth 
where the water particle existed at the initial instant and h(a+x,b+y) also 
still water depth where the water particle arrives at.  The relationships 
between these theory is similar to that between linear long wave and 
shallow water theories in the Eulerian coordinates. 

These equations are expressed in terms of the displacements (x,y,n) of 
the free surface from the original position.  In the present analysis, the 
Lagrangian velosities (u=x ,v=y ,n ) are introduced in place of them.  The 
bottom friction expressed in Manning's n and proportional to the square of 
the velocity is also introdeced.  This change of variables makes the 
numerical computation more stable and easier. 

Therefore, the equations are, for linear waves, 
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(n. 
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-(5) 

-(6) 

i,   for nonlinear waves, 

(1 + xa + V   K + ^a+x + v\ +y 

h(a,b){u    +v„+-|M +-1^4=0, 
a        b       8(a,b)       3(a,b) 

1 + Xa      ya 

*b       1+^b 

+ S + >3^ 

-(7) 

-(8) 

Where D denotes the total water depth. 

For the water particle at the initial instant, the still water depth h 
is equal to zero.  Therefore, in these equations of continuity of long waves, 
the value (n  + uh   + vli  ) is equal to zero provides the boundary 
condition at the wave front. 

For the numerical computation, an explicit finite difference method 
similar to the staggered leap-frog scheme is used. For example, the 
difference equations of the linear theory are expressed as 

i,0 

n i.       ,(i   n+1/2 n+1/2     ,    .   ,   n+1/2 n+1/2     ,, 
"i.j   " hi,jA{(ui+l/2,3 Ui-l/2,j)   +"(Yi,j+l/2 " Vi,j-l/2)} 

-  At(h u.    . 
x 1,0 

h v1.'   .) 
y i,o 

n+1/2 
Ui+l/2,j 1 + u. 

 ,h n-1/2     ,   n-1/2 
n-1/2    U1 " Mi+l/2,j;ui+l/2,j 

i+l/2,j 

-(9) 

- g«ni+;uj * "i,j'> 

n+1/2 
i, 0+1/2 

1                r,,         n-1/2     ,, n-1/2 
..    .     n-1/2    U1      wi,j+l/2;vi,j+l/2 
1 + yi,j+l/2 

(10) 

- gA(n ^UH^Lj)' -(11) 
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where A =At/As; As and At denote 
horizontal and time mesh size, 
respectively, and 

1/2 n    gn At   ,,  n ,2 , n &1/ 
Mi,j  , n  jit/3  1,0    i»J 

i.j 

Notations h and h denote the 
local slopes, in the x- and in- 
direction where the water particle 
arrives at, so we calculate and 
store them beforehand. 

In Fig. 1, the numerical 
computation mesh is shown.  The 
velosity are calculated for the 
point where arrows are shown and 
vertical displacement at the point 
where "black circles are shown. 
When we need the velocities for 

Fig. 1   Numerical mesh. 

the points of the "black circles, we estimate them by a linear interpolation. 
For the points along the initial shoreline, we estimate the velosities "by a 
linear extraporation. 

The same procedure was also adopted in case of nonlinear theory. 

RESULTS OF COMPUTATION 

(l)  Comparisons with the analytical solutions. 

First, we examine the accuracy of the numerical scheme for one- 
dimensional eases. A simple topography, a uniform slope connected to the 
channel of constant depth, is used.  In this topography, the maximum run-up 
height R was theoretically presumed by Keller and Keller (196U) and confirmed 
by Shuto (1972), by using the linear theory. 

!-,<«> -^r1'2 
-(12) 

Where L is the wave length in water of constant depth, H the incident wave 
height, 1 the horizontal length between the toe of the slope and the shore- 
line and J the n-th Bessel Function of the first kind. 

For the simple topography, we have computed several cases with no 
friction effect.  Figure 2 shows the comparison. The curve is the result 
given by the analytical solution, while black circles are the numerical 
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Fig. 2  The comparison "between the 
analytical and the numerical (linear) 
results. 

Fig. 3  The comparision of wave profile. 

results.  Examples of wave profile are shown in Fig. 3. They are for 
maximum run-up and run-down for wave periods of 300 sec and 600 sec "by- 
linear theory.  The lines are the analytical solution and the circles the 
numerical results. We consider the agreement is satisfactory. 

Though examination of the numerical results obtained for different 
conditions, we find that the accuracy of the numerical results depends 
upon three factors, the spatial mesh size As, the slope of topography a 
and the wave length L.  In order to see this, the ratio of the computed 
maximum run-up height to the analytical one is shown in Fig. 4 as a 
function of a parameter made of the three factors. With the "bigger value 
of the parameter, the accuracy "becomes worse..The reason is considered due 
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Fig. 4  The accuracy of the numerical 
computation. 

to deterioration of the 
linear extraporation used 
at the wave front, with 
steeper slopes, longer 
mesh size and shorter 
wave length. 

Secondly, it is 
checked how "big the effect 
of nonlinearity is.  The 
computation is carried 
out for the same topography. 
The results are compared 
with analytical results of 
the linear theory.  In 
nonlinear computations, a 
particle with the higher 
vertical displacement 
moves with the higher velocity.  Therefore, in some cases, a particle 
"behind the wave front overtakes the wave front.  We consider that this 
introduces the "breaking and it is necessary to make an adjustment.  We 
set a restriction that the particles "behind should not get ahead of the 
particles in front of them.  White circles in Fig. 5 show the results of 
the computation with 
the adjustment and the    «* 
"black ones those without 
the adjustment.  This 
phenomenon becomes 
distinct with the wave 
of big steepness.  In 
the computation^of 
actual tsunamis, the 
phenomena is almost 
negligible, because of 
their small steepness. 
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Examples of wave 
profile with the 
adjustment are shown in 
Fig. 6.  The wave fronts 
are similar to a bore. 
However, due to the small 
amplitude, difference between the nonlinear results and the linear ones is 
not large. 

Fig. 5  The comparision between the 
analytical and the numerical (non- 
linear) results. 

Thirdly, the accuracy of our numerical scheme for the two-dimensional 
cases are examined. We employ the case of a rectangular bay with the 
bottom of a uniform slope.  In-this simple topography, an analytical 
solution of maximum run-up height are obtained by use of the linear theory 
in the Lagrangian coordinates as follows, 
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and where 2d denotes the width of the "bay and k 
Tsunami in a hay may increase 
their heights due to resonance, 
and then the effects of 
nonlinearity may "become 
unnegligihle.  Figure 7 shows 
the comparison of the analytical 
results of the linear theory and 
the numerical results. White 
circles are of nonlinear theory 
and "black circles are of linear 
theory. 

As the results of these 
preliminary examinations, we get 
the following conclusions. 

the wave number. 

1. Our numerical scheme is 
stable and satisfactory with 
respect to the accuracy of the 
results, for "both one- and two- 
dimensional cases. 

2. The nonlinear effects 
can increase the linear results 
by amount of 20? at most. 

(2)  An application to the 
Okkirai Bay. 

Fig. 6  Examples of wave profile for the 
nonlinear theory. 
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The method with the nonlinear 
and bottom friction (n = 0.029) 
effects is applied to a bay on the 
Sanriku Coast, in Japan.  This area 

Fig. 7  The comparison between the 
analytical and the numerical results 
for a rectangular bay. 
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has "been frequently attacked by tsunamis.  In the Okkirai Bay, there 
are five fishing ports with flats "behind them. Along the other part of 
the coast, we find the almost vertical cliffs and no village.  Therefore, 
the main interests are upon the five places. 

The tsunami selected as the input is the Great Meiji Sanriku Tsunami 
in 1896. Due to this tsunami, more than 27,000 persons were dead and 
about 10,000 houses were destroyed and lost. The source of the earthquake 
located at about 100km off the Sanriku Coast.  Figure 8 shows the area of 
the source of the tsunami 
and the movement of the 
sea bottom which estimated 
by Hatori (1976). The 
number in the figure is 
the vertical displacement 
of the sea bottom.  We 
assume that the displace- 
ment occured instantly 
and the water surface 
showed the same movements 
as the sea bottom. 

In order to economize 
the computation time, the 
whole region is devided 
into four sub-regions of 
different mesh size.  The 
minimum mesh size is l/9km. 
Figure 9 shows the smallest 
region in the Okkirai Bay. 

The origin of time, is 
taken at the time when the 
earthquake occured. At 
about 17 minutes after the 
earthquake, the water level 
begins to recede.  Then, it 
follows a slight ebb of 
water level. Figure 10 shows 
the time history of water 
surface elevation at the 
entrance of the bay. 

Fig. 8  The area of the source of the Tsunami 
in 1896. 

An example of the numerical results is given in Figs. 11 to.15. 
In Figs. 71 and 12 » which correspond to the time 2100 s and 2280 s, 
arrows show the horizontal velosities, lines the contour lines of the 
water surface and numbers attached the height in meters above still water 
level. Then, the first maximum run-up occurres at the bottom of the bay. 
We show the details in Figs. 13 to 15.  The solid line is the network 
connecting the initial positions of water particles when we have no tsunami. 
The dotted line denotes the deformation of the network at each time. The 
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Fig. 9  The region of the smallest mesh 
in the numerical simulation. 

Fig. 10  The water level at the entrance 

of the "bay. 
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Fig. 15  The comparison -between the recorded 
and the numerical maximum run-up height for 
the Great Meiji Sanriku Tsunami in 1896. 

values shown in the center of the dotted mesh is the mean value of the 
vertical displacement, averaged from the value at four corners. 

Figure 15 corresponds to the maximum run-up.  The chain line in this 
figure shows the recorded inundation heights in 1896.  There is a small 
river in this village.  The record shows the run-up height of 10.3 m along 
the river (point A). The numerical simulation gives 10.2 m. Due to the 
finite grid cell, the computed point can not exactly coincide with the 
recorded point. At the point B, the record shows 13.3 m. The numerical 
ones is 11.5 m. Although the difference is rather big, the inundation 
lines of the recorded and the numerical ones coincide well, because the 
land here is almost vertical. At the point C, the record is 11.2 m and 
the computed one is 11.4 m. At the point D, 11.8 m and 12.5 m,respectively. 

As the result, it is considered that the agreement is satisfactory and 
the method employed here is effective to simulate the run-up of a tsunami. 
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CONCLUSION 

Linear and nonlinear long wave theories in the Lagrangian description 
are proved to "be applicable to the analysis of tsunami run-up.  Computation 
schemes are examined and established in "both one- and two-dimensional cases. 
The present method can he also applied without difficulty to the actual 
topography of complicated geometry. 
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