
CHAPTER 16 

Resonances of Coastal Waters 
Between Perth and Geraldton 

(Western Australia) 

H. ALLISON, Ph.D. M.Sc. , MIB Aust., M.R. Soc (Vic. & W.A.), Senior 
Research Scientist, CSIRO, Div. of Land Resources Management, Wembley, 
6014. 
A. GR&SSIA, Dr. Math. S Phys., B.A. Principal Research Scientist, CSIRO, 
Div. of Mathematics and Statistics, Wembley, 6014. 
R. LITCHFIELD, CSIRO, Div. of Mathematics and Statistics, Wembley, 6014. 

SUMMARY Sea-level oscillations along the Western Australian coast, 
with periods in the range of 20-40 mins, have considerably greater 
amplitudes between Perth and Geraldton than at other locations along 
the coastline.  It is shown that amplification of these oscillations is 
due to resonance in the near shore basin formed by the shore and a 
submerged reef-chain parallel to and 5 km from the shore. 

The rigorous analytical solution for the resonance frequencies is 
obtained for the two-dimensional hydrodynamic model.  Comparison with 
results from spectral analysis of recorded oscillations indicates a 
satisfactorily agreement with the theory.  Statistical estimation of 
damping of the observed oscillations indicates that the predominant 
resonance in the first mode is sharp, having the quality factor Q^IO. 

1 Introduction 

Nearshore sea-level oscillations, apart from tides, are observed at 
many locations.  The oscillations have periods ranging from several 
minutes (surf beat, nearshore edge waves, harbour seiches) through 
several hours (continental shelf waves) to hundreds of days (planetary 
waves) (Le Blond and Mysak, 1978).  Research on continental shelf waves 
in Western Australia (Hamon, 1966) initiated world-wide theoretical and 
experimental study of the subject.  Later studies by Hamon (1976) 
indicated that the shelf waves in Australia were generated by wind, 
supporting the point of view of Gill and Schumann (1974).  Recently 
sea-level oscillations along the Western Australian coastline, with 
periods in the range 20-40 min, were reported by Allison and Grassia 
(1979) to be attributed to the presence of a reef-chain parallel and 
5 km from the Western Australian shore (Fig. 1). 

The new results are reported below, including the spectral analysis of 
sea-level oscillations, theoretical solutions for the two-dimensional 
hydrodynamic model, which in particular indicates the presence of 
oscillating currents near the coastline. 

2 Long-term statistics 

Western Australian tidal records for the last 15 years were analysed. 
On many of them, short period (relative to tidal period) oscillations 
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'igure  1.     Submerged Reef  Chain Off Western Australian Coast 
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were present.  These oscillations usually were of small amplitudes, of 
the order of several centimetres. However, occasionally large 
amplitude oscillations occurred and lasted several hours, sometimes 
persisting for one or two days (with corresponding smaller amplitudes). 
A typical such sporadic oscillation is presented in Figure 2. 

In the following any sea-level oscillation, having its amplitude 5 10cm 
is called an event.  In total, 219 such events were observed between 
1963 and 1978. 

To characterise the intensity of the event we have used its energy E, 
which was calculated on the basis of the following formula: 

E , £S_|JL <1, 

which follows from the familiar expression of a maximum energy of a 
standing wave per unit surface and per one cycle of oscillations of the 
period T: 

ET = jPgA
2 (2) 

Here p is the mass density of water, g is a gravity acceleration, A was 
taken as a maximum amplitude during the sea-level oscillation event, 
and T is a duration of the oscillation event, which was taken as a 
length of time during which amplitudes of oscillations exceeded the 
threshold value of 10cm. 

Estimate of energy obtained by (1) is, of course, exaggerated, because 
the formula is valid, strictly speaking, only for waves, sinusoidal in 
time, while the recorded oscillations decay with time {Fig. 2).  A 
justification of its use is however simple:  we are interested only in 
relative variation of the energy of the events in the long term, rather 
than in the absolute value of the energy. 

To characterise the probability of occurrence of large sea-level 
oscillation events we used their frequency of appearance, meaning 
number of events occurring during a certain selected interval, such as 
a month or a year.  (Notice that on the following pages we shall also 
use the word 'frequency' in the physical sense, such as 'resonance 
frequency', not to be confused with the statistical frequency of 
occurrence). 

The results of calculations of seasonal and yearly variations of event 
frequencies and energies are shown in Fig- 3 and 4.  (In Fig. 4 the 
yearly averages of Zurich sunspot numbers are shown for comparison). 

The monthly averages (Fig. 3) indicate that more events and events with 
larger energy occur in the Southern Hemisphere winter.  This may 
indicate that observed events are possibly caused by long waves, 
generated by winter storms in the Indian Ocean, but we do not possess 
any independent proof of this. 
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Figure 2.  Tidal Record Geraldton, W.A. 
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Figure 4.     Monthly and Yearly Frequencies  of  Events 
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The yearly averages demonstrate a remarkable resemblance to the solar 
activity pattern (in fact, our calculations had shown a statistically 
significant correlation of the energies and frequencies of occurrence of 
events to solar activity).  However, in spite of some recent claims 
about solar-terrestial relationship (see, for example, Currie, 1976) we 
are reluctant to speculate here on the subject, leaving room for further 
study, which might, possibly, indicate the correlation between storms 
in the Indian Ocean and solar activity. 

3   Short-term statistics - spectral analysis 

The large sea-level oscillation event, described above, usually occur on 
the background of small amplitude oscillations.  These small oscillations, 
(with the amplitudes below threshold of 10cm) are persistent practically 
always, and generate permanently present oscillating currents in the 
nearshore zone of Western Australia. 

An example of such small amplitude oscillations is shown in Fig. 5. 

u 

Figure 5 Small Oscillations of East-West Current, Mullaloo, W.A. 

While it has been proved (Allison and Grassia, 1979) that large sea- 
level oscillations events are associated with the standing waves 
between the shore and the reef-chain, no such proof has been made for 
small amplitude background oscillations.  We present here some evidence 
in support of the point of view, that these always persistent small 
amplitude oscillations originate in the same way as the large ones.  To 
this point, let us consider the results of spectral analysis of both 
large sea-level oscillations and small-amplitude background.  These 
results are presented correspondingly on Fig. 6a,b. 
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Figure 6.  Period Spectrum of: 

(a)  Large Oscillations  (b)  Small Oscillations 
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The solid lines on both parts (a) and (b) of Fig. 6 correspond to the 

modulus of the Fourier Spectrum of the oscillations, the dashed lines 

show the Maximum Entropy Method spectra.  It is seen, first of all, 

that the Maximum Entropy Method gives results, closely corresponding to 

the ordinary Fourier Analysis, although some spurious peaks, given by 

Fourier Analysis are effectively suppressed by the Maximum Entropy 

Method.  Most important, however, is the presence of considerably sharp 
resonance peaks on both spectra. 

The comparison of computed resonance periods for large sea-level 

oscillation events and small-amplitude background is given in Table 1. 

Large oscillations 

Geraldton, W.A. 

Small oscillations 

Mullaloo, W.A. 

Table 1 

Distance from Dominant Non-dimensional 

reef to shore Period Frequency 

I   (km) T (mins) 
T v'gH" 

5 40 1.32 

4.5 33 1.44 

(18) 

As seen from Table 1, the non-dimensional frequencies of large and 

small oscillations are in reasonable agreement, thus substantiating 

the point of view, that both types of oscillations are, in essence, 

resonances in a hydrodynamic system, namely, the basin formed by the 

shore and nearshore reef chain. We consider now the analytical 

treatment of the resonances. 

4   Analytical Development 

The bottom topography of the nearshore basin is represented by the dashed 

area in Fig. 7. We approximate this profile by the parabolic expression 
2 

h(x) = h  [l-(~) (1-a)] (3) 
o    * 

where h refers to the depth at x=0, I  being the length of the basin 
(in our°case the width of the channel) and a is a non-dimensional 

parameter, describing the fact that the reef-chain is submerged.  For 

the values h = 10m; a =  0.3 the graph of expression (3), shown by a 

solid line in Fig. 7, provides an idealised smooth representation of the 
bottom profile.  The chief advantage of using (3) is that it allows us to 

obtain a rigorous analytical solution of* the equation of water motion 

in the basin partly open to the ocean.  One may notice that variation in 

the parameter a permits also consideration of various cases of submergency 

of the reef. 
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Figure 7 Typical Bottom Topography in W.A. (normal to shore) 

When a =  1 the basin has a uniform depth with one end (x=0) closed and 
the other end (x=&) opened into the deep ocean, being the classical 
problem, for which the exact solutions are known (Lamb, 1932) . When 
a = 0, we have the closed basin with a parabolic bottom profile, being 
the other classical case (Chrystal, 1904). 

We give below the rigorous solution for the intermediate case of a 
partly open basin with the parabolic bottom for 0? a i  1:  the 
classical problems, considered by Chrystal and Lamb emerging as the 
limiting cases of the solution that follows. As the depth is in the 
order of 10m, while length of the basin (width of the channel) is in the 
range 4-6 km, we accept as a starting point the familiar shallow water 
equation: 

3x [h(x) 
3TL 

3x 

a2 3 n 
St7 (4) 

where g is a gravity acceleration and n (x,t) represents the elevation 
of the free surface of water above its undisturbed surface level. 

Considering free oscillations with frequency u), we, as usual, represent 
n (x,t) as a product of two functions, one describing the shape of water 
motion E|(x) and the other being a time-dependent term e_:LUt. 

n(x,t) = 5(x)e (5a) 
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The second time derivative becomes: 

—2 n(x,t) = - 5-(x) e    ID . (5b) 

After the separation of variables, and substitution of h(x) as in (3), 

eq. (4) takes the form: 

l^i-^u^-A^u^]^2 4iu-$W-i§ll-»+f  =0. 

Introducing the new variable 

2 

z2 = (j) d-o) (7) 

we obtain the following sequence of simple formulae: 

z = Cf) (1-a) 1/2  ; || = I   (1-a) 1/2      }     (8a) 

2 

x = zA (l-a)"1/2   ;  ^-4 = 0 } 
az 

|£= (^)-
1-^= (1-a) n-1^ }      (8b) 

dx   dz   dz dz 

d2C   dx "2 d25   d2x.  dx "3 dg_ _    .,-2 d2r , 

dx'   dz   dz''   dz'  dz   dz dz-' 

Substitution of (8a), (8b) and (7) in (6) leads to the following 

equation: 

(1.^||.22it^L?=0 (9) 
dz'     dz  gh  (1-a) * 

which has the familiar form of a Legendre equation, if we put 

,2»2 a^l 
. =n(n+l) (10) 

ghQ (1-a) 

where the integer H, being a mode number, takes the values 1,2,3... 
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The general solution of (9) with the notation (10) has a form: 

£(z) = SP (z) + BQ (z) (11) 

where A and B are arbitrary constants and Pn(z) and Qn (z) are the 
Legendre functions, of which Pn(z) is always a polynomial, but Qn(z) is 
not.  Let us consider initially the boundary condition at the shore 
side of the basin, where no current is possible.  This can be written 
as a condition on the first derivative of the vertical displacement £, 
at the point x = z = 0: 

§ I , = ° (12> dz zio 

which, after substitution of (11) into (12) becomes: 

|S- |    = AP'(O) + BQ' (0) = 0 (13) 
dz    „    n       n 

z=0 

We can utilize now the useful properties of the Legendre functions, 
given in the Table 2. 

Table 2 

For even n For odd n 

P„(0) = Q (0) =0 P (0) = Q (0) = 0 
n      n n      n 

Pn(0) + 0 ;  Q'(0) + 0 P'(0) +0; Q   (0) Jf  0 

Substituting the values from Table 2 into eq. (ID we obtain that the 
solutions, satisfying the boundary condition (12) are: 

5 = AP (z)      (n even) (14a) 
n 

5 = BQ (z)      (n odd) (4Mb) 

Explicit expressions for the first six solutions are given below: 

P (z)  =1 
(15) 



COASTAL WATER RESONANCES 301 

P2(z) = | (2 z2-l)                                     (15 cont.) 

_ , , ,5z3   3z , .  1+z   5  2   2 
23(Z)  - (^ 4 ' lnT^-2Z    + 3 

P4(z) =.i (35z4 - 30z2 + 3) 

- , . ,63  5   70  3   15  , „  1+z   63 4   49 2   8 
Qs(z) =(i?z ~uz +i6z)ini^-^ +rz  "IF 

P,(z) = TF (231z6 - 315z4 + 105z2 - 5) 

These solutions and also the solutions of any desirable higher orders 
can be obtained by use of the recurrence relations (Abramowitz and 
Stegun, 1975) . 

(n+l)P  , (z)   = (2n+l)zP (z)   - np , (z) (16a) 
n+1 n n~l 

(n+l)Qn+1(z)   = (2n+l)zQn(,z)   - nQ^fz) (16b) 

by starting from P (z) , Q,(z) 'as in (13) and using: 

P1(z) = z;  Q (z) = | in  j^l (17) 

The domain of definition of the functions (15) in our problem is within 
0 S z S (1-a)1/2, as it follows from eq. (8).  The solutions (15) 
within the mentioned domain of definition give for any selected n the 
shape of possible modes of oscillations of water in the basin, the 
corresponding angular frequencies being determined from (10) depending 
once again on the integer ,n. 

It is convenient to introduce the non-dimensional frequency parameter 
R, which, as follows from (10), is equal: 

">*•      ,,,  , ,  ,,,V2 (18) R =  T75" = [(l-a)n(n+l)] 
(gh )L/Z 

o 

If the basin would be of constant depth h   ,   the parameter R will take 
the following values: ° 

R    = {   ir/2;     3ir/2;     5TT/2   ...   (2k-l)   TT/2  } (19a) 

R    = {  it;     2ir;     4ir;     ...   2k?r  } (19b) 
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Here RQ refers to the basin open to the ocean (a = 1) ,-  R,, refers to the 
closed basin (a = 0). 

In our case of a parabolic bottom the parameter R can be calculated by 
the use of (18).  The results, giving R as a function of a  and various 
values of n, are plotted in Pig.*8, where the values of R, as in (19), 
for constant water depth are shown by horizontal dashed lines.  Open 
dots on the graphs R (a) indicate the positions of the first and second 
zeroes of the Legendre P ., Q .   (j=l,2,3) functions, the solid lines 
marked Z^ and Z2, joining the zeroes, show the tendency of the zeroes 
to approach the limiting values of R = TT/2;  3ir/2 for a •* 1, as from 
(19a) , for n -*• °».  This indeed must be the case, because when a = 1, 
our basin in Fig. 7 is becoming a constant depth basin, fully open to 
a deep ocean. Hence, one of limiting cases, that of a fully opened 
basin, appears naturally as a limiting case of the present theory. The 
values of R for the other limiting cases, a closed basin (a = 0) , with 
parabolic bottom, discussed by Chrystal (1905), can be seen in Fig. 8. 
There are no zeroes of the Legendre functions for a = 0, due to the 
fact that in the closed basin there is_ a vertical displacement of water 
at the end x = I. 

The shapes of the modes of oscillations corresponding to a = 0 are 
presented as the top graphs in Fig. 9.  It is seen that the solutions, 
corresponding to P2 

an^ P4 are finite,  while the solutions given by 
Q-L and Q3 tend to infinity at x = I.     The last two solutions were 
described by chrystal (1904) as "paradoxical seiches" and, indeed, they 
can not be present in any real situation, because they involve the 
infinite water displacement at the right end of the basin. 

However, these "paradoxical seiches" become finite  in amplitude and, 
hence, very real when the basin is not fully closed.  For example, when 
a = 0.06 the modal shape given by Qj has a zero vertical displacement 
at x = £, and QT_ does not tend to infinity because for a - 0.06 our 
domain is [0, V1-0.06 J '  where all values for Qx are finite. 

We assign a particular significance to the modal shapes, giving zero 
(or nearly zero) vertical displacement at the sea side end (x = 1 in 
Figure 7) when a >  0 for the following reason. 

In the outer region (x > %  in Fig. 7) there must exist the outgoing 
wave, propagating into the ocean, away from the basin, and carrying 
some energy of oscillations within the basin with the wave.  The 
amplitude of this outgoing wave has to be matched to the amplitude of 
water oscillations in the basin at the point x = &. The higher is the 
amplitude of the modal shape at x = I,   the larger will be the amount of 
seiche energy radiated to the ocean, hence, the more severe will be the 
damping of oscillation within the basin.  The energy radiated towards 
the ocean will be minimal when amplitudes of modes at x = I  equal zero, 
hence the resonances within the basin will be the sharpest.  Obviously, as 
the parameter a  is approaching unity, the modal shapes of strong 
resonances are becoming very close to those for the fully open basin with 
constant depth.  (Compare the cases of a -  0.8 and a = 1 on Fig. 9). 
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Figure 8.  Non-dimensional Frequency of Oscillations R 

vs Relative Opening a 
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Figure  9.     Modes  of Water Oscillations  in the Basin  for 

Various Values  of  the Relative Opening    a. 
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Returning back to Fig. 8, one can see, that the point a -  1 is the point 
of condensation for zeroes of Legendre functions, hence for any a - 1 
there exist a strong resonance plus an infinitely increasing number of 
weak resonances, also condensing near a = 1. 

It is clear now, that the second boundary condition, which we 
deliberately avoided to discuss so far, is: 

£ = 0 at x = i (z= /l-a) (20a) 

for strong resonances and 

(20b) 

In the Figure 9 the frequencies of strong resonances (in terms of 
non-dimensional values of R) together with the corresponding modal 
shapes are given.  The case of a completely closed basin is also 
classified as a strong resonance, because there is no radiation of 
energy to the ocean when a = 0. 

Consulting again Fig. 8, we can see, that solid lines joining the 
zeroes display the interesting tendency to decrease, when a is 
decreasing from a = 1.  This means the frequencies of strong resonances 
are decreasing while the basin is becoming more closed.  This result is 
in agreement with Tuck, (1980), who predicts a similar tendency for the 
basin of a constant depth with an infinitely thin barrier of a variable 
height (0 < a < 1) at the point x = I.    However, the essential 
difference is that in our case there exists a set of discrete parameters 
a , for which strong resonance is possible, while for the 
basin of a constant depth the strong resonances exist for any ct within 
the continuum 0 £ a $ 1, if the outer basin (ocean) is deeper, than the 
inner basin. 

5   Periods and damping of the strong resonances for the 
Western Australian Coastline 

The average value of a reef height for the coastline corresponds to a 
value a = 0.3.  It is seen from Fig. 8, that this particular value is 
near the zeroes of the Legendre functions Q- and P , thus being capable 
of producing the two strong resonances, the modal shapes of which are 
depicted on Fig. 9. 

The values R for a -  0.3 are, as taken from Fig. 8, R^ =1.18;  R^ = 
3.84, correspondingly for the first and second strong resonances.  The 
average distance from reef chain to the shore can be taken as 5000 m, 
the periods of resonance oscillations are then, as follows from (18): 

T = 21 = Ilk       1/2 
a        R(gh)1/'d (21) 
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Taking hQ = 10m and substituting the above values for R^ 
an<^ R2 one 

finds:  Tj. = 2688 sec = 44.8 min;  T., = 826 sec = 13.8 min. In the 
spectral analysis of the large sea-level oscillations the period 
prominent was 40 min. 

The current measurements were taken in the Mullaloo area, where the 
average distance of the reef chain from the shore is about 4500 m. 
Using the same values of R, , R, as above, we would obtain from (21) the 
following periods:  T- = 40.3 min, T, = 12.4 min.  The last value is 
too small to be verified by our experimental data as the current meter 
records were sampled at 10 minute intervals.  The results of the spectral 
analysis of currents gave a prominant period of 33 mins. 

The difference of about 20% between the theoretical and experimental 
results is not bad when taking into account the crude estimates of water 
depth h and distance I  and the uneven bottom topography. 

Our theoretical analysis gives consequently, reasonable prediction of 
the periods of sea-level oscillations. However, the damping was not 
considered in the theory and when the term "strong" resonance is used 
it does not give a quantitative idea yet of how strong the resonance is. 

The quantitative measure, by which the resonance capabilities are 
usually judged, is the so-called "quality factor", denoted as Q 
(e.g. Miles and Munk, 1961).  Resonances are considered sharp when 
Q » 3-5.  Sometimes the values Q up to 18 occur (e.g. Gill and Schumann, 
1974). We give below an estimate of this factor for the recorded 
sea-level oscillations. 

Considering one of the normal modes with a wave-length A, we can write 
the maximum potential energy in this mode as 

W = i p g X A2 (22) 

Let the amplitude A during one period T of free oscillations decrease 
by the value AA.  The new value of maximum potential energy is 

W-AW = i pgA[A2-2A-AA+(AA)2] (23) 

2 
Neglecting the second-order term (AA)  and substracting eq (22) from 
eq (23) one obtains a loss in potential energy: 

AW = j pgXA-AA (24) 

From eq (24) and eq (22) , it follows that the relative energy loss i|) is 
twice the relative amplitude decrease 6 during one cycle of oscillations. 
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• '-£-^-* 

The values of tjj and 6 are independent of X, and hence independent of 
the shape and order of the normal modes. This means that damping of 
water oscillations can be studied without any knowledge of normal modes. 

Let us denote by A the amplitude of sea-level oscillations after one 
period T has elapsed and consider the following supplementary 
relationship, which holds for small values of <S: 

In — = — = 6 (26) 
T 

From eq (26) it follows immediately the exponential law for the 
amplitude decay of free sea-level oscillations in the basin: 

A = A exp(-S) (27) 

The damping coefficient 6 was estimated on the basis of the relationship 
(27) for the nine largest sea-level oscillation events recorded in 
Geraldton during the years 1963-1978. 

Letting i be the event number and j be the order number of an amplitude 
with respect to the maximum, we can rewrite (27) as 

A. . = A exp(-K. . 6. ) (28) 
x}   x     1} x 

where K.. is the order number of jth amplitude in the event i and has 
the values 1, 2, 3...  Taking the logarithm of (28), one obtains: 

Y.. = In A..-In A.= -K.. S. (29) 
i]      13    x   x]  l 

Linear regressions through the origin were fitted to individual 
sea-level oscillation events and estimates of the 6.'s-were obtained 
from 

E K.. Y.. 
,  il  x] 

6i " "  IK*. (30) 

j  1D 
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The estimated values of 6. ranged from 0.22 to 0157, with a pooled value 

&   , obtained from combining sums of squares and cross products over 
events, of 0.29.  From eq(25) it follows that the average relative 

energy loss i|) during one cycle of oscillations equals twice the value 

of 6 , i.e. ty  = 0.58.  The average resonance amplification factor Q can 
be estimated as: 

with a range from 5.5 to 14.3 in the individual sea-level oscillation 

events.  The large value of Q obtained indicates that observed water 

oscillations are caused by resonance of the coastal waters in the 

nearshore basin between Perth and Geraldton, and the resonances are 

sharp indeed. 

6 Conclusions 

1}   Sea-level oscillations between Perth and Geraldton, Western 
Australia, with periods of the order of 10-40 min. are caused by 

resonance of local waters in a basin between a shore and submerged 

reef chain. 

2) The theory presented gives a reasonable agreement between observed 

and theoretical values of resonance periods. 

3) Statistical analysis of recorded oscillations gives the average 

value of Q  = 10.8, indicating that the resonances are sharp. 
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