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Abstract 

Numerical computations of water waves deforming until 
an overhanging, incipient jet has formed near the crest are 
studied in detail. Velocity and acceleration plots lead to 
the identification of three regions in the water which appear 
to be significant in the approach to breaking. In particular 
there is a region with particle accelerations greater than 
the acceleration of gravity. 

1.  Introduction 

The initial stages of a plunging breaker are described from calcu- 
lations by Longuet-Higgins and Cokelet (1976). They succeeded in com- 
puting the motion of particles on the surface of deep-water waves which 
are periodic in space. Similar computations are the basis of the pre- 
sent work which considers the flow properties in more detail. 

The mathematical model is for irrotational flow. The viscosity, 
the surface tension and the density of the fluid above the free surface 
are all taken to be zero. The only physical quantities which are pre- 
sent in the flow are the fluid's inertia and gravity. This appears to 
be quite sufficient since realistic looking results are obtained up to 
a time when a portion of the surface near the wave crest has been pro- 
jected forward as an overhanging incipient jet. The numerical scheme 
then loses accuracy rapidly, apparently because the surface curvature 
has become too large for the method to resolve without more points 
along the wave profile. 

Waves can be forced to break in several different ways. For these 
deep-water waves Longuet-Higgins and Cokelet (1978) describe how a small 
growing, normal-mode perturbation grows until waves break, and Cokelet 
(1979) shows how sinusoidal waves of sufficient initial amplitude also 
break, even if their energy density is less than that of the highest 
wave.  Longuet-Higgins and Cokelet (1976) used a pressure distribution 
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imposed on the free surface for a limited time to drive the waves to 
break, and the same set of solutions are considered in more detail here. 
Full details of the method are to be found in that paper. 

Details relevant to this work include the units used and the parti- 
cular initial and forcing conditions. Units are made dimensionless 
using the fluid density, the acceleration due to gravity and the wave 
number of the waves. That means the waves have wavelength, L = 27t, and 
the phase velocity and radian frequency of infinitesimal waves of that 
wavelength are equal to one. The infinitesimal wave period is In. The 
initial conditions are an accurate, steadily-progressing wave of steep- 
ness H/L = 0.13, or ak = 0.40, which may be compared with the values 
0.14, or 0.43, for the steepest wave. 

The wave forcing is by a sinusoidal pressure pattern travelling at 
the same speed as the initial wave, in quadrature with the wave profile 
to give an energy growth and smoothly applied for o < t < 71. The value, 
p , of the maximum pressure used is a useful parameter for identifying 
particular cases. 

2.  Surface Profiles and the Flow Field 

Some profiles of the surface for p = 0.0729, 0.100, 0.126 and 
0.146 are given by Longuet-Higgins and Cokelet (1976). A sequence of 
profiles for p = 0.200 are shown in Figure 1. This figure shows a suc- 
cession of wave profiles in the reference frame which has water at depth 
at rest. The -paths of surface particles are indicated by dotted lines. 
The extra partial profile indicates the last calculations which we con- 
sider to be reliable for both particle displacements and velocities (see 
Sec. 3). 

A good way to illustrate the velocity field of an irrotational flow 
is by the use of equipotentials and streamlines. Cokelet (1979) out- 
lines how to calculate these inside the fluid from surface-evaluated 
quantities using Cauchy's theorem. Figure 2 shows such isolines for a 
full wave profile with the fluid at rest at great depth, and Figure 3 
gives details near the crest at a slightly later time. These are not as 
informative as such diagrams for steady flows since the approach to 
breaking is unsteady. The fluid does not travel along fixed stream- 
lines, but rather the flow is instantaneously tangent to changing 
streamlines. 

Clearly it would be an improvement to consider flow in a reference 
frame moving with the wave crest. However there is no unique velocity 
that can be chosen. Any particular feature of the wave could be used to 
define a velocity, but that velocity would be unsteady. In Figures 4 
and 5 we have chosen to view the flow of Figures 2 and 3 in a reference 
frame moving with the speed of the original steady wave. This gives 
another, possibly clearer, picture of the motion, and there are some 
indications that this particular reference frame is of especial rele- 
vance.  This aspect is being studied further. 
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Figure 2.  Equipotentials (dashed) and streamlines (solid) at t = 4.61 
for p = 0.146 in a frame of reference with water at great depth at 
rest.  The box at upper right represents contour spacing correspond- 
ing to a dimensionless velocity of 1. 
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Figure 3.  As for Figure 2 but near the crest at t = 4.82. 
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Figure 4.  Equipotentials (dashed) and streamlines (solid) at t = 4.61 
for p =0.146 in a frame of reference moving with speed 
c = 1.082 relative to water at great depth. 
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Figure 5.  As for Figure 4 but near the crest at t = 4.82. 
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3-  The Hodograph Plane 

The search for a relevant reference frame leads to consideration of 
the hodograph plane. That is the (u,v) plane where u and v are, respec- 
tively, the horizontal and vertical components of velocity. A change of 
reference frame by a Galilean transformation (i.e. involving only a 
uniform constant relative velocity) corresponds only to a change of ori- 
gin in the (u,v) plane. Thus the character of the (u,v) trajectory for 
any particle, or of the (u,v) "profile" of surface particles at any 
instant is unchanged. For a motion which is steady in some Galilean 
reference frame the trajectory of surface particles is the same as the 
profile of those particles at any instant. For example, it is a circle 
for infinitesimal waves on deep water. 

To help the reader appreciate the hodograph plane in this context 
Figure 6 shows the surface particle trajectory/profile for the initial 
steady wave. The origin in this example corresponds to water at depth. 
Different portions of the wave are labelled. The crest-trough asymmetry 
is clear. 

+ 0.5 + -f 

—I- trough 

Figure 6. The hodograph plane for surface particles on a 
steady wave, H/L = 0.13, ak = 0.40. 
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The (u,v) profiles of the surface of waves approaching breaking are 
shown in Figures 7 and 8 together with some of the (u,v) trajectories of 
surface particles. 

There are several features to note in these figures. Firstly each 
successive profile differs from its predecessor, especially on the front 
and crest of the wave. Secondly the magnitude of the maximum velocities 
continually increases. In particular the maximum horizontal velocity 
component soon exceeds one, the phase velocity of infinitesimal waves, 
and also 1.093 the maximum phase velocity of waves of this wavelength. 

Further, the rate of increase of velocity also increases. That is, 
the acceleration of some particles increases. These particles are on 
the front of the wave. The dynamical importance of particle accelera- 
tion leads us to draw the corresponding profiles and trajectories in the 
acceleration plane (see the next section). 

The last profile illustrated is not smooth. This indicates that 
the numerical method becomes inaccurate probably because the surface 
curvature is too great to be resolved by 60 points along the wave pro- 
file. This happens only in the region where a jet is beginning to form. 
Further development in time can be computed. The particle positions in 
the (u,v) plane, and eventually in space, become more irregular but do 
follow a general pattern similar to that which is to be expected for a 
jet. That is, particles converge towards a free fall trajectory which 
has a constant horizontal velocity component and a uniformly acceler- 
ating downward velocity component. 

An envelope of trajectories and profiles is a prominent feature of 
Figure 8. It cannot be considered as typical since it does not occur in 
Figure 7. However, one point of that envelope is noteworthy. From the 
smoothness and continuity of the curves it is easy to deduce that one 
particle trajectory approaches the envelope and then recedes away from 
it without any tangential component along the envelope at the instant it 
touches. This is clear since some particles move to the left and some 
to the right. At the instant this particular particle is at the 
envelope It has zero acceleration. As may be seen in the next section 
there is nothing special about the value zero, but it is representative 
of a region of water of low acceleration. 
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4.  The Acceleration Plane and Pressure 

The hodograph plane indicates both large and small particle accel- 
erations. It is particle accelerations that are important in dynamics 
and it has proved instructive to draw surface profiles and particle 
trajectories in the particle acceleration plane (Du/Dt, Dv/Dt). As a 
guide Figure 9 shows the surface profile and particle trajectories of 
the initial progressing wave. These are coincident as in the hodograph 
plane.  The crest-trough asymmetry is also clear. 

+ 0.5+ -I- 

trough 

back 

Figure 9.  The particle acceleration frame for surface 
particles on a steady wave, H/L = 0.13, ak = 0.40. 

For the approach to breaking the particle trajectories and surface 
profiles of acceleration show very large departures from the steady- 
state, as Figures 10 and 11 show. These are for the same two examples 
as the hodograph plane of Figures 7 and 8. The greatest reliably com- 
puted accelerations are so large, e.g. (4.3, -2.0) for Figure 11 that 
they have been left beyond the margins of £he figures rather than reduce 
the scale of the more complex region illustrated. 

The region of high accelerations, i.e. accelerations greater than 
gravity, is the dominant first impression from these figures. The 
region in (x,y) space which has these accelerations is the steep front 
portion of the wave just below the crest. In that region, water which 
was originally in the trough travelling towards the crest is accelerated 
in a relatively short time until it is travelling with or faster than 
the crest. It is thus not surprising that the largest component of 
acceleration is in a horizontal direction. 
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In all these cases the direction of large accelerations is such 
that it is directed away from the surface. This implies there is no 
tendency to a Rayleigh-Taylor instability which occurs if the total 
acceleration field is directed into the fluid. The downward accelera- 
tions which are greater than gravity are for overhanging parts of the 
free surface so they do not contradict this statement. 

For water to 
receive a large 
acceleration there 
must be a corres- 
ponding large pres- 
sure gradient. At 
all surface points 
the pressure gradi- 
ent is no rma 1 to 
the surface and 
directed inwards 
since the pressure 
is zero at the free 
surface. Figure 12 
is a vector diagram 
of the equation of 
motion, 

Du p_~ 
Dt 

-Vp 

to illustrate this. 
Figure 12.  The equation 
of motion at the free 
surface. 

The quantity p+pgy is a good indicator of acceleration since it is 
a particle-acceleration potential, 

pJJ = -V(p + pgy). 
Dt 

Figure 13 shows a contour plot of p + pgy near the crest of the wave of 
Figures 2 and 4. The large gradients below the crest are clear. The 
direction of acceleration is perpendicular to the contours and is 
directed away from the closed contour. When the jet reaches a state of 
free-fall the particles must be at (0,-1) in the acceleration plane. 

A region of low acceleration shows clearly at the crest and its 
back in Figure 13 which includes a point of zero acceleration, and the 
same feature is also clear in Figures 10 and 11. Figure 11 includes the 
zero-acceleration point passing through the surface profile but also 
indicates that it has no special place in the acceleration plane. 
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Figure 13.  Lines of constant acceleration potential at t = 4.61 for 
p = 0.146.  The pair of parallel lines at upper right 
indicate the spacing for an acceleration equal to that 
of gravity. 
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Figure 14.  The pressure distribution at t = 4.82 for p = 0.146. 
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The low acceleration region, has a pressure distribution little dif- 
ferent from hydrostatic. This particular region might be thought of as 
providing a "support" for the strong pressure gradient accelerating the 
front of the wave. 

The pressure distribution for much of the flow at one time is shown 
in Figure 14. One aspect of it is relevant to the interpretation of 
pressure measurements beneath waves. The maximum of pressure at any 
level shows a significant variation of phase with depth. This means 
that the usual deductions about free-surface shape from pressure meas- 
urements are likely to be in serious error for waves at or near break- 
ing. 

5.  Concluding Discussion 

Analysis of the velocities and accelerations of a wave approaching 
breaking indicates three features that may be important in its dynamics. 
These are regions with: 

(i)  a velocity greater than the maximum phase velocity for 
that wavelength, 

(ii)  water particle accelerations greater than gravity, 
(iii)  low particle accelerations. 

All these three regions become evident well before breaking is indicated 
by the presence of a projecting jet. The extent of these regions at the 
time at which the wave face becomes vertical is indicated in Figure 15. 
The development of the regions in time is indicated in Figure 16. 

(iii) 

Figure 15. The crest of a wave at t = 4.61 for 
Region (i) u > 1.09, (ii) |Du/Dt| > 1, 
(iii) |Du/Dt| < 0.33.      ~ 

0.146. 
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Each of these regions could be defined slightly differently, and 
although with a given set of bounding conditions the appearance of one 
may precede another there is no clear indication that any one appears 
first. For example, for p = 0.146 at t = 3.87, the horizontal velocity 
has just exceeded 1.10, the maximum acceleration has reached 0.98 and 
the minimum acceleration is 0.30. 

Some surprise has been felt at the maximum accelerations calcu- 
lated, though once the flow is considered carefully they are entirely 
consistent. It would be interesting to have confirmation from experi- 
ments or observations of water waves, but accelerations are difficult 
quantities to measure in a difficult environment for instruments. A 
small, .freely floating accelerometer may be the best direct approach to 
measuring them. 

The influence of the high accelerations on any fixed object in the 
path of a breaking wave could also be important. Not only is there a 
drag force due to the velocity but also an inertial force due to the 
strong pressure gradient. In addition both these forces act in nearly 
the same direction, whereas for a steadily progressing wave the accel- 
erations and velocities are more or less perpendicular to each other. 

Only a few examples of waves approaching breaking have been ex- 
amined in detail, and it is certain that the features described here do 
not occur in all breaking waves. However, for plunging breakers we have 
examined other examples and found reasonable agreement with the above 
description. 
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