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ABSTRACT 

A new wave tunnel is presented as has been recently built at the Delft Hydrau- 
lics Laboratory. Several design aspects of the wave tunnel will be discussed 
and special attention is drawn to the required force and power diagrams. 

1. INTRODUCTION 

It is often emphasized that wave asymmetry and the corresponding orbital veloc- 
ities have a dominating influence on the behaviour of bed material i.e. on the 
geometry and stability of ripples, on the concentration and on the transport of 
sand, see e.g. Russell and Dyke (1963) and Kamphuis (1973). Yet hardly any 
systematic investigation has been reported so far. An important reason for this 
is the very nature of the wave: the free surface wave form cannot be controlled 
in detail due to its continuous adaptation to bed geometry changes. As a matter 
of fact, the near-bed orbital velocity rather than the wave surface history 
determines the sediment transport. 

In order to study the effect of different orbital velocity regimes on onshore- 
offshore sand transport, preliminary tests were carried out in a simple pul- 
sating water block, affirming the very close systematic dependence of direction 
and rate of sand transport on slight changes in the asymmetry of the orbital 
velocity (Hulsbergen, 1974). It has been concluded that fundamental research 
on sand/water interaction required a facility in which prescribed water motions 
can be exactly generated. This research will be performed in the here presented 

wave tunnel. 

2. DESIGN CONSIDERATIONS 

The water motion to be generated should meet the following requirements: 
i   Exact reproduction should be possible of any water motion as occurring 

in the existing laboratory channels* 
ii  The complete range of sand ripple evolution should be covered, including 

the phenomenon of "sheet flow", 
iii A relatively high amount of high frequency components should be available. 

Further some general requirements were formulated: 
iv  The facility should serve as a pilot model for possible future tests in a 

larger facility. 
v   Access to the test section should be easy for visual inspection, for mea- 

suring devices and for changing the sand bed. 
vi  The whole system should be automatized to a high degree in order to 

facilitate efficient research. 
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It was decided to construct a tunnel because a "pulsating bottom apparatus" or 
a "pulsating water block" would not meet all of these requirements. A water 
tunnel has the important advantage that it can be composed of various sections. 
These sections can have different shapes, different cross section areas and 

can even contain different fluids, in order to most properly meet the specific 
requirements for their function in the system. The only thing which is constant 
throughout the tunnel is the instantaneous rate of flow. Through this constancy 
the flow history can be controlled and programmed exactly according to a given 
signal, provided that the leakage is nihil and the driving power is sufficient. 
Once the requirements i, ii and iii are specified in terms of amplitudes, ve- 
locities and accelerations (Chapter 4), the dimensions of the test section 
(Chapter 5) and the rest of the apparatus (Chapter 6) can be determined, and 
thence the required power of the driving mechanism (Chapter 7). 

3. LAY-OUT OF THE WAVE TUNNEL 

As the tunnel contains both water and oil, and is aiming at simulating certain 
aspects of wave motion, it is called a "wave tunnel" rather than a "water 
tunnel". In principle it is a U-shaped tunnel (Fig. l).with a horizontal 
test section between large-diameter vertical legs. The test section and one 
of these tanks contain water, the other tank contains oil. In order to sep- 
arate both fluids there is a third tank in between, which contains a large- 
diameter rubber diaphragm. The driving piston, which is forced by a pro- 
grammable hydro-power unit, moves in oil in a horizontal cylinder section 
located between the diaphragm tank and the vertical oil tank. Superimposed 
on the oscillatory mode, a mean flow may be induced by a pump in the by-pass 
circuit. 

4tAP 

W  watcrtank 
O   oil  tank 
D   diaphragm 

T       test  section 
HPU    hydro  power  unit 
AP      air   pressure 

Figure   1     Schematic  lay-out of  the DHL wave  tunnel 
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4. THE DESIGN WATER MOTION 

In order to meet requirement i), viz. the exact reproducibility of any orbital 
motion as measured in laboratory wave channels (outside the surf zone), the 
following steps were made: 
• determine the maximum near-bed orbital velocity, (u. )   , as a function of 

_, • , • b max' the wave period T, 
• select the design wave condition in terms of T and (u, ) 
• add some fraction of higher harmonic components, 
• add some mean flow capacity (see Chapter 8) .. 

The relation between (u, )   and T has been determined on the basis of first 
order wave theory and a breaking criterion as follows. The orbital peak ve- 
locity near the bed, in a progressive first order gravity wave with period T, 
height H, length L and in a water depth d is written as 

uu = TTH/T sinh (2ird/L) (1) 
b 

The question is now: what is the maximum value, (u, )   , for a given wave b max 
period T? In shoaling waves u^ increases until there is a limit, set e.g. 
by the breaking criterion of Miche (1944): 

(H/L)   = 0,142 tanh (27Td/L) (2) 
max 

from which 

H   = 0.142 L tanh (2ird/L) (3) 
max 

Further, 

L = 1.56T2 tanh (2Trd/L)     (in metres, sees) (4) 

Substituting equations (3) and (4) into (1) yields for (u, ) 

(u,)   =  0.696T tanh2 (27Td/L)/sinh (2iTd/L) (5) 
b max   i_ Jmax 

The quotient tanh2/sinh has a maximum value of 0.50 for d/L = 0.141 or d/L = 
0.10, so that ° 

(u, )   = 0.348 T    (in metres, sees) (6) 
b max 

Further, at the breaker location as defined above where d/L = 0.10, the fol- 
lowing relations apply: 

sinh (2Trd/L)     = 1 .00 
d = 0.156 T2 (in metres, sees) 
^ma-K = 0.111 T2 (in metres, sees) «   ,_.. 

W* " °-". . ' 
H = A, , where A, is the near-bed water particle 
max b'    ,  „b .        , ,     • -,    i •,. i >, stroke (= l  times near-bed particle amplitude) 

max. acceleration = 2.2 m/s2 



WAVE TUNNEL 313 

The equations (6) and (7) are tabulated for some values of T in Table 1. 

T d «L ) b max 
H        = A, 

max         D 

(seconds) (m) (m/s) (m) 

0.8 0.10 0.28 0.07 
1.4 0.31 0.49 0.22 
2.0 0.62 0.70 0.44 
3.0 1.40 1.04 1.00 
5.0 3.90 1.74 2.77 

10.0 15.60 3.48 11.08 

Table 1  Conditions at d/L 
o 

From this range of periods, strokes and velocities the condition of T = 2 
seconds was adopted as a design basis. The design water motion has been com- 
posed of this sinusoidal motion, with period = 2 seconds and amplitude = 
0.22 m, plus a second harmonic motion with an amplitude ratio of 0.333, plus 
a third harmonic motion with an amplitude ratio of 0.20, all in arbitrary 
phase relationship to each other. This combines to the following maximum 
values in the test section for the oscillatory mode: 
maximum stroke      = 0.69 m 
maximum velocity    = 1,60 m/s 
maximum acceleration = 9.1 m/s2 

These maximum values do not appear simultaneously, but they may be reached 
within the course of a single oscillation. It is noticed that the acceleration 
rate of 9.1 m/s  is more than 4 times the acceleration rate in sinusoidal 
waves at maximum steepness, as given in equation (7), reflecting the require- 
ment iii of Chapter 2. Also, the maximum velocity of 1,60 m/s should be enough 
to generate "sheet flow" conditions as was stated in requirement ii of Chapter 
2. 

5. THE TEST SECTION 

The test section accommodates the 0.2 m thick sand bed with sand traps at both 
ends. The width of the test section was chosen at 0.3 m'as a compromise between 
small side wall effects (and small power consumption. The height above the sand 
bed was chosen at 0.4 m, high enough to accomodate suspended sediment concen- 
trations and ripple formation as expected under the design water motion. The 
length of the sand bed was taken as 3 times the maximum stroke, or 2.0 m. Each 
sand trap has a length of 1.5 times the maximum stroke, or 1.0 m. The sand bed 
can be extended'over the sand traps and is then 4.0m long. Also, the sand may 
be replaced by dummy bottom plates. The test section consists of a steel frame- 
work with glass side panels and steel top hatches. Special attention has been 
paid to the details of the ceiling in order to facilitate de-aeration. Through 
the hatches instruments can be inserted via pivoting connections every 0.3 m 
over the entire test section. On both ends of the test section 1.0 m long tunnel 
sections are installed with flow straighteners, 

6. THE OIL SECTION 

The requirement that the water motion in the test section should very closely 
respond to the programmed signal means that virtually no leak is allowed along 
the driving piston. Thus absolutely no sediment should reach the piston in order 
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to prevent wearing of the cylinder. By means of a separating diaphragm, and by 
having the piston moving in oil, these requirements were met. The position of 
the diaphragm is continuously monitored, and it is integrated in the automatic 
control system of the tunnel. Extreme positions of the diaphragm are defined 
by two perforated steel plates. For practical reasons the piston stroke is lim- 
ited to 0.50 m, so its cross section area is 1.36 times the area of the test 
section and its velocity is 0.74 times the velocity in the test section. 

7. THE DRIVING MECHANISM 

Aeaeleration/velootty 

The combined acceleration and velocity, stemming from the design water motion 
as defined in Chapter 4, can be easily calculated. However, the analytical form 
of the maximum acceleration rate as a function of the simultaneous velocity is 
rather complex. Therefore this relation is shown in graphical form in Fig. 2. 

Forces 

The forces on the piston stem from different sources which are in general not 
in phase: 
• Inertial forces due to the accelerated mass of the piston and of the fluids. 

This is by far the dominant force. 
• Forces proportional to the squared velocity due to fluid friction. 
• Forces proportional to the piston excursion, due to hydrostatic pressure 

differences and air pressure differences in both vertical legs. 
• Other sources such as friction between the piston and the cylinder. 

max. accoi. (m/s2) 

Figure 2 The maximum acceleration 
rate as a function of the simulta- 
neous velocity,, in the test section, 
both as required (r) and as mea- 
sured in tests (t) 

Figure 3 The maximum required force 
(F) and power (P) as a function of 
the velocity in the test section. 
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The maximum total required force is depicted in Fig. 3 as a function of the 
velocity in the test section. 

Power 

The required power is found as the product of the force applied by the piston, 
and the piston velocity. Hence the required power-velocity diagram follows from 
the force-velocity diagram. In Fig. 3 the power is depicted as a function of 
the water velocity in the test section. The nett maximum power required at the 
piston is about 11 kWatt, The gross power of the installed hydro-power unit is 
22 kWatt. 

8. VARIOUS DESIGN ASPECTS 

Apart from the programmable oscillating motion, a nett flow can be induced, A 
special pump has been chosen with a discharge virtually unaffected by the large 
fluctuations in head over the test section. The maximum discharge is 20 litres/ 
second, generating an average velocity.of 0.17 m/second in the test section of 
0,12 m2 cross section area. The pump is driven by a 15 kWatt electric engine. 
The instantaneous discharge is measured with an electromagnetic flow meter. 

As can be seen from Fig, 2, quite large acceleration rates may occur in the 
tunnel. Consequently large pressure drops may result. The low water pressure 
might cause air intrusion, or even an inward collapse of the windows. In order 
to prevent this, the whole system is 100 kPa (= 1 bar) overpressurized by con- 
trolling the air pressure above the fluids in both vertical tanks. 

The tunnel is remotely controlled by a programmable operation panel to perform 
operations such as quick emptying and filling from a reservoir, air pressure 
control, definition of piston and diaphragm starting conditions, etc. This panel 
also includes complete safety-guarding of the whole system while in operation. 

9. VARIOUS PERFORMANCE ASPECTS 

The full range of acceleration rates in its relation to the simultaneous veloc- 
ity, as observed during tests in the wave tunnel, is shown by curve (t) in 
Fig. 2, For purely sinusoidal motion the maximum amplitude of water motion 
that could be generated within 5% distortion is shown in Fig. 4. 

The amplitude upper limit of 0.34 m for frequencies below about 0.8 Hz is 
imposed by the limits of the piston movement. For these conditions there is 
enough power at hand to increase the water velocity and the stroke in the 
test section, by decreasing the cross section area of the test section. 

For frequencies over 3 Hz the attainable amplitude is quite small because of 
the very high inertial forces. A frequency of 2.5 Hz has shown to be a very 
effective mode to flatten a rippled bed after a sand transport test, so that 
a whole series of experiments can be done without opening the hatches. One of 
the design considerations was to create sheat flow conditions, which indeed 
has been observed during some preliminary tests. 

Among other tunnels, the DHL wave tunnel is certainly not outstanding for its 
size, but for its ability to generate any prescribed motion within quite strict 
margins of accuracy, e.g. purely sinusoidal motion, regular motion with any 
prescribed sort of skewness, and irregular motions, with or without a nett 
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flow. Also, special flow conditions can be generated, e.g. a prescribed fluc- 
tuating head over a model of a soil structure, packed in a module box in the 
test section. In this case a digital driving signal can be calculated, based 
on the resistance characteristics of the specific structure. These must be 
determined by correlating the measured pressure head and the simultaneous ve- 
locity and acceleration of the piston. 

max. ampl, (cm) 

f (H2) 

Figure 4 Maximum amplitude of water displacement in pure sinusoidal motion as 
a function of frequency, as measured in the test section 

Measurements may be performed with any probe through the hatch connections 
(velocity, pressure, sand concentration). As standard velocity measuring system, 
a laser doppler velocimeter is mounted on a x, y, z frame on rails, covering 
the entire test section. 

10. CONCLUSIONS 

The presented wave tunnel has shown to operate quite satisfactorily. Hence it 
is expected to be a powerful tool for future experiments on the interaction 
between a well-defined velocity field and movable bed material. 
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CHAPTER 18 

Conditional Simulations of Ocean Wave Properties. 

Leon R. Borgman 

1.  INTRODUCTION 

Computer simulation is a convenient procedure to produce 
artificial data with specified statistical properties. 
The usual procedure in ocean wave simulations is to take 
the ensemble or theoretical mean and spectral relations 
as given by selected formulas and to produce with pseudo- 
random numbers and various statistical techniques a long 
Gaussian (multi-variate normal) time series which is one 
realization of the stochastic population.  The simulation 
may be constructed directly in time, or (usually, more 
rapidly) in frequency domain with subsequent reversion to 
time by the fast Fourier transform algorithm (Borgman, 
1969, 1980). 

A number of such simulated time series are ordinarily 
generated, and used, as typical realizations of the sea 
state for vibration or fatigue studies.  The sample mean 
and sample spectra computed for a given realization will 
differ from the theoretical values initially assigned in 
accordance with the random structure of the process.  Thus, 
the fatigue or vibrational behavior produced is not that 
associated with the theoretical spectral density initially 
assigned but rather with the particular sample spectral 
density which was, by accident, present in that realiza- 
tion.  If one has an actual sequence of sample spectra and 
mean water levels, and wishes to study the vibration or 
fatigue behavior which might have been associated with that 
particular sequence, standard simulation procedures will 
not suffice.  Rather, constrained simulations are neces- 
sary, with the randomness being restricted so as to produce 
the required sample mean and spectra for each time interval. 
Any simulation, whose randomness is restricted so that the 
sample function satisfies some specified behavior, will be 
referred to as a constrained simulation. 

The concept of constraints may be extended to sets of sta- 
tistically interrelated time series.  Suppose that the first 
time series represents the water level elevations as mea- 
sured by a wave staff at a specified location on a drilling 

/Professor of Geology and Statistics, University of 
Wyoming, Laramie, Wyoming. 
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platform.  Let the other time series represent velocity or 
acceleration time series at loading points down the legs 
of the platform.  Simulations of the velocity and acceler- 
ation sequencies would be produced by the computer, condi- 
tional on the wave profile having the assigned values. 
Such sequences will be called conditional simulations. 

2.  FOURIER RELATIONS 

Although the development of simulated sequences directly 
in time is intuitively more obvious and easily understood, 
it is much slower in terms of computer operations than 
indirect procedures starting in the frequency domain and 
later reverting to the time domain.  Therefore, it is worth- 
while to briefly enumerate the statistical properties which 
Fourier coefficients must have in order that the time-domain 
inverse will form a real-valued stationary, Gaussian process 
(Borgman, 1976).  Let {Xn, n=0,1,2,.. . ,N-l} be the time- 
domain series and (Am, m=0,1,2,...,N-l} be the frequency 
domain sequence which is related to the Xn by the equations 

N-l 
Am = At Z     X„ e-12lrmn/N = Um-i Vm (1) 

n=0 

N-l 
Xn = Af  £  Am e

127Tmn'N, Af = 1/NAt (2) 
m=0 

where i = /^T, At is the increment in time, and Af is the 
frequency increment. 

The following properties hold.  (All sums run from 0 to N-l 
unless otherwise noted.  The asterisk denotes complex con- 
jugation.) 

A0 = At Z  Xn (3) 
n 

AN-m " A* - Um+iVm (4) 

X0 - Af Z   Um (5) 
m 

E(Um) = E(Vm) = 0,  0<m<N  ,  if E(Xn) - 0        (6) 

Variance(Um) = Var(Vm) - SmNAt/2,  for  0<m<N/2  (7) 

Var(Um) = SmNAt,  if  m=0  or  m=N/2 (8) 

(um>vm>um»Vm) are independent and normally distributed for 
0<m<m'<N/2.  In the above, 
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At Z   C. -i2TTkm/N (9) 

and 
Cfc = Covariance (Xn,Xn+k) (10) 

where Xn is repeated periodically for n outside (O.N-1). 

3.  TWO TIME SERIES 

All of the Fourier properties reported in Section 2 hold 
separately for two time series, Xn and Yn.  In addition, 
the Fourier coefficients are independent for different 
subscript values, 0<m<m'<N/2.  However, the Fourier coef- 
ficients for the two series at the same m value are multi- 
variate normal with covariance matrix 

Cov 

"«m "Sm 0 cm qm 

vm a   NAt 
0 Sm "Im =m 

K 2 cm -<lm Sm 0 

< Ira cm 
0 sm 

(11) 

In this formula, cm and qm  are the co- and quad-spectral 
densities defined as 

-iqn 
At   ZCXY   k   e-i27Tkm/N (12) 

where 

cXY,k = Covariance(Xn,Yn+k) (13) 

Also Um and Vm are the FFT coefficients for Xn while Um, 
V^ are the corresponding coefficients for Yn- 

The generalization to more than two time series is straight- 
forward.  The matrix in (11) is just enlarged to include 
the additional spectra and cross-spectra. 

4.  UNCONDITIONAL FREQUENCY-DOMAIN SIMULATIONS 

The simulation of j simultaneous time series reduces to the 
development of 2j multivariate normal variates independently 
for each  0<m<N/2.  The Fourier coefficients for m;>N/2 are 
obtained by complex conjugation (see(4)).  Usually the 
coefficients at m=0 are set equal to zero (a constrained 
simulation producing exactly zero mean water level) and NAt 
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is chosen large enough so that there is no energy left of 
any consequence for frequencies approaching NAt/2.  This 
forces Ajg/2 = 0. 

Various schemes can be used to produce the multivariate 
normal random deviates approximating wave properties 
(Borgman, 1980).  One procedure based on multiplication 
of independent standard normal random deviates is given 
by Scheuer and Stoller (1962). 

5.  CONSTRAINED AND CONDITIONAL SIMULATIONS 

A constrained simulation is a simulation in which the 
resulting artificial sample functions are adjusted to have 
specified sample properties.  The simplest example would be 
a sequence of standard normal independent pseudo-random 
numbers, {ZQ.ZJ,Z2, • . • ,Zu_i} which are adjusted by sub- 
tracting the sample average and dividing by the sample 
standard deviation.  The resulting sequence will exactly 
will exactly have mean zero and variance one.  The original 
sequence lzn)   was a sample from a population with theoreti- 
cal mean zero variance one, but its sample values will devi- 
ate slightly from these theoretical values due to the ran- 
domness and finite extent of the sample. 

Correlated simulated sequences may be constrained to have 
other specified sample properties.  For example, a specified 
sample covariance function or sample spectral density can be 
forced onto the simulated sequence.  It is not always clear 
if the resulting sequence has the same distribution as the 
original one.  In fact, in general it will not.  The origi- 
nal example above of a sequence of independent normal random 
numbers will have a weak correlation between successive 
values after the sample mean is subtracted from each term. 
Nevertheless, it is occasionally useful to work with simu- 
lated time series which have been constrained. 

What type of questions may be answered with constrained time 
series simulations?  Generally such questions are related to 
behavior which pivotally are concerned with a given sample 
property.  Consider the following two questions: 

1. What is the vibrational behavior of an oil-drilling 
structure which is experiencing ocean waves for one 
hour whose theoretical spectral density is specified? 

2. What is the vibrational history of the same structure 
when it experiences waves for one hour whose sample 
spectral density is a specified function? 

In a simulation for the first question, the actual sample 
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spectra for the one hour of data will not equal the theoret- 
ical function.  In fact, it may differ quite a bit from the 
theoretical value which holds for the population.  A simu- 
lation for the second question will force the spectra for 
the one hour record to equal the specified function.  One 
source of variation, the sample fluctuation, will have been 
removed.  Several simulations will all have exactly the same 
sample spectral density. 

There are many unresolved theoretical questions connected 
with constrained simulations.  The foregoing is intended 
only to be a brief introduction to the problem.  However, 
it is common engineering practice to introduce constraints 
on simulations, at least for some types of studies. 

Conditional simulations are less theoretically questionable. 
In a conditional simulation, one or more of the simulated 
values are assigned numerical values, and the rest are 
obtained from distribution theory and pseudo-random numbers. 
For example, suppose {Xg.Xj: ,X2 , . . . ,XN_^} are a multivariate 
Gaussian sequence and it is known, a priori, that Xg and 
XN-1 are DOtn zero.  The sequence {X^,X2,...,XN_2} can be 
simulated conditionally given Xg = XJJ_I = 0.  If the origi- 
nal sequence was highly positively correlated, the simu- 
lated Xx will not differ appreciably from Xg » 0.  That is, 
the correlation will be preserved between the given and the 
simulated values.  Techniques of conditional simulation have 
been used in geological problems (Journal, 1974).  The con- 
cept appears to be very promising for coastal engineering 
applications. 

The concept can be extended to several simultaneous time 
series.  One or more of the time series can have specified 
values and the remaining time series can be simulated con- 
ditionally.  Thus the sea surface elevation time series 
could be set equal to a measured wave record, and the inter- 
correlated bottom pressure which was occuring simultaneously 
could be simulated contitionally.  This latter type of con- 
ditional simulation (one or more time series specified, the 
remaining ones simulated) will be given the primary atten- 
tion in the following. 

Conditional simulations may be generated either by matrix 
multiplication or filtered white noise.  (At the present 
time, it is not clear how the random phase procedures could 
be used.)  Only matrix multiplication procedures will be 
presented here.  Two basic theorems for the matrix multi- 
plication technique are as follows: 

Let B k a normal random (column) vector with n components, 
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which has mean vector JJ and covariance matrix C.  Let W be 
partitioned into two vectors W, and W_ with n^ and n2 compo- 
nents respectively.  The vector u^ and the matrix C are sim- 
ilarly partitioned.  Thus 

(14) 

(15) 

nl + n2 

r     i 

»i 

r2. 

V 
~h 

"cn c12" 

_ 1 I C22. 

(16) 

(17) 

where the superscript "T" denotes the matrix transpose. 

Theorem A 

The conditional probability law for W2>   given W. » w. , is 
multivariate normal with conditional mean of 

^2 = ^2 + C12Cli(^l^l)  ' a"d 
(18) 

conditional covariance matrix 

W, C22 " C12C11C12 (19) 

Proof.  (See Anderson, 1958, pp. 27-29) 

Theorem B 

Let W be an unconditional simulation of the random vector. 
That is, W follows a multivariate normal probability law 
with mean _p and covariance matrix, C.  The vector W2 
defined by 

W" = CLCU(=1-V +^2 -2 (20) 

will be a conditional simulation of W,> given W. 
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The  mean  vector   and   covariance  matrix   for   W2   are   the   same 
as   the   conditional   mean  and   covariance   relations   specified 
in  Theorem A  and  W2   is  a multivariate  normal  random vector. 

Proof 

Since every linear combination of multivariate normal is 
also multivariate normal (Anderson, 1958), W2 is a multi- 
variate normal vector.  Also 

E[W21 
= C12Cli(^l-lil) + M.2 <21) 

Cov(W2) = E[{W2-E(W2)}{W2-E(W2)}
T] 

- E U (I2-U2) -
Cl2

Cl[ (Wj.-U.i) } < (W2-U.2) 

- ^2C-;(W1-U1)}TJ 

- C22 " C12CUC12        Q-E-D- (22> 

For a time domain simulation by matrix multiplication, W 
would contain the given values and wT would be simulated 
as a normal with the mean and covariance matrix listed in 
the theorem.  Either of the previous techniques (triangular 

A 
ind then 

the appropriate mean vector as listed in the theorem would 
be added on. 

uue tueoireiu.   AiLiiet 01  Lim previous ueuuuxqutss v *-L->•< 
matrix or eigenvector) could be used to generate wT. 
mean zero version of Wj^ would be developed first, anc 

It is usually easier to do the conditional simulation in 
frequency domain by matrix multiplication.  The unknown and 
the given time series each have Fourier coefficients which 
are uncorrelated from frequency to frequency (0<m<N/2), and 
have the covariance matrix for each m as previously dis- 
cussed.  The Fourier coefficients for the given time series 
can be easily developed by a fast Fourier transform compu- 
tation.  The coefficients for the unknown (i.e., to be simu- 
lated conditionally) time series are normally distributed 
with mean vector and covariance matrix as specified by the 
theorem.  The simulation of these unknown coefficients, for 
each m, can be done by matrix multiplication.  At each fre- 
quency, only a 2L-component vector is involved if L is the 
number of unknown time series.  This is a much smaller oper- 
ation than the corresponding time-domain simulations. 
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6.      EXAMPLE   A 

Suppose a wave profile is represented by a time series with 
32 values spaced over a wave period of T=14 sec.  That is, 

At = 14/32 seconds 

N = 32 ,   Af - 1/NAt = 1/14 Hertz     (23) 

l"|n *• 1(nAt) = water level elevation above mean 
water level. 

Let  no " lift = 1132 " °. ^8 = 18 ft., and ri24 = -12 f fc • 
Then the wave will have a height at least as large as 30 ft. 
and the crest elevation to height ratio will be around 
18/30.  What are reasonable simulated values for the other 
unspecified n  values assuming the following spectral 
density and covariance values? 

S(mAf)Af = (0, 5.446, 6.990, 1.184, .279, .090, 
.036, .020, .005, 0,0,0,0,0,0,0)    (24) 

C(nAt)   = (28.1, 26.1, 20.7, 13.3, 5.4, -1.9, 
-7.7, -11.6, -13.5, -13.5, -12.0, 
-9.5, -6.5, -3.5, -1.0, .6) (25) 

The convention used here is that the values in the paren- 
thesis represent the sequences for m = 0,1,2,...,15 and 
n " 0,1,2,...,15 for the two functions. 

Theorem B provides the theory for the simulation of the 
profile passing through the specified points. 

21 = <r'0>rl8>rll6>r)24> = (0,18,0,-12) (26) 

Wj = (r'1,Ti2,n3,n4,n5,n6,ri7,n9,n10,Ti11,n12,n13, 

ni4'n15,n17'n18,r|19'n20'r,21' n22>n 23 ,n25' 

n27'n28'r'29'n30'rl31) (27) 

Since the profile is periodic, TI32 = 10 = ", an^ it: is not 

necessary to   specificially introduce the constraint that 
TI32 = 0.  The covariance matrix Cj^ will be the 4x4 array 
of covariances for (rig ,1s >1^g >rl24^ •  Tne c°variance matrix 
C22 will be the 28x28 matrix of covariances for the other 
nn, excluding  n = 0,8,16, and 24. 

The application of theorem B proceeds in two steps.  First 
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an unconditional simulation of a wave profile for nn with 
the specified theoretical covariance function and spectral 
density is prepared by any convenient procedure.  This simu- 
lation is not constrained to pass through the specified rin 

values.  It is an ordinary unconstrained or unconditional 
simulation.  This simulation produces random values for 

Ki - (l0'
TVn16'n24> (28) 

and for W2.  By theorem B, the conditional or constrained 
simulation of W2 (denoted by W2) given W^ = w^ (the assigned 
values) is provided by 

W2 - cJ"2C^(wj_ - Wx) + W2 (29) 

since ji^ = j)  and  u, = &•     Two graphical examples of such 
a constrained simulation are given in Fig. 1. 

7.  EXAMPLE B 

Suppose now that the complete wave profile is specified and 
one wishes to simulate the time series for the horizontal 
water particle velocity components vx(t)(in-line) and 
Vy(t)(transverse) at still water level.  Let T=14 sec., 
H=30 ft., and d=100 ft.  For convenience, suppose the period 
is subdivided into 32 increments as in example A.  The same 
spectra and covariance function used in the first example 
will be assumed here.  However, a spreading function with 
equivalent standard deviation of 20° will be taken as 
holding for all frequencies.  The wave profile will be taken 
from Table 1 for the assumed H, d, and T values.  This gives 
the wave profile listed in the second column of Table 2. 

It is convenient to perform the conditional simulation in 
the frequency domain.  Let the real and imaginary parts for 
the Fourier coefficients (FFT coefficients) for n, vx, and 
v„ be specified by 

Um - iVm = FFT coeff. for n (30) 

um,vx - iVm,vx = FFT coeff. for vx (31) 

Um>vy - iVm>vy - FFT coeff. for vy (32) 

By properties of the discrete Fourier transform, these six 
random values for a given m (0<m<16) are independent of the 
corresponding values at other 0<m<16.  Thus the frequency 
domain version of the time series can be constructed inde- 
pendently for each frequency between 0 and the Nyquist fre- 
quency.  For convenience the Fourier coefficients at zero 
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and at the Nyquist frequency are set to zero (no DC compo- 
nent and the spectra dies to zero before reaching the 
folding frequency). 

At a given frequency, the four random variables Um,vx> 
vm,vx' um,vy> and vm,vy are to be simulated conditionally 
on Um and Vm having the values specified by the discrete 
Fourier transform of the wave profile at that same fre- 
quency.  For this example, it is perhaps easiest to use 
theorem A applied to each frequency.  In this case 

Hi = (um>vm> a"d  "I = (um,vx> vm,vx> um,vy> vm,vy).  Cxl 
is the 2x2 covariance matrix for (Um,Vm) and C22 *s tne 

4x4 covariance matrix for W2 •  C10 *s tne 2x4 matrix of 

cross covariances.  The three matrices C^, C22> and C12 
change value from frequency to frequency.  The random vector 
W2, as conditioned on  Wj = w^, will have a 4x4 conditional 

covariance matrix given by C22-c12c7i'c12 •  Tne mean vector 

will equal cT-CTj'w, since it has been assumed that V±   » 0 

and p2 • 0.  Thus, the conditional simulation of the FFT 
coefficients for vx and v„ involves producing a 4-component 
raultivariate normal with the specified conditional co- 
variance matrix and mean for each frequency.  The FFT coef- 
ficients are then inverted back to the time domain by the 
fast Fourier transform to produce a conditional simulation 
of vx and vv consistent with the assumed wave profile. 

The present example is substantially simplified in that it 
can be shown that the velocity FFT coefficients have the 
structure 

Um vx « aRZx + cond. mean (33) 

Vm vx = aRZ2 + cond. mean (34) 

um vy = bRZ3 + cond • mean (35) 

vm,vy = bRZ^ + cond. mean (36) 

where Z^, Z2, Zj, and Z^ are standard normal independent 
random variables.  The R value is the appropriate attenu- 
ation factor for the distance down in the water where the 
velocities are taken as occurring.  Actually the different 
Zj_  values could be used simultaneously to produce simu- 
lations at any number of depth positions vertically.  The 
constant a and b can be selected to provide the proper con- 
ditional covariance matrix. 

A conditional simulation for vx and v  is given in Table 2. 
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8. CONCLUSIONS 

Techniques are outlined for efficient conditional and/or 
constrained simulations of wave properties in the frequency 
domain.  Through the speed of the fast Fourier transform 
algorithm and the directness of conditional simulations in 
producing targeted results, substantial savings in computer 
time are possible. 
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Fig. I. Example A. Two simulations of 
the conditional wave profile. 
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Table 2.   Conditional simulation for v  and v„ x      y 
associated with the specified wave 

profile and directional spectrum. 

n n vx(Z=0) vy(Z=0) 

0 18.5 12.1 .11 
2 15.5 12.8 .14 
4 8.8 8.6 .16 
6 2.5 5.0 .17 
8 - 3.0 2.7 .13 

10 - 5.4 - 1.7 .06 
12 - 9.4 -4.8 -.03 
14 -10.9 - 5.0 -.11 
16 -11.5 - 5.6 -.19 
18 -10.5 - 7 .13 -.16 
20 - 9.4 - 8.1 -.11 
22 - 5.4 - 7 .0 -.04 
24 - 3.0 - 5.6 .02 
26 2.5 - 3.8 .04 
28 8.8 2.8 .06 
30 15.5 7 .2 .08 


