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1.    INTRODUCTION 

Calculations using the 'Design Wave' approach in coastal and offshore 
engineering begin with the specification of wave conditions usually in 
terms of a wave height, wave period and mean water depth. These three 
dimensional parameters are sufficient to define all the wave character- 
istics uniquely if a number of assumptions are adopted, including those 
of periodicity in space and time, absence of viscosity, and two- 
dimensional flow. Although these assumptions result in an enormous 
simplification of waves in the ocean, the ultimate idealised conditions 
hold some attraction in providing a standard description of wave 
mechanics for design purposes.  Once the design wave approach has been 
adopted, it follows that the engineer needs to ensure that the theory 
which he uses to analyse waves generates results equivalent to those of 
the most accurate theory currently available. 

There are in engineering use several wave theories (e.g., Airy, Stokes 
5th order, Cnoidal, Stream Function) by means of which required wave 
properties can be computed from an initial wave specification on the 
basis of ideal conditions. Unfortunately, none of these theories is 
exact and in general they disagree, most significantly in conditions of 
shallow water or high wave steepnesses. The differences between them 
have stimulated comparative studies based on boundary condition errors 
(Dean, 1970) and experimental data (Le Mehaute et al, 1968), leading to 
recommendations on the use of specific theories for given conditions. 
However, the value of these comparisons has been somewhat limited by 
the absence of an accurate solution to the problem valid over the whole 
range of interest. 

Such a solution has now been brought nearer by the work of Cokelet (1977), 
and it is the purpose of this paper to study the implementation of 
Cokelet's theory and other recent theories in an engineering context. 
The paper does not make any contribution to the analysis itself but is 
concerned with applications, and the question whether such developments 
should influence current engineering practice. 

Previously, the wave theory offering greatest analytical accuracy and 
widest range of application was the Stream Function Theory of Dean (1965). 
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Tables of functions (Dean, 1974) have facilitated the application of 
this wave theory, but some results for steep waves given in the tables 
disagree with Cokelet's results. 

The use of Cokelet's theory in an engineering context is discussed in 
Section 2, and other relevant recent developments introduced in Section 
3.  In Section 4 numerical results are presented for comparison between 
different methods. 

2.   ENGINEERING APPLICATIONS OF THE EXTENDED STOKES THEORY 

As Cokelet [1977) presented it, the extended Stokes theory is not in a 
very convenient form for engineering application. The two dimensionless 
independent parameters1 d* and £„ are not written explicitly in terms of 
wave height H, period T and mean water depth d. The expansion parameter 
£* lies in the range zero (for zero wave height) to unity (for waves of 
limiting height), and diL/2TT (where L is the wave length) is slightly 
less than the mean water depth d, and differs from it by 4% at most. 
In order to relate d* and e* to H, T and d, it is necessary to compute 
some of the series expansions given by Cokelet using Pade approximants. 
In particular: 

d/Lo = ^- (d* + nj (1) 

and 

H/L0 = Sill*. (2) 

where L0  = gT2/2ir 

The problem of going in the opposite direction, i.e., finding from given 
d/Lo and H/Lo the corresponding d* and £*, and thereby a complete 
solution for given wave conditions, is a more demanding one.  Possibly 
the extended Stokes solution could be re-formulated with different 
independent parameters, but in the present work we adopt a more 
pragmatic approach which provides a satisfactory entry to Cokelet's 
theory from conditions specified in terms of d/Lo and H/L0. The 
corresponding values of d* and £* are interpolated from Cokelet's (1977) 
tabulated results as described below. 

At points on the d/Lo, H/Lo plane corresponding to the intersections of 
lines at constant d* and £„, some of which are shown in Fig. 1, Cokelet 
provided numerical results of a range of integral wave properties, 
including c*2, fjt and a*. The co-ordinates of the intersections may 
easily be calculated from Eqs. (1) and (2). In order to interpolate d* 
at a specified point in the plane, the procedure adopted in the present 
work was as follows. 

1 Where Cokelet's parameters are introduced, they appear with a 
subscripted asterisk. 
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Conditions of limiting wave height Hg were identified on the axes of 
Fig. 1 by cubic splines fitted (Ahlberg et al, 1967) through the points 
at which et  = 1, to approximate the function Hg/Lo (d/L0). The 
co-ordinates of the intersections at which the data is tabulated could 
then be transferred to the d/Lo, H/Hg plane, in which lines of constant 
et  are predominantly in line with the d/Lo axis. Cubic splines were 
then used, along each line of constant £* in turn, to approximate the 
functions H/Hg (d/Lo, e*=constant) and d*(d/Lo, £4=constant).  From each 
pair of splines H/Hg and d* were interpolated at the required value of 
d/Lo to give a series of (unequally spaced) points on the curve approx- 
imating d^fH/Hg, d/Lo=constant). The final interpolation at the 
required H/Hg was again performed by means of cubic splines. Linear 
scales were used throughout, except for d/Lo and H/Lo, which were 
represented in the curve fitting by their logarithms. Various end 
conditions for the splines were tested and the most accurate results 
were generally obtained by setting second derivatives equal over the 
first pair and last pair of data points. Any other of the parameters 
tabulated in Cokelet's tables (or functions of them) can be interpolated 
in the same way. Alternative end conditions were used for the limit 
H/Hg = 0 when the behaviour of the required parameter was known from 
Stokes wave theory. 

The accuracy of this method was tested by computing with Pade approximants 
the parameters c*2, n* and a*, for values of d* and e„ generated by 
interpolation from Cokelet's data with specified d/Lo and H/Lo. The 
errors in the final d/Loand H/L0 calculated by Eqs. (1) and (2) were 
always much less than 1%, except in the shallow water conditions 
d/Lo <  0.008 where some of the integral wave properties converge at best 
to only one or two significant figures. 

Other wave properties which can be computed directly from Cokelet's data 
by the above method of interpolation (i.e., without the use of Pade 
approximants) include the wavelength: 

L/Lo = c*2 (3) 

the elevation of the crest above mean water level: 

'crest = K„ = 2ru 
4a* (4) 

the dimensionless particle velocity at the crest qcrest* 
on a frame of 

reference moving at the wave celerity: 

ncrest. = - 2a„ + /4a*2 - c/(e*2 - 1) (5) 

and the horizontal particle velocity at the crest on a stationary frame 
of reference: 

u   .  T(C* - q   . ) crest    *  ncrest* ,,, 
-B7T- = c-I— M 
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besides the energies and energy flux and other terms presented in the 
tables. 

Unfortunately, no information is available by this means on the profile 
of the free surface or on particle velocities other than at the crest and 
the trough. To obtain the free surface profile or general particle 
velocities and accelerations, it is necessary to solve, (Cokelet, 1977), 
the series expansions for the coefficients of the Fourier series of the 
complex potential, from independent parameters d* and e*. Since the 
complex spatial co-ordinate Z* is expressed in the final solution as a 
function of the complex potential W*, rather than vice-versa, it is 
ultimately necessary to interpolate for Z„, for instance by complex 
Newton-Raphson iterations, to obtain conditions at a given location 
within the wave. A greater handicap, however, is the failure of the 
series expressions for the high order Fourier coefficients to converge 
adequately for strongly non-linear cases. Cokelet discussed this 
problem and showed how the degree of convergence could be determined by 
comparing values of parameters derived from the surface profile and 
alternatively directly from a series by Pade approximants. 

To define the conditions for which the velocity potential Fourier series 
would converge we computed a number of cases and compared results for 
crest elevation and crest particle velocity derived by the two methods. 
The maximum wave heights for which errors in crest elevation and particle 
velocity derived from the Fourie.r series did not exceed 2% are shown as 
the broken line in Fig. 1. For the most shallow water conditions 
tested, this occurs at about one half the limiting wave height.  In 
deeper water, with d/Lo > 0.1, satisfactory results were obtained up to 
within 1% of the limiting height. These computations were carried out 
in double precision (approximately 28 significant places) on a CDC 7600 
to a maximum order of 120.  Convergence limits were almost exactly the 
same for both elevation and particle velocity at the crest.  In view of 
the series formulation of the velocity potential, it might be expected 
that particle velocity would fail to converge before the profile itself, 
since the differentiation involved causes the truncated higher spatial 
frequency components to have a greater relative contribution to the 
total. This is not the case, however, owing to the inverse formulation 
of the Stokes series. It is, nevertheless, reasonable to expect that 
the region of convergence for particle accelerations will be rather more 
restricted than these, although no numerical comparisons have been 
carried out. 

We conclude that the extended Stokes theory can be used in the same 
framework as engineering wave theories by means of cubic spline inter- 
polation for the independent parameters d* and £*. The velocity 
potential and its derivatives do not converge in all cases, but much 
useful information can be computed by interpolation from Cokelet's 
tables. Comparison of some results with those of other methods follows 
in Section 4. 
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3.    FURTHER RECENT METHODS 

Properties of steep waves can also be computed accurately by the stream 
function wave theory (Chaplin, 1980). While this method is more cumber- 
some than Cokelet's, and does not have in-built checks for convergence, 
it has the advantage of being formulated in conventional terms, and 
seems to converge better for steep waves in shallow water. The 
re-formulation necessary to achieve these results was carried out in an 
attempt to eliminate errors apparent in data for the steepest waves 
presented in stream function tables by Dean (1974). Some further 
comparisons using modified stream function results are presented in the 
next Section. 

The analysis of steep waves by either extended Stokes theory or stream 
function theory demands much costly computer storage and time. 
Consequently, simple yet accurate approximations for the crest of the 
almost-highest wave and for the wave of limiting height in deep water by 
Longuet-Higgins (1979a and 1973) have great appeal.  Results of both 
methods are presented in the next Section. 

The almost-highest wave (AHW) approximation (Longuet-Higgins, 1979a) is 
expressed in terms of a velocity scale which must be derived by other 
means from given wave conditions.  In the present work this has been 
achieved by means of interpolation by cubic splines, as described above, 
from Cokelet's (1977) data as follows. The required unit of velocity is 
<\/j2,  where q is the crest particle velocity in a reference frame moving 
with the wave.  In terms of Cokelet's parameters: 

q     Cj. Co 
a. =  crest*  * (7^ 

where Co is the small amplitude deep water celerity. The associated 
unit of length is: 

2g 

and in order to fix the origin it is necessary also to compute in 
advance the elevation of the crest. 

As shown in Eqs. (4) and (5) these parameters can be related to those 
presented in Cokelet's tables, and thus obtained for any specified wave 
conditions by interpolation. The computing effort necessary for the 
interpolation, followed by application of the AHW approximation is a 
small fraction of 1% of that required for a full solution by series 
methods.  Furthermore, it applies to the crest where conditions for 
many purposes are likely to be most severe, and where conventional wave 
theories are at their weakest owing to poor convergence associated with 
the original Stokes type series formulation. The almost-highest wave 
approximation is related to more accurate solutions derived by Longuet- 
Higgins and Fox (1977, 1978).  In the second of these papers the 
solution for the crest is matched to the rest of the wave for deep water 
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conditions.  Particle.trajectories near the crest derived from the AHW 
approximation, the hexagon transformation and other methods are given in 
Longuet-Higgins (1979b). 

4.   COMPARISON OF NUMERICAL RESULTS 

In comparing results from different wave theories, particular attention 
is paid to particle velocities in the region close to the crest for the 
reasons stated above. Also, we concentrate on steep waves since the 
earlier stream function tables (Dean, 1974) are accurate to within 5% 
for almost all cases up to 90% of limiting wave height (Chaplin, 1980). 
While integral parameters can be derived from any of the theories 
mentioned, they are now more easily and accurately computed from Cokelet's 
tables. 

Fig. 2 shows the percentage errors in crest elevation above mean water 
level n as a proportion of wave height H for waves of limiting height. 
The results for cnoidal theory (for which U denotes the Ursell number 
L2H/d3) were computed in accordance with Keulegan and Patterson (1940) 
and those for Stokes Sth order theory with Skjelbreia and Hendrickson 
(1960).  Clearly the stream function tables (in which nominally breaking 
waves are denoted as case D) are the most accurate, although they refer 
to slightly different wave heights. 

Similarly, Fig. 3 shows crest particle velocities in a stationary 
reference frame ucrest as a proportion of the celerity for waves of 
limiting height. Again the stream function tables are the most accurate, 
giving results closest to unity for most water depths.  In both 
comparisons, cnoidal theory is seriously in error, either at low Ursell 
numbers for crest elevations, or at high Ursell numbers for crest 
particle velocities. Since particle velocities vary only gradually 
through the water depth in shallow water conditions, it is reasonable to 
expect that the errors in cnoidal theory demonstrated in Fig. 3 are not 
confined to the region near the surface. Conversely in deep water 
conditions, the most significant errors in Stokes 5th order theory occur 
only close to the surface and predominantly at the crest.  A comparison 
of horizontal particle velocities and vertical particle accelerations on 
a vertical line through the crest of the wave of limiting height in deep 
water is given in Fig. 4, in which y is measured upwards from mean water 
level.  Since the velocity potential series in the extended Stokes theory 
does not converge for this case, we adopt the hexagon transformation 
(Longuet-Higgins, 1973) as an easily computed and accurate alternative. 
It gives inevitably the crest particle velocity u equal to the celerity 
and the upward vertical acceleration dv/dt at the crest level equal to 
- 1/2 g.  Stokes 5th order theory and the stream function tables 
seriously underestimate both, but their errors diminish rapidly away from 
the surface. 

The surface profile for the wave of limiting height in deep water is 
plotted without distortion in Fig. 5 for comparison with Stokes 5th 
order and stream function tables (case 10D) results. Although the 
latter is only a third order solution, this refers to the number of 
terms in the stream function series rather than, in the Fourier series 
for the surface profile as in Stokes 5th order theory. The surface 
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profile in the stream function theory is derived from the stream function 
series, has therefore higher frequency terms and approaches more closely 
the discontinuity of surface slope at the crest. 

The surface particle velocities predicted by the same three methods for 
the wave of limiting height in deep water are shown in Fig. 6 over the 
half wave length ahead of the crest. The errors in u at the crest in 
Stokes 5th order and stream function theories are again not representa- 
tive of errors elsewhere. 

It must be noted that the above comparison of results for limiting deep 
water waves serves only to demonstrate the performance of Stokes and 
stream function theories generally in deeper water. For' this particular 
case the hexagon transformation is both more accurate and more convenient 
to compute than either of them. 

If a full solution is needed for very steep waves in transitional water 
depth, the modified stream function theory (Chaplin, 1980) can provide 
converged results for cases which are beyond the limits we have found in 
the extended Stokes theory, and which are shown in Fig. 1. As noted 
above, the elevation and particle velocity at the crest can be found for 
all cases from Cokelet's tables by interpolation, and in Fig. 7 are 
plotted these results for very steep waves for two water depths. The 
agreement with results taken from full modified stream function solutions 
is within the accuracy of the interpolation procedure and of Cokelet's 
tables. Since conditions at the crest are more sensitive than those 
elsewhere to truncation errors this is taken as some confirmation of the 
overall accuracy of the full stream function solutions for the profiles 
and particle velocities of these steep waves'. 

The flow in a small region near the crest can also be computed, as 
described in the previous section, by the AHW approximation. For the 
two water depths referred to in Fig. 7, Figs. 8 and 9, in which x is 
measured horizontally forwards from the crest, compare elevations and 
velocity components of surface particles near the crests of steep waves 
computed by this method and by the modified stream function theory. 
The extent of agreement between the two methods naturally increases with 
increasing wave height as the upper part of the surface profile 
resembles more and more closely the Stokes corner flow which is the 
asymptote of the AHW approximation away from the crest. Also the two 
methods agree, not surprisingly, over a greater proportion of the wave- 
length in the deeper water case because the crest itself is relatively 
longer. Discrepancies at x = 0 are associated with differences between 
stream function results and those interpolated from Cokelet's tables to 
provide the scale and the origin of the AHW approximation. Away from 
the crest the latter tends towards a uniform surface slope and thus 
increasingly underestimates the actual surface profile elevation. 
Nevertheless, surface particle horizontal velocity components are 
accurately predicted by the approximation as far out as x/L =0.1 for 
the steepest wave with d/Lo = 0.2. 

Sub-surface particle velocities are compared in Fig. 10 along a vertical 
line through the crest.  Reasonable agreement is found over a region of 
similar dimensions as for surface elevations, namely about L/80 and L/20 
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FIG. 6.       THE  WAVE OF MAXIMUM   HEIGHT   IN   DEEP   WATER. 
COMPARISON   OF   VELOCITY    COMPONENTS   OF 
SURFACE   PARTICLES   WITH    RESULTS   OF   THE 
HEXAGON   TRANSFORMATION   (Longuet-Higgins)  
 Stokes   5th  ORDER, Dean  STREAM 

FUNCTION    TABLES,   CASE   10D 
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FIG. 7  CREST ELEVATION AND PARTICLE VELOCITY AT THE CREST FOR 
STEEP WAVES WITH CONSTANT PERIOD AND MEAN WATER DEPTH: 
• - MODIFIED STREAM FUNCTION WAVE THEORY. Q - INTERPOLATED 
BY SPLINES FROM INTEGRAL PROPERTIES TABULATED BY COKELE: 
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for d/Lo = 0.01 and 0.2, respectively. For deep water conditions the 
approximation may be extended beyond this region by the method of 
Longuet-Higgins and Fox (1978). 

5. CONCLUSIONS 

The extended Stokes theory (Cokelet, 1977) may be used in an engineering 
context in the same framework as conventional wave theories.  From the 
data which Cokelet tabulated suitable input parameters can be inter- 
polated from known water depth, wave height and period.  Integral wave 
parameters can then be computed for any conditions specified in this 
way, but the velocity potential series, from which surface profiles and 
particle velocities and accelerations are derived, does not converge 
adequately in the region above the broken line in Fig. 1.  Full solutions 
in this region have, however, been obtained for wave heights up to 
within 1% of limiting wave height by the modified stream function theory 
(Chaplin, 1980). 

Surface elevations and particle velocities near the crest, computed by 
these methods differ significantly from those calculated by conventional 
wave theories. However, accurate partial solutions can also be computed 
much more rapidly by approximations for limiting and near-limiting wave 
heights (Longuet-Higgins, 1973, 1979a). The almost highest wave approxi- 
mation (Longuet-Higgins, 1979a) can be applied to specified conditions 
on the basis of data derived by interpolation from Cokelet's tables. 
A method for interpolation is described above, and it has been found to 
yield accurate results with very little computational effort. A 
subsequent paper will present results for shoaling and refraction 
computed in this way from Cokelet's tables. 
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