
CHAPTER 147 

WAVE     LOADS    ON    HORIZONTAL    CYLINDERS 

by 

P. Holmes1 and J. R. Chaplin2 

INTRODUCTION 

The problem of predicting wave induced loads on cylinders is an 
enormously complex one. It is clear from the scatter present in most 
experimental determinations of force coefficients that there are many 
individual factors which influence the mechanisms of flow induced 
loading. Among these are some, for instance Reynolds number, separation 
and periodic vortex shedding, which are inter-related and whose 
influences cannot be studied in isolation. Others, such as shear flow, 
irregular waves and free surface effects, can at least be eliminated in 
the laboratory, in order to approach an understanding of the more 
fundamental characteristics of the flow. 

A vertical cylinder in uniform waves experiences an incident flow field 
which can be described in terms of rotating velocity and acceleration 
vectors, always in the same vertical plane, containing also the cylinder 
axis, whose magnitudes are functions of time and of position along the 
length of the cylinder. Some of the essential features of this flow can 
be studied under two-dimensional oscillatory conditions, in which either 
the cylinder or the fluid is oscillated relative to the other along a 
straight line (planar oscillatory flow).  The incident velocity and 
acceleration vectors are then always concurrent, normal to the cylinder 
axis, and oscillating in magnitude with time. 

According to Morison's equation (1), the total force per unit length on 
the cylinder in line with the velocity and acceleration vectors in this 
context, is the sum of the drag and inertia components: 

F = Fd + Fi = cdiedulul + C
m*f pf W 

where C^ and Cm are the time-independent drag and inertia coefficients, 
U the instantaneous flow velocity, p the fluid density and d the cylinder 
diameter. From experiments in planar oscillatory flow around smooth 
cylinders, Sarpkaya (2, 3) found that Cj and Cm are functions of the 
Keulegan Carpenter number, Kc = Umax T/d, where_T is the period of 
oscillation, and of the Reynolds number, Re = Umax d/u, when it is 
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greater than about 2 x 101*. Sarpkaya derived C^ and Cm from force records 
by a Fourier-averaging procedure. 

Very much less attention has been given to wave loads on horizontal 
cylinders, although many characteristics of the flow are qualitatively 
different from those relating to vertical cylinders. Most of the 
investigations on horizontal cylinders have concentrated on the effects 
proximity of the ocean bottom (4, 5, 6), so that particle orbits in the 
region of the cylinder were fairly flat ellipses.  In some cases the 
flow is assumed to be planar oscillatory as described above. Maull and 
Norman (7) measured wave forces on horizontal cylinders where particle 
orbits were almost circular and analysed the results in terms of 
horizontal and vertical load components.  It is more instructive, 
however, to study the load components which are in line with the 
velocity and acceleration vectors respectively, since the drag and 
inertial contributions are then more readily distinguished.  In the 
particular case when particle orbits in the region of the cylinder are 
circular, the incident flow around the cylinder is represented approx- 
imately by uniform flow described by a rotating velocity vector of 
constant magnitude. The actual flow deviates from this uniform condition 
as a result of the phase differences in the direction of wave propagation 
between particle motion on adjacent orbits, and because of the exponential 
decay of particle velocities with depth. However, providing the 
diameter of the cylinder is small compared with the wavelength the 
assumption of uniform ambient flow is a reasonable one. The undisturbed 
flow conditions around the cylinder can then be specified very simply. 
As in the case of the idealisation of flow around vertical cylinders in 
waves by planar oscillatory flow, some of the essential features of 
horizontal cylinders in waves can be represented in isolation. The 
ambient flow consists of a body of water moving without distortion or 
rotation around a circular orbit at the centre of which is the axis of 
the cylinder. The incident velocity and acceleration vectors are now of 
constant magnitude, rotating with constant angular velocity once in every 
wave period, with the latter leading the former by 90°. In this context 
the components of Morison's equation for force per unit length may be 
written: 

Fd = p cd | p d tt2  R2 (2) 

and    F = Cm 2L p Q2  R (3) 

where Fd and F^ are respectively drag and inertia load per unit length, 
fi is the wave angular frequency and R the radius of the particle orbit. 
The components F<i and Fj_ act in the directions of the velocity and 
acceleration vectors respectively and are thus now orthogonal. It is 
worth noting that viewed from a frame of reference centred on the axis 
of the cylinder and rotating with the wave frequency, the ambient flow, 
but for the re-cycling of the previously generated wake, is steady. 
Moreover, fluctuations with time in F^ and F-j_ can be caused only by this 
disturbed incident flow resulting from the previously generated wake, and 
by vortex shedding. 
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Like planar oscillatory flow, this simplified model of circular irrota- 
tional ambient flow around a cylinder can be used in the laboratory to 
reproduce some features of wave loading, in the absence of others which 
normally add to the complexity of interpreting experimental data.  It is 
perhaps closer to the widely studied case of steady uni-directional flow 
around cylinders since the interference of the wake on the incident flow 
is less pronounced, and the magnitude of the velocity is steady. The 
analytical methods used to investigate separated flow around cylinders, 
such as the finite difference solution for the time-dependent Navier- 
Stokes equations (8), or the discrete vortex model (9), may be used also 
in this context without fundamental changes. However, they remain 
restricted or incomplete, and require experimental data for verification. 

The purpose of this paper is to describe an experiment in which circular 
irrotational ambient flow around a cylinder was modelled by moving a 
cylinder without rotation around a circular orbit in initially still 
water. Allowing for the changed frame of reference, the motion of the 
fluid is identical in the two cases. However, forces experienced by the 
cylinder differ due to the presence of a pressure gradient in the fluid 
on the one hand and to the inertia of the cylinder itself on the other. 
The difference may easily be calculated, as shown below.  Forces 
experienced by the cylinder were monitored continuously with time for 
Reynolds numbers in the range 0.4xl05 to 2.4x10s and for Keulegan Carpenter 
numbers of 12.8, 24.0 and 35.7. 

APPARATUS 

The tests were carried out in a tank about 5m. square in plan, in a 
water depth of 90cm.  The cylinder was supported with its axis vertical 
from an arm which rotated above the water surface about a central pivot. 
The apparatus is shown in Fig. 1. A one horsepower variable speed motor 
provided the drive to the central shaft and was mounted on the side of 
the tank to minimise vibrations in the cylinder support.  In order that 
the cylinder should pass around its orbit without rotation, a secondary 
drive belt was provided between its axial support and a fixed central 
pulley. A number of alternative interchangeable belts facilitated 
different orbital radii.  The use of toothed rubber timing belts 
throughout ensured perfectly synchronous rotation between the motor, the 
central drive shaft and the cylinder itself. A simple potentiometer with 
its end stops removed was connected to the motor and acted as an 
angular displacement transducer, from the output of which also the 
angular velocity of the arm could be derived. 

The cylinder was mounted axially on a 5cm. diameter hollow alloy tube, 
cantilevered vertically downwards from the rotating arm, instrumented 
near its upper end with orthogonal pairs of strain gauges.  Since the 
cylinder and its support did not undergo rotation the cable to the 
gauges was not subject to any overall twisting and could be connected 
directly to the conditioning instruments. The cylinder was made out of 
15cm. diameter perspex tube of 10mm. wall thickness, and was airtight to 
minimise its mass.  Its natural frequencies in air and water were 
respectively 14 Hz. and 9 Hz. End discs of diameter 25cm. were mounted 
on the cylinder as shown in Fig. 1. At its upper end a larger disc of 
diameter 60cm. was mounted on the fixed cylinder to minimise free surface 
interference on the instrumented cylinder. 
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Experiments were run on-line to a Data General Nova Computer which sampled 
the unfiltered outputs of the strain gauge amplifiers and angular 
displacement transducer at a frequency of 100 Hz. With the available 
core, maximum run time was about 40 seconds.  The data was processed 
immediately after each test to provide radial and tangential load 
components (since the orientation of the gauges rotated with respect to 
the radial direction during each rotation) and velocities.  Besides 
further digital processing the data was then available for conversion 
back to analogue form for plotting at a reduced speed on a pen recorder. 

Initial strain gauge calibrations were carried out by loading the 
cylinder at its centre from weights hung over a pulley at the side of 
the tank.  From subsequent tests in air, the effective mass of the 
cylinder and its support was determined from the outputs of the gauges 
responding to centrifugal forces. A more rapid method of calibration was 
then possible, since during each revolution of the apparatus in air, the 
strains in the cylinder support tube oscillated about zero. A sinusoid, 
was fitted by least squares to the output of each pair of gauges from 
which their sensitivities and absolute orientations were derived.  This 
method of calibration was applied before and after each series of tests, 
and in every case the stability of the gauges and instruments was found 
to be satisfactory.  The effective mass of the cylinder and support was 
5.47 kg. 

RESULTS AND DISCUSSION 

According to Morison's equation, the forces per unit length experienced 
by a cylinder passing around a circular orbit in otherwise still water 
are: 

1 ^2 D2 Fd = Cd 1  p d Q    R W 

and    F. = C ~  p Uz  R + M fi2 R (5) 
I   a 4 

where R is the orbit radius, M the mass per unit length of the cylinder. 
The added mass coefficient Ca is given by Ca = Cm - 1.  The primary 
object of the experiments described here was to investigate Cd and Ca as 
functions of the Reynolds number Re and the Keulegan Carpenter number Kc. 
The components Fj and Fi correspond to the mean tangential and radially 
outward forces respectively measured on the cylinder.  The derived values 
for C(j and Ca are time averaged; it is worth noting that since Fj and Fi 
are orthogonal, C<j and Ca can be derived independently. 

In an ideal fluid Ca = 1. Although this result is normally derived in 
the context of concurrent velocity and acceleration vectors, it applies 
to all cases, whatever their relative orientations. 

Tests were carried out with the 15cm. diameter cylinder located at three 
different radii on the rotating arm: 0.306m, 0.572m. and 0.852m.  Since 
the Keulegan Carpenter number is given by: 



2454 COASTAL ENGINEERING—1978 

•Kc " T" (6) 

its value is independent of the speed of rotation, by which the Reynolds 
number is determined: 

R -^ C7) e   u *- J 

The three radii used in the tests correspond to Kc values of 12.8, 24.0 
and 35.7, respectively.  The appearance of Kc and Re directly as the 
independent parameters of the experiment is an advantage, since the flow- 
induced loads are expected to be functions of them only for rigid smooth 
cylinders. 

Fig. 2 presents typical records of tangential and radial loads derived 
from the strain gauge outputs.  In both cases the cylinder was accelerated 
from rest at the beginning of the record to a constant angular velocity. 
The first revolution of the cylinder around its orbit is characterised by 
abnormally high drag and oscillating lift associated with strong vortex 
shedding. Subsequently the cylinder passes into its own wake and the 
disturbances present result in a reduction in drag and oscillating lift. 
After two or three revolutions the mean drag and inertial loads 
stabilise and show very little variation with time.  It is worth noting 
that the motion of the cylinder resulted in little overall rotation of 
the water in the tank, which would have caused a progressive reduction in 
flow-induced forces owing to reducing relative incident velocities.  It 
is reasonable to assume that the cylinder does not stir the tank 
appreciably for the following reasons. Firstly, its dimensions are small 
compared with those of the tank itself. Secondly, the cylinder does not 
rotate; disregarding preferential decay of vorticity of one sense of 
rotation there is therefore no net addition of vorticity to the water in 
the tank from the motion of the cylinder. 

Radial force records show fluctuations of irregular magnitudes at a 
frequency corresponding to a Strouhal number of about 0.2.  Drag and 
added mass coefficients are presented in Fig. 3 as functions of Re and Kc. 
Each point is derived from the mean radial and tangential force 
components recorded over a period of about 40 seconds.  In each case 
three or four revolutions were completed before the recording was begun. 
Fig. 3 clearly shows that with increasing Re, there is a reduction in Cd 
and an increase in Ca, depending also on Kc. Although it is clear that 
the reduction in Cd follows the expected behaviour close to transitional 
Re, it is not easy to account for the equally dramatic change in Ca. In 
contrast to uniform or planar oscillatory flow around a cylinder, in 
the present case the orbital motion must result in asymmetry of the time- 
averaged characteristics of the wake. Although the rates at which 
vorticity is shed in the two shear layers are equal, the outer shear 
layer must be weaker since its separation point is moving away through 
the fluid more rapidly than that of the inner shear layer. This causes 
the vortex shedding to be an asymmetrical process, with unequal 
proportions of the shed vorticity finding its way into the major 
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vortices of alternate senses of rotation.  Possibly modification of this 
mechanism at transitional Reynolds numbers causes the observed changes in 
Ca- 

However, despite the obvious differences in flow conditions, it is 
interesting to compare the present results with those obtained by 
Sarpkaya (3) for planar oscillatory flow around a cylinder.  Lines fitted 
to the data have been re-plotted with Sarpkaya's results in Figs. 4 and 
5, where it is shown that there exists at least some qualitative agree- 
ment between the two sets of data. Agreement between inertia coefficients 
would suggest that the added mass of the cylinders were independent of 
the relative orientations of the velocity and acceleration vectors.  As 
mentioned previously, this would be the case in an ideal fluid, but in a 
real fluid it is reasonable to expect that the effects of viscosity and 
the history of the flow would make contributions to the added mass. 
Qualitative agreement between the two sets of data would also suggest 
that a conceptual explanation of the observed changes at transitional 
Reynolds numbers must be sought in terms of the features common to both 
cases. 

CONCLUSIONS 

Circular orbital flow around a cylinder has been modelled experimentally 
by moving a cylinder around a circular path in otherwise still water. 
The nature of the resulting flow warrants further investigation since it 
displays many of the essential features present in wave-induced flow 
around cylinders, and yet is specified very simply. 

With increasing Reynolds number over the range 0.4 x 105 to 2.4 x 105 the 
drag coefficient was found to fall from about 0.9 to 0.4, depending also 
on Keulegan Carpenter number.  Simultaneously the added mass coefficient 
increased, becoming positive only for higher Reynolds numbers.  In both 
respects the present results are in qualitative agreement with those of 
Sarpkaya (3) for planar oscillatory flow. 
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