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This paper describes numerical methods for the accurate solution 
of the nonlinear equations for water waves propagating on irrotational 
flow over a horizontal bed.  Fourier approximation is used throughout. 
Firstly, the problem of waves propagating without change is considered, 
giving a set of nonlinear equations which may be conveniently solved by 
Newton's method.   It is emphasized that the usual specification of 
water depth, wave height and wave period is not enough to solve the prob- 
lem - an assumption as to wave speed or,mean current or mass flux must 
be included.  Comparing results with previous theoretical and experi- 
mental results, good .agreement was obtained.   In the second part un^ 
steady wave motion is examined, and a numerical method proposed for stu- 
dying the evolution of unsteady disturbances.  This is applied to the 
case of a solitary wave being reflected by a vertical wall.  Close 
agreement with experimental results is obtained.   In addition, design 
criteria for force and moment on the wall are suggested. 

1.  INTRODUCTION 

In water wave problems where viscous forces may be assumed to be 
negligible and the fluid initially irrotational, fluid motion is govern- 
ed by Laplace's equation for a velocity potential, and for two-dimen- 
sional flow, a stream function as well.  This equation is linear, but 
for water wave problems must be solved subject to nonlinear boundary con- 
ditions on the free surface, which is also an unknown of the problem, in 
addition to the relatively simple linear boundary conditions on solid 
boundaries.   It is the nonlinear dynamic and kinematic conditions which 
make solution difficult. 

Approximate solutions of the equations have generally been found 
either by assuming that the waves are of small amplitude and nonlineari- 
ties ignored, or by assuming that the water depth is small relative to 
the wavelength, giving the long wave equations, or by a combination of 
both.  These approximations can describe most phenomena associated with 
the propagation of waves to a first level of approximation.  However, in 
some engineering and experimental applications it is necessary to have 
more accurate solutions of the complete set of nonlinear equations; for 
example, the design of maritime structures necessitates an accurate know- 
ledge of the fluid velocity and pressure fields acting on them in the 
presence of waves. 
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This paper describes the development of numerical methods for the 
solution of the exact nonlinear equations for waves on fluid in which 
the flow is irrotational.   In §2 the problem of waves propagating with- 
out change over water of constant depth is considered.  The two best 
known analytical approximations to this problem are (i) Stokes' solu- 
tion, in which series are essentially obtained in terms of powers of 
wave steepness (height/wavelength) and (ii) the cnoidal solution, using 
series in terms of shallowness (water depth/wavelength) which may be re- 
cast to include wave height.  Each of these approaches breaks down for 
opposite extremes of depth - Stokes wave solutions are not valid for 
shallow water while cnoidal wave solutions are not valid for deep water. 
For high waves, neither is particularly accurate without the inclusion 
of many terms and the use of series enhancement techniques (see Cokelet 
(1977) for Stokes , and Fenton (1979) for cnoidal wave solutions).  A 
method which has the potential for describing even very high waves in 
water of almost all depths is that which is known as the "stream func- 
tion" method (Dean, 1965), but which does not depend on the stream func- 
tion as such; rather it is a method of Fourier approximation of the 
stream function, and it is the Fourier approach wherein its power lies. 
The original technique has been modified by other workers, however, it 
still seems rather more complicated to use than need be the case.  An 
alternative Fourier approximation method is presented in §2. 

The rather more general problem of the complete unsteady equations 
for arbitrary disturbances is tackled in §3.  This problem has re- 
ceived little attention except for the marker and cell method of Chan & 
Street (1970), the nonlinear integral equation of Byatt-Smith (1971) and 
the integro-differential equations of Longuet-Higgins and Cokelet (1976) 
for waves on infinitely deep water.  Here, a new method to follow the 
time evolution of an initial disturbance is proposed wherein all depen- 
dent variables are accurately approximated by finite Fourier series. 
The only approximation is the truncation of the series.  This method is 
applicable to water of any (variable) depth, however all motions and 
depth variation must be horizontally periodic.   The method is applied 
to the problem of a long, but finite, wave approximating a solitary 
wave moving over a horizontal bottom and being reflected by a vertical 
wall.   In previous approaches to this problem (for example Chan & 
Street (1970)) values for the force and moment on the wall due to the 
wave impact ha^e not been given even though these are two very important 
engineering quantities.   The maximum values for the force and moment 
are obtained from the impact of a solitary wave, hence any results for 
these quantities should provide the design criteria for a vertical wall 
subject to wave impact.  In §3 results are given for these and also for 
the wave run-up which is found to agree closely with experimental results 

2.  STEADY WAVES 

2.1 Formulation of equations 

The problem considered is that of two-dimensional periodic waves 
propagating without change of form over a layer of fluid on a horizontal 
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bed.  With horizontal co-ordinate x and vertical co-ordinate y, the 
origin is on the bed, and moves in the x direction with the same speed 
as the waves so that all motion is steady in this frame of reference. 
If the fluid is incompressible a stream function ijj(x,y) exists such that 
the velocity components (u,v) are given by 

M A M u = -7T- and v = - -^- , 

and if the motion is irrotational, ty  satisfies Laplace's equation through- 
out the fluid: 

^ + ^t=0. (2.1) 
3x2  3y2 

The boundary conditions  to be  satisfied are 

<Kx,0)   = 0 (2.2) 

lKx,n(x))   = " Q (2.3) 

where y = n(x) on the free surface and Q is a positive constant denoting 
the total volume rate of flow underneath the steady wave per unit length 
in a direction normal to the (x,y) plane.  Jlith this sign convention 
the apparent flow under the stationary wave is from right to left, in 
the negative x-direction.  On the free surface, the pressure is constant 
so that Bernoulli's equation gives 

%[(|£)2 + (f^+r, = R, (2.4) 

where R is the Bernoulli constant.   In these equations all variables 

have been non-dimensionalised with respect to the average depth ff and 

gravitational acceleration g : that is, x is used for x/ff, y for y/ff, 

D for n/n, i|i for i|»/(gfl3) , Q for Q/(giT3)'5 and R for R/gfj.  Other 

dimensionless variables to be introduced are - wave speed:  c for 
_ h -    — c/(gTl) , wavenumber: k for kn = 27rnM where X    is the wavelength, wave 

period:  x for x(g/n) , and an arbitrary reference level:  D for D/ff. 

If the symmetry of the wave about the crest is exploited, a series 
for iKx,y) can De written 

*(x,y) - BQy + £ B. fgjg cosjkx, (2.5) 

satisfying (2.1) and (2.2).  The B ,...B are constant for a particular 

wave.  The assumption that N is finite, for computational purposes, is 

the only approximation made in this method of solution.  This assumed 

form is similar to Dean's (1965) series.  The two differences are: 
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(i) the leading coefficient B is not necessarily the wave speed, which 

will be discussed below, and (ii) the inclusion of coshjkD in the deno- 
minator so that waves in deep water can be studied.  Without this fac- 
tor the B.  need to become exponentially small for convergence since the 
sinhjky go exponentially large.   In subsequent iterative solution me- 
thods for the equations this cannot be guaranteed and the method may 
be rather unstable.  However, sinhjky/coshjkD ~ exp(|j|k(y-D)) near the 
surface, so if D is greater than the crest height this ratio is always 
less than 1 and no problems of exponential magnification arise. 

From here, the present method and the "stream function" method have 
very few similarities.   In the latter, equations are obtained by re- 
quiring the mean-square error in one free surface boundary condition to 
be a minimum.  Here (2.5) is used to satisfy both nonlinear boundary 
conditions (2.3) and (2.4) at a finite number of equally-spaced points, 
giving a number of nonlinear equations which can be directly solved using 
standard techniques. 

To solve the problem numerically the equations produced by the sub- 
stitution of (2.5) into (2.3) and (2.4), that is 

B r, + I B, B±a^  cosjkx = - Q, (2.6) o   -=i  3 coshjkD   J      x» 

WB0 + k £ jB . ^fJM cosjkxP 

+^ I J»3 foiji •^->i+n- R.       
(2-7) 

which are valid for all x, are to be satisfied at 2N points equally 
spaced over one wavelength, though by symmetry only N+l points, from 
the wave crest to the trough, need to be considered.   In the develop- 
ment of this method, tests were run where the computational points were 
clustered near the crest and sparsely spaced in the long flat trough, 
however it was found that there was very little gain in accuracy, and 
it is recommended that equi-spaced points be used in applications. 

Let n = n(x ), where x = mA/2N, m = 0,1,...N, and kx = mir/N, mm        m       >>>>      m 
so that (2.6) and (2.7) become 

N    sinhjkn 
I 

j=l 

^t^I + iL-R-O, (2.9) 

B n + I    B.  , ." cos(jm7t/N) + Q = 0,      (2.8) o m  .f\  j coshjkD     J       H   ' ' 

also for m = 0,1,...N, where 
N     coshjkn 

u(x , n ) = B + k V  iB.  . ., _  cos(jimr/N) 
j=l 

j coshjkD 
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N sinhjkri 
and    v    - v(x  , r| )  = k    Y    jB.  , .,   " sin(imiT/N) . m     m' V     .f; J j coshjkD     J 

These 2N + 2 nonlinear equations involve the 2N + 5 unknowns 
n (m = 0,...,N), B.(j = 0,...,N), k, Q and R.  To obtain a solution 3 

more equations must be specified.  Since variables have been non- 

dimensionalised with respect to Tf, the mean depth is 1.  The simple 
trapezoidal rule can be used to give one more equation: 

N-l 
jjf%  + \ + 2 I    n.] - 1 = 0, (2.10) 

where this can be shown to have an error proportional to the (N+l)th 
term of a Fourier series for n.  This is the same level of approxima- 
tion as the Fourier expansion for i>  which was truncated after the Nth 
term. 

Now, numerical values for any two of the variables can be specified 
and the equations solved.  However, for practical problems it is usu- 

— h ally values of H (for H/fj) , the wave height and T (for x(g/ri) ) the wave 
period which define the problem.  Two additional equations which speci- 
fy these physical parameters are (i) the definition of H as being the 
elevation difference between crest and trough: 

nQ - nN " H - 0, (2.11) 

where n is the surface elevation at the crest and r\     that at the trough, 

and (ii) the statement that wave period is equal to the wave length di- 
vided by the wave speed, or 

kcT - 2ir = 0, (2.12) 

where the introduction of the wave speed c has added one more variable. 
It is possible to solve the problem in a frame relative to which motion 
is steady, without having to define the wave speed, by specifying the 
wavelength X(= 2ir/k) instead of wave period.  However, in most situa- 
tions the waves are viewed from a different frame of reference in which 
they are not stationary and the wave period in this frame is measured. 
Hence an assumption as to the speed at which the waves travel must be 
included.  The waves could travel at any speed, in a given frame, with- 
out change of form, so that the specification of the' usual three quan- 
tities, water depth, wave height and period is not sufficient to define 
the problem.  Either the wave speed must be specified or a value given 
(measured or assumed) for a quantity which determines the wave speed; 
for example, the mean current C„ (the mean Eulerian velocity through- 

out the fluid), or the mean Stokes drift C (the mass transport velo- 

city) may be specified.   In the steady frame, the mean velocity on any 
level over one wavelength is B , so that in a frame through which the 



NONLINEAR WAVES SOLUTION 55 

waves pass at speed c, the time mean velocity at all points always 
within the fluid C = c + B and so the appropriate equation to use if 

1L       o 
C„ is specified is 
h 

c + B - C = 0. (2.13a) 
o    E 

Some previous works have allowed for the specification of C„, for exam- 

pie Dean (1965), however many papers concerned with the application of 
wave theory have implicitly assumed C = 0, for example Skjelbreia & 

E 
Hendrickson (1961) and Fenton (1979) .   In many situations however, the 
mean current is not as fundamental a quantity in determining the wave 
speed as is the rate of mass transport:  for example, wave tank experi- 
ments with a closed end must have no net flux over any section.  In the 
steady wave, a volume rate per unit span of Q is passing under the sur- 
face, but from right to left with the convention chosen above, so that 
the mean velocity of all the. fluid particles is -Q/Fi = - Q, because ff 
is unity in the present non-dimensionalisation.  Thus, if C is the 

mass-transport velocity in the stationary frame C = c - Q, giving the 

appropriate equation to use if C is specified: 

c - Q - C =0. (2.13b) 

2.2. Solution of nonlinear equations by Newton's method 

The system of nonlinear equations (2.8 -.13) may be written 

fiOlj.B^j - 0....N), c,k,Q,R) = 0, (2.14) 

i = 1, ... 2N + 6, where for i = 1 to (N+l) the f. represent (2.8), for 

i = (N+2) to (2N+2) the f. represent (2.9), f?N+, is (2.10), f?N+. is 

(2.11), f2N+5 is (2.12) and f2N+6 is either (2.13a) or (2.13b).  This 

set of equations can be solved by Newton's method which iterates with 
quadratic convergence to a solution from an initial approximation.  If 
the system of equations (2.14) is represented by 

f±(ZJl;)l = l,...,2N+6) = 0,  i = l,..;,2N+6      (2.15) 

where the Z. are the arguments of f as in (2.14), and if the approxi- 

mate solution after the nth iteration is Z., £ = l,...,(2N+6) the error 

in each equation is f.(Zp; & = l,...2N+6) = f..  From a multivariable 

Taylor series expansion the error at the next iteration is 

.,      2N+6f3f,in  ,, 
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f3f-in  3f. 
where [^j  - 3^ 0$, i  - 1,...,2H«). 

However, the desired result is f   =0 for each i = l,...2N+6, and the 

solution Z.  , J, = 1....2N+6 which approximately yields this result is 

found by truncating the series after the terms shown and solving the re- 
sulting system of linear simultaneous equations written as a matrix 
equation: 

Sf}z"+1 - # - -"? 
3f. 

The derivatives TTR— have convenient analytical expressions obtained by 
a 

differentiation of the equations (2.8 -.13).  For example, from (2.8), 

3f./3B = n , and so on.  Expressions for all these derivatives are 10m 
simply obtained and are given in Rienecker and Fenton (1980). 

The initial approximation to the solution is assumed to be a lin- 
ear sinusoidal wave, that is, ri = 1 + h H cos mir/N, m = 0,...N; 

B = -c; Bx = - h H/ck; B. =0, j=2,...N;R=l+ he2;  Q = c, where 

c and k are found recursively from 

k =  2TT/TC 

with an initial guess c = 1 corresponding to a long wave approximation. 

2.3. Results 

The method was run on a CDC Cyber 171 computer; convergence of the 
iteration was extremely rapid so that 5 iterations were usually suffi- 
cient to obtain convergence to 12 decimal places.      For very high 
waves it was found that the linear approximation was not a sufficiently 
accurate initial estimate of the solution and the method did not converge. 
In this situation it was necessary to extrapolate the initial estimate 
from converged solutions for lower waves. 

With this solution for the elevation of points on the free surface 
n , for the Fourier coefficients B,, and for c,k,Q and R, it is possible 

to obtain results for other quantities which may be of interest, in par- 
ticular the fluid velocities and pressure at any point.  All physical 
variables considered so far have been in a co-ordinate system which 
moves with the wave so that all motion is steady in that frame.  The 
steady velocities at any point are from differentiation of (2.5): 

N 
u(x,y) = BQ + k I    u.(x,y), and 

.1=1 
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N 
v(x,y)   =1    J    v.(x,y), 

j=l    3 

where u..(x,y)   = jB^ |§fj^^ cosjkx,     and (2.16a) 

v.(x,y)   =  jB.   Sln^l slnjkx. (2.16b) j j   coshjkD J 

The pressure at any point,  p(x,y) ,   representing p(x,y)/pgfj where p is 
fluid density,   is given by 

p(x,y)   = R - y - %[u2(x,y)   + v2(x,y)]. 

Now consider a stationary co-ordinate system (X,Y) on the bed in which 
motion is unsteady as the waves move from left to right with speed c. 
If the wave crest is at X = X when t = 0, the unsteady fluid velocities 

o ' 
U(X,Y,t) and V(X,Y,t) become 

N 
U(X,Y,t) = c + B + k V u.(X-X -ct,Y) 

' o    .f\  j   o  ' 
N      J 

V(X,Y,t) =k j v.(X-X -ct,Y), 

where the (u.,v.) are defined in (2.16a,b). Unsteady pressure is given 
by        J  J 

p(X,Y,t) = R - Y - lj[u2(X-X -ct,Y) + v2(X-X -ct,Y)]. 

In addition to the above local quantities, gross integral quanti- 
ties of the wave train such as potential energy may be calculated from 
the converged solution. Expressions for these are given in Rienecker 
and Fenton (1980). 

2.4. Accuracy 

Cokelet (1977) presented a number of accurate results for integral 
quantities of the wave train.  The wave speed c, for the case C_, = 0, 

was used to test the accuracy of the present method.   For each of four 
different values of kQ/c, which is a measure of the ratio of wavelength 

to depth of fluid, the variation of c2 with H is shown on Fig. 1.  The 
results indicate close agreement with Cokelet.   Only for the very high- 
est and longest wave with relatively coarse numerical approximation 
(small N) were significant errors obtained.   In these cases it was not 
the height of the wave which caused the lack of accuracy as the method 
makes no approximation as to height.   Instead, for higher waves the 
crest becomes increasingly sharp and the Fourier approximation becomes 
less accurate.  Also, for longer waves where the wave is more like an 
isolated hump on otherwise undisturbed fluid, larger values of N are 
required to describe the wave accurately. 
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Figure 1.  Comparison between the present method and the 
results of Cokelet (1977) for wave speed squared, c2, as 
a function of wave height H.  Each curve is drawn for a 
constant value of kQ/c taken from Cokeletfs tables A2, A4, 
A6, A8, giving the almost constant values of wavelength 
shown. 
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To compare the predictions of the Fourier method for fluid velo- 
cities with experiment, the results of Le Mehaute, Divoky and Lin 
(1968) were used*  As the experiments were performed in a closed wave- 
tank, the condition (2.13b) was used to determine the wave speed c - Q. 
This condition does not seem to have been used in previous comparisons 
with these experiments, where the incorrect assumption C_ -  0 has been 

used.  Also, it should be pointed out that the experimental velocities 
measured were particle velocities averaged over a finite time and not 
the instantaneous velocities given by all wave theories.   It can be 
shown that these experimental velocities should be less than those pre- 
dicted.   In Fig, 2, two sets of experimental results are shown for the 
two longest waves generated, with a wavelength of about 30 times the 
depth in each case.   These longest waves should provide a severe test 
for the Fourier approximation method, as described above.   It can be 
seen that agreement between theory and experiment was quite close. 

3. UNSTEADY WAVES 

3.1. Equations 

A solution is sought to the equations governing the evolution of 
waves travelling over a layer of fluid on a horizontal bed.   If the 
fluid is irrotational a velocity potential <f)(x,y,t) exists such that 
velocity components u(x,y,t) and v(x,y,t) parallel to the x and y co- 
ordinates respectively are given by 

u = 3cf)/9x and v = 9<J)/9y. 

If the motion is incompressible, (f) satisfies Laplace's equation through- 
out the fluid: 

^i + iii=o. O.I) 
3x2  3y2 

Since the velocity normal to the bed is zero, 

J^x.O.t) = 0, (3.2) 

where the co-ordinate origin has been placed on the horizontal bed. 
The case where the bed is not horizontal can be treated by the methods 
of this section, and is described in Fenton & Rienecker (Manuscript in 
preparation). 

On the free surface y = ri(x,t), the kinematic and dynamic boundary 
conditions must be satisfied: 

ft-Hi*-- f =° <3.3> 

where C is a constant.   In these equations all variables have been non- 
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dlmensionalized with respect to the mean depth fj, and gravitational 
acceleration g.  If a simple method can be found for solving the lin- 
ear equations (3.1) and (3.2), and if a convenient and accurate method 
can be found for approximating all the space derivatives in (3.3) and 
(3.4), then subject to known initial conditions, (3.3) and (3.4) can be 
used to advance the solution in time, so that the evolution of distur- 
bances can be followed. 

3.2. Numerical approximation and solution of equations 

The Fourier methods of §2 are capable of great accuracy, and simi- 
lar approximations will be used here for <f>(x,y,t) and also for ri(x,t) 
so that term by term differentiation can be used for derivatives of 
each.  It is assumed that the dependent variables <j> and ri can be re- 
presented by Fourier series in x throughout the region of interest, im- 
plying that all motion is periodic in x with some finite period L, re- 
ferred to as the wavelength. 

An expansion for <(>(x,y,t) may be written 

N/2 
<0(x,y,t)  - ax+i      I      Aj(t) f2gjMexp(_ijkx) (3.5) 

j-f+1 
for some finite value of N, where k = 2ir/L.   In general, <j> is not 
periodic but will change by a finite amount over the region of inter- 
est.  The leading term ax has been introduced to allow for the dis- 
continuity in $ over one wavelength where a = (<|>(L,y,t) - <t>(0»y>t))/L. 
Now, the finite complex Fourier series shown has to approximate the 
function c(>(x,y,t) - ax which is continuous.   In this case the Fourier 
series converges absolutely and can be differentiated term by term. 
The Fourier coefficients A.(t) are complex, while the coshjkD in the 

denominator (D is an arbitrary depth scale, conveniently chosen to be 
the mean) has been introduced so that the method may also be used for 
deep water, as for the steady wave expansion in §2. 

A finite complex Fourier series can also be written for ri(x,t): 

,  N/2 
n(x,t)=£ I      Y  (t)exp(-ijkx). (3.6) 

3-2+1 
If n  is known at  the N discrete points x    = mL/N,m = 0....N-1,   such 
that m 

,     N/2 
nm = n(xm,t)  =-jj      I      Y  (t)exp(-i2imj/N), (3.7) 

J-f+1 
then it can be shown that the Y. can be simply obtained from the n : 

3 m 
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N-l N 
Y = I    nm exp(i2iTmj/N), j = - j + 1,..., j. 

-1  m=0 
In this form the Y. are said to be obtained from the n by a Discrete 

J m 

Fourier Transform, 

Y. = Dtnj, 

and (3.7) is termed an Inverse Discrete Fourier Transform, 

n   =P
_1

CY.]. 
m       J 

Similarly,     <(>(x ,y,t)' = ax + tT1[A.(t) ^^^rJ] •"     T m'-"      m       y       coshjkD 

and A.(t) COsy.li  ° PCKx ,y,t) - ax ]. 3   coshjkD    T m'-7'      m 

Now, the series (3.5) and (3.6) can be differentiated term by term, 
and substituting x = x series (3.8) and (.3.9) are obtained, where a sub- 

script x,y or t denotes partial differentiation with respect to that 
variable.  These expressions should be very accurate, provided the co- 
efficients A. and Y. decay sufficiently quickly as |j| •+ N/2, where the 

series are truncated. 

*x(xm,y,t) - a-ikp-^A.a) ffShgZ;, (3.8) 

VVy,t) "   ^JAj'tt) tof^ • (3.9) 
Further differentiation of (3.5) shows that Laplace's equation 
(3.1) is identically satisfied by (3.5), as is the bottom boundary con- 
dition (3.2).  Also, 

rix(xm,t) = -ikV~hjY.(.t)l  = -ikP_1[j»[Tln]]. 

The remaining equations, the nonlinear free surface conditions (3.3-.4) 
become: 

a* l      coshjkr) 
|£(x ,n ,t) = c - n - ya-ikP^CjA.Ct) —r-^nr^}2 
dt    m m'        'm J   coshjkD 

1*1,2 
1       sinhjkvi 

n-±r-iA f.\  HLTU 

, sinhjkri 
-|2-(x ,n ,t) = kP_i[jA.(t)  r^r^l St m m 3 coshjkD 

..       coshjkn 
+ IkCa-iklT^jA^t) coshjkD

m]]P^[jOTnJ],      (3.11) 

each for m = 0,.,.,N-1.  Clearly, if F and G represent the right sides 
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of  these equations,   then (3.10)   and   (3.11) may be written for given k, 
a,  C and D: 

ft^m'V^   = FlA^t),  j  = -|+1,...,|;  n(xn> t) ,n=0,... ,N-1}, 

and f^V^  = G{Aj(t),  j  - -| + 1,...,|; n(xn,t),  n = 0,...,N-1}, 

for m = 0,...,N-1.  If all values of A.(t) and i"|(x ,t) are known at any 

time t, then 3<|>/3t and 3r|/3t may he evaluated, and by discretizing the 
time domain, the solution may be stepped forward in time.  Defining 
time t. = I  A t, and using centred finite differences to approximate the 

time derivative, the value of n at the next time step can be written 

I'VW 
= n(VVi» + 2At !i(vV + 0(At3)' 

that is, 

^VW ~ ^VW + ZAtGtAjC'V.J = - fn,...)f;n(xn,tJl)) 

n = 0....N - 1}.     (3.12) 

In the same manner, 
3A. 

VW " Aj(t£-1> + 2At Tt^V • (3"13) 

where  3A.(t„)/3t is  found  from the solution of  the N simultaneous lin- 
J     *• 

ear equations in N unknowns obtained from differentiation of   (3.5)  with 
respect to time: 

1     N/2    3Ai coshjkn   (t.1 
f<VVV=i      I      It^       coshjkD «"P<-i^/«) (3.14) 

J-f+1 
for m = 0,...,N-1.       Unfortunately  these equations cannot be simply  in- 
verted by Fourier means to give 3A./3t since the ti  (t„)  = r)(x  ,t,,)  vary 

J 11 A tQ A/ 

with m. 

To commence solution, initial values of Ti(x ,t„) at Jo = 0 and 1 m Jo 
must be known, as well as values of A (t ) Jo = 0,1,  The Fourier co- 

efficients are simply found if the values of <J> are known on some line 
of constant elevation d: 

With these initial values known, 3c|>/3t and 3t"|/3t on the surface can be 
found from (3.10) and (3„ll),3A./3t found from (3.14), and n and A. found at 
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the next timestep from (3. 12) and (3.13) . In this way, the evolution 
of some known initial disturbance can be followed. 

This method of time stepping is susceptible to instability in some 
finite difference schemes, hence it is necessary to determine if and 
when the method can be unstable here.  To do this, the equations (3.3 
& .4) were linearized, and a solution assumed.  It was found that for 
waves of wavelength L/v, where V is an integer which can take any value 
between 1 and N/2, on a stream of velocity U, that the stability cri- 
terion is 

o(v)At < 1, 

where 0~(v) is the apparent radian frequency of waves of length L/v: 

a(v) = vkU ± (vk tanh vk) , v = l,...,N/2. 

in which the second part is the frequency of the waves travelling on 
otherwise undisturbed fluid, while the term VkU is the Doppler contri- 
bution to the apparent frequency by the waves being carried along on a 
current U.  The criterion a(v)At < 1 means that time steps must be 
taken sufficiently small so that a minimum number of time computational 
points are taken in any one cycle of every frequency component.  The 
most demanding case is the highest frequency component V = N/2.  For 
Vk = Nk/2 = NTT/L = IT/AX sufficiently large, the criterion is approxi- 
mately 

At < (AX/TT^/U + U(TT/Ax)'S) . 

The most severe case is obtained when U is finite and the waves are con- 
vected along with the flow giving a higher apparent frequency at a point. 
If the fluid is quiescent, U = 0, the criterion becomes 

At < (Ax/ir)*5, 

which is a relatively weak restriction, when compared with those ob- 
tained from diffusion and other equations. 

3.3. Reflection of solitary waves by a vertical wall 

Here, the method developed in §3.2 is applied to the particular prob- 
lem of a solitary wave propagating over water of constant depth and 
being reflected by a vertical wall, a situation studied by Chan and 
Street (1970) who developed a numerical method for free surface flows 
based on a marker and cell technique, using finite differences.  This 
problem is of some importance, for the solitary wave! is the fastest, 
highest, largest, and most energetic of all steady waves, comparing the 
results of Longuet-Higgins & Fenton (1974) and those of Cokelet (1977). 
In addition, the effects on a wall of an incident solitary wave are 
greater than those due to a standing wave system evcin of long wavelength, 
because the solitary wave can be of full breaking height even before it 
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strikes the wall, and at the wall will rise to a height about twice 
that, exerting considerable force.  The standing waves, being periodic 
in time, can never rise greater than their breaking height at the wall, 
and since this height is lower than the breaking height of the solitary 
wave, the latter should exert the greatest forces possible and its ef- 
fects should be used as the design criteria  for wall forces and mo- 
ments.  Unfortunately, previous studies have not reported on the for- 
ces and moments caused. 

Since the horizontal fluid velocity at the wall is zero, it can be 
seen that the problem of a solitary wave on a wall is precisely one 
half of the equivalent problem of two equal waves propagating in oppo- 
site directions, provided that the effects of viscosity are negligible. 
Both problems have been studied experimentally by Maxworthy (1976), who 
reported some unusual aspects of the time lag at the wall of the wave 
crest. 

The method described in §3.2 aboye was tested on the problem of two 
equal waves propagating in opposite directions described more fully in 
Fenton & Rienecker (in preparation).   In the following discussion only 
one half of the problem will be considered and will be referred to as 
the reflection of a single wave by a vertical wall.  As none of the 
methods developed in this work can handle an infinitely long region, a 
finite length only was considered for computational purposes.   To ob- 
tain the initial conditions, where the incoming wave does not yet sense 
appreciably the presence of the wall, a steady wave solution of speci- 
fied height and period was calculated, using the method of 52.  From 
trial runs it was found that the resulting body of the wave was inde- 
pendent of wave length, if this exceeded some 20 times the water depth 
for low waves (height 0.1 of the depth), this limit smoothly decreas- 
ing to 10 depths for waves of height 0.4 and above.  Each of these 
waves was considered to be a very close approximation to the solitary 
wave of the same height, this being verified when quantities such as 
the propagation speed and potential energy were compared with results 
for the solitary wave from Longuet-Higgins & Fenton (1974).  With 
the steady wave solution so obtained, two such numerical waves were 
placed together, so that their velocities of propagation were in oppo- 
site directions and of a magnitude such that horizontal fluid velocity 
under the long flat trough was zero, corresponding to two solitary 
waves, coming together over otherwise undisturbed water.  Then each 
wave was shifted forward slightly by an amount equal to the distance 
travelled in one computational time step, as if the other wave did not 
exist (an excellent approximation to motion in this first stage in view 
of the flatness of the trough, zero velocity under it and the small 
time step used). With these first two positions of each wave, two com- 
plete sets of initial conditions were calculated, so that the leap- 
frog timestepping procedure described in §3.2 could be initiated. 

At first the wave propagated towards the wall, with imperceptible • 
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Reflected Wave- 

Incident, Wave 

Figure 3.  Surface elevation for a long wave of height 
0.3 of the mean depth (approximating a solitary wave of 
height 0.325 above the trough), being reflected by a ver- 
tical wall at the left.  Profiles are shown for suc- 
cessive times.  Vertical exaggeration * 4:1. 
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effect on the main body of the wave, as can be seen in Fig, 3, justi- 
fying the finite computational length taken.  At the wall, the water 
level slowly rose until it was almost as high as the crest.  After 
this stage, events happened very quickly, the crest "snapped through" 
to the wall and quickly reared up to more than twice the height of the 
incident wave.    Far away from the wall, all the fluid was sensibly 
undisturbed.  At its highest elevation, the crest at the wall became 
rather more curved, and for the highest waves became quite sharp.  It 
is in this limit, at this stage, that the use of the Fourier method be- 
comes questionable.  The sharp crest of the breaking wave of limiting 
height cannot be described by the present method which depends on func- 
tions and derivatives having no discontinuities.  Whereas a real wave 
may exhibit breaking at the crest for very high waves the numerical 
wave showed no such behaviour and can provide no breaking criterion. 
However, up until this point, the solutions were considered to be very 
accurate since total mass and energy of the fluid were conserved to at 
least four significant figures.   In addition, when compared with ex- 
perimental results and previous computational results for the maximum 
runup at the wall on Fig. 4, it can be seen that the present method 
gave results which agreed very closely, perhaps surprisingly in view 
of the fact that runup depends critically on whether the waves break 
or not. 

The maximum force and moment exerted on the wall were calculated 
by obtaining the pressure on the wall at 21 equally-spaced points be- 
tween the bottom and the crest and integrating using Simpson's rule. 
These quantities depend on the whole flow field and should be much 
less dependent on breaking at the crest than might be expected for the 
runup.  Results from the numerical experiments are shown in Fig. 5, on 
which least-square parabolas have been fitted to each set of points, 
but with the condition that each pass through the zero amplitude hy- 
drostatic results in which Force on wall = %pgh2, where h is the undis- 

1   3 turbed depth of water, and Moment about the toe of the wall = TPgh . 

If H is the. height of the incident wave crest above the undisturbed 
fluid, these results are: 

Maximum Force on Wall F: 

-^— = H +  2.25(5-) - 0.42(S)2 

pgh2 

Maximum Moment on Wall about Toe: 

-$-  = i+ 1.23(S) + 0.80(£)2. 
i 3   o        n a 

Pgh3 

From the figure it can be seen that these empirical curves agree closely 
with all numerical results and should provide convenient criteria for 
design purposes. 
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Figure 4. Maximum run-up at the wall R = (r)max/h)-l, 
where h is undisturbed depth, plotted against incident 
wave height H/h.   Points (•): numerical results from 
present method. ( ): mean of experimental results 
reported by Chan & Street. (— — —): mean of experi- 
mental results from wave-wall reflection, and (   ) : 
wave-wave interaction, both from Maxworthy (1976). 
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Figure 5. Maximum force and moment on the wall, plotted 
against incident wave height.  The points (• ) are nu- 
merical results from the present method to which curves 
have been fitted, as described in the text, shown by 
solid lines. 
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As the water flowed back down the wall, the process described 
above was qualitatively reversed, until the wave was totally reflec- 
ted and was travelling in the opposite direction.  Chan and Street 
(1970) reported that at this stage "the wave had exactly the same sur- 
face profile as its corresponding incident wave".  However, in the 
present work, the reflected wave was not the same as the incident wave. 
This is not clear from the space-time plot on Fig. 3, as differences 
are relatively small.  Fig. 6 shows rather more clearly the differen- 
ces that were observed - the reflected wave has a depression behind it, 
it has a slightly steeper front face, it is lower, and in apparent con- 
tradiction of this last fact, it is travelling faster!  These differ- 
ences are not numerical errors:  the accuracy of the method is shown by 
the fact that mass and energy of the water were conserved to within 

-4 
10  , even for the highest waves reported.   Rather, some differences 
between the waves is to be expected, for all the governing equations 
are highly nonlinear and it would be remarkable if two solitary waves 
of height 33% of the depth should collide, the combined crest grow to 
a height of 73%, and then each wave pass out through the other, with- 
out some nonlinear interaction changing the form of each.  A number 
of details such as the time lag experienced in the interaction, the 
change in wave height and speed and other details of the nonlinear in- 
teraction are of little engineering importance and are being written 
up for publication elsewhere. 

Figure 6.   Comparison of surface profiles for an 
incident wave (       ) of height 0.3 of the mean 
depth travelling towards the wall, and the wave after 
reflection ( ).  Vertical exaggeration 16:1. 
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