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DYNAMIC BEHAVIOR OF VERTICAL CYLINDER DUE TO WAVE FORCE 

Toru Sawaragi* and Takayuki Nakamura** 

ABSTRACT 

This paper describes the dynamic behavior of a fixed cylindrical pile 
due to both the in-line or longitudinal force and lift or transverse 
force in regular waves. Resonant response of the pile due to the lift 
force in the direction normal to the wave propagation direction is dis- 
covered at the period ratios of Tw/Tn=2,3,4,5 and 6 (Tw : the wave period, 
Tn : the natural period of the pile). Furthermore, the resonant responses 
in the wave propagation direction due to the in-line force also appear at 
the same period ratios, in addition to the well known resonance point of 
Tw/Tn=l. Moreover, dynamic displacements of the pile in the direction 
normal to the wave propagation direction are longer than those in the 
wave propagation direction when the period ratio is longer than 1.6 and 
Keulegan-Carpenter number is larger than 6. 

Next, for the purpose of the ocean structural design,the methods of 
estimating the dynamic displacements in both directions and of estimating 
the dynamic displacements considering both are derived by using Morison's 
equation and lift force equation formulated bythe authors. The displace- 
ments calculated are compared exactly with the experimental results to 
investigate the validity of the proposed method. 

INTRODUCTION 

In recent studies of wave force on a cylindrical pile, it has been 
discovered that a lift force acts on the pile in the direction normal 
to the wave propagation direction, in addition to a in-line force acting 
on the pile, as described by Morison's equation, in the wave propagation 
direction. 

It was pointed out by Bidde",Sarpkaya2' and the authors3' that the lift 
force has a magnitude as large as the in-line force, and that the 
frequency of the lift force is higher than that of the wave and the 
in-line force. On the other hand, considering the fact that the 
natural frequency (fn) is generally higher than the wave frequency (fw), 
the lift force may be important when the resonance response of a fixed 
off-shore structure in waves is examined. In fact, Wiegel et al^ 
reported that 2-foot pile vibrates largely with the vibration period of 
2.5 seconds in the direction normal to the wave propagation direction 
due to the alternate breaking of the large vortices under the large wave 
condition with the wave period being about 13 seconds. And they also 
reported that the test pile was broken by the latteralvibration described 
above. 
With the above-described background, first, in this paper, the influ- 

ence of lift force on the dynamic response of a cylindrical pile of 
cantilever type was investigated by experiments, and the effects of a 
period ratio (Tw/Tn) °r a frequency ratio (fw/fn) and Keulegan-Carpenter 
number for the dynamic response are discussed. (Tw: the wave period and 
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equal to l/fw, Tn: the natural period of the pile and equal to l/fn). 
Secondly, In order to estimate the dynamic response in the in-line 

and normal direction, equations on dynamic displacements in two directions 
are derived by using the Morison's equation on the in-line force and the 
lift force equation formulated by the authors.  Furthermore, the 
combined dynamic displacement is calculated, and these calculated results 
are compared with the experimental results. 

EXPERIMENT 

The wave tank used in this experiment was a 0.7m wide, 0.95m deep and 
30m long wave channel at the Hydraulics Laboratory of Civil Engineering, 
Osaka University. A flap type wave generator was located at one end of 
the wave tank and a pebble beach was installed at the other end of the 
wave tank to absorb the wave energy. 

Model cylinders used in this experiment were two kinds of cantilever 
type structure with a concentrated mass at its top as shown schematically 
in Fig. 1(A) and (B).  Each model pile consisted of three parts, i.e., 
a concentrated mass, a circular cylinder and a spring bar.  The mass was 
made of steel and had the same diameter as that of the cylinder.  The 
spring bar was also made of steel and had a circular cross section with 
diameter of 5=5mm for the model pile of Fig. 1(A) and 5.9mm for that of 
Fig. 1(B).  The model pile of Fig. l(A)was fixed on the shelf in the 
square box made of steel with the same height as that of the horizontal 
flat bed.  In this case, a 2.5cm cylinder made of arcylicresin was used 
for a circular cylinder and the water depth was kept constant at 35cm 
above the horizontal bed.  On the other hand, the model pile of Fig. 1(B) 
was fixed on the channel-shaped steel having a height of 5cm that was 
rigidly connected to the bottom of the wave tank.  In this case, a 3cm 
cylinder was used and the depth of the water was kept constant at 65cm 
above the bottom of the wave tank.  The,model pile of Fig. 1(A) was used 
only for the purpose of measuring the dynamic response in the comparatively 
small ranges of Tw/Tn and the one of Fig. 1(B) was used for that of 
Tw/Tn being large. 

In this experiment, five kinds of concentrated mass were mounted on 
these model piles, considering the 
efficiency of the wave generator and 
values of period ratio(Tw/Tn).  The 
values of these masses are tabulated in 
Table 1(A) and (B) for the model pile 
of Fig. 1(A) and (B) respectively.  In 
this table, the natural period Tn and 
the natural frequency fn of the pile 
measured from the experiment of free 
vibration in water, and the logarithmic 
decrement 5 measured from the experiment 
of free vibration in air are also 
tabulated for each mass. 

In order to clarify the effects of 
Keulegan-Carpenter number and the period 

Fig„ 1 Structural model of      or frequency ratio on the dynamic 
experimental cylinders   response of the model pile, the region 
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EXP. 

CYL. 

mass 

(g) 

T 

(sec) (Hz) 

6 

(A) 
0.276 
0.599 
0.914 

0.504 
0.740 
0.930 

1.984 
1.351 
1.075 

0.040 
0.043 
0.045 

(B) 
0 
0.142 

0.298 
0.386 

3.356 
2.591 

0.993 
0.053 

of the model ratio (Tw/Tn) wave 
fixed between0.8 and 7.5, and 
the range of rmsK-C number (ritis 
K-C), which is the root mean 
square value of Keulegan- 
Carpenter number at each verti- 
cal elevation of the cylinder, 
was from 2 to 20. The range of 
rms Reynolds number ( rmsRe ), 
which is the root mean square 
value of Reynolds number at each 
vertical elevation of the cylin-  Table 1 Dynamic characteristic 
der, was from about 2000 to 8000.       of tne model pile 
The wave condition used in this study was as follows, the wave height 
was fixed between 2cm and 16cm, and that of the wave period was 0.6sec 
to 2.3sec. 

In this experment, a 16-mm cine-camera was located right above the 
pile to measure the dynamic displacement at the top of it. Also the strain 
gages were mounted near the fixed end of the cantilever to measure the 
dynamic overturning moment in both directions. The wave gage used was a 
parallel-wire resistance type and was installes at the side of the model 
pile. Furthermore, in order to synchronize the 16mm-movie record with 
records of water surface elevation and dynamic moment, pulse signals of 
10 Hz were utilized. The movie records were analyzed with an electronic 
gragh-pen system, and then locus of the top of the model pile was re- 
produced with a graphic display system. 

DYNAMIC BEHAVIOR OF THE MODEL PILE 

1) DYNAMIC LOCUS OF THE MODEL PILE 

Typical loci of the top of the model pile during one wave cycle of 
the incident wave ( except (B-l)) are shown schematically in Fig.2 with 
the frequency ratio as a parameter. In Fig. 2, the X-axis is the direction 
of the wave propagation direction and Y-axis is the direction normal to 
the wave propagation direction. From this figure, the following results 
are appeared. (A) : In the range of frequency ratio (fw/fn) larger than 
0.9 ( Fig. 2 (A-l) ~ (A-3)), the displacement of the top of the pile in 
the X direction is predominant in comparison with that in the Y direction 
and the locus shows a nealy straight line in the X direction. Because of 
the well-known resonance at fw/fn

=l due to the in-line force, the pile 
vibrates largely in the X direction. In this case, the frequencies of 
the displacements in both directions possess the wave frequency as shown 
in Fig. 3 (A)„ Here, Fig. 3 shows the time histories of the displacements 
in both directions and corresponds to the locus shown in Fig. 2, respec- 
tively. (B) : In the range of frequency ratio ranging from 0.6 to 0.9, 
the locus looks line a letter of infinity sign (oo), as shown in Fig. 2 
(B-l) and (B-2)0 In this case, the Y-displacement has the second harmonic 
frequency, as shown in Fig. 3 (B), but the X-displacement has only the 
wave frequency.  (C) ; When the frequency ratio ranges from 0.4 to 0.6, 
the locus is nearly a double ellipse as shown in Fig. 2 (C-l) and (C-2). 
In this case , the Y-displacement is much greater than the X displacement, 
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Fig.2 Loci of dynamic displacements at the top 
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Fig. 3 Time history of the X and Y displacement 



BEHAVIOR OF CYLINDER 2383 

because the pile is resonanted by the lift force component with the 
frequency two times as large as the wave frequency. Consequently, the 
Y displacement vibrates largely with the second harmonic frequency o£ 
the wave as shown in Fig. 3 (C). On the other hand, the X displacement 
has both the wave frequency and the second harmonic frequency of the 
wave. Since the characteristics of the lift force frequency will be 
given later, readers may want to refer to Fig. 6. (D) : With a frequency 
ratio ranging from 0.3 to 0.4 the locus shows a long ellipse and a triple 
ellipse as shown in Fig.2 (D-l), (D-2) and (D-3). In this case, the pile 
is resonanted at fw/fn=l/3 by the lift force component which corresponds 
to the third harmonic frequency of the wave. Therefore, the Y displace- 
ment vibrates largely with the frequency as shown in Fig. 3 (D). From 
this figure, it can be seen that the X displacement has also the third 
harmonic frequency of the wave in addition to the wave frequency, and 
like the case of (C), the Y displacement is larger than the X displace- 
ment. (E) : When the frequency ratio is nearly equal to 0.25, the locus 
is similar to the figure of a tetra ellipse and the Y-displacement 
has also the more significant magnitude compared with the X displace- 
ment (see Fig. 3(E)). Furthermore, the smaller the value of the frequency 
ratio, as shown in Fig. 2 (F-l), (F-2),(F-3), (G-l) and (G-2), the more 
complicated the dynamic locus becomes owing to the appearance of higher 
harmonic frequency components in both displacements, and in the range of 
frequency ratio nearly equal to 1/5 and 1/6, it can be seen that the 
Y displacement cannot be neglected in comparison with the X displacement. 
Here, the effect of rmsK-C on the locus is not clearly distinguishable, 
but the following features may be pointed out: when the frequency ratio 
nearly equals 1, the Y displacement appears only at comparatively small 
values of rmsK-C, and in the range of frequency ratio smaller than 0.9, 
the Y displacement decreases with decreasing values of rmsK-C and the 
Y displacement is equal to or smaller than the X displacement when the 
value of rmsK-C is comparatively small. 

The reason for the higher harmonic frequency of the wave of the X 
displacement will be presented later. 

2) RESONANT CHARACTERISTICS OF THE PILE 

In order to examine the resonant characteristics of the pile due to 
the in-line and lift forces, the resonant curves in both directions were 
obtained.  Fig. 4 and Fig. 5 show the resonant curves in the X and Y. 
directions respectively with rmsK-C as a parameter.  In these figures, 
the abscissa is the period ratio (l/(fw/fn)) and the ordinate is the 
so-called amplification ratio, i.e. the ratio of the dynamic displacement 
to the static displacement due to the wave forces.  Here, the static 
displacements, Xs and Ys, are calculated by means of the structural 
model shown in Fig. 9, and by using the Morison's equation on the in-line 
force and the lift force equation (Eq. 7) derived by the authors on the 
lift force.  The linear wave theory is also used.  The wave force is 
integrated from the bottom of the circular cylinder to the elevating 
water surface as a sinusoidal wave.  In these figures, X-^and Yp^are 
meausred one-tenth maximum dynamic displacements of X and Y respectively, 
since the Y displacement was irregular in regular waves as shown in 
Fig. 3. 

From Fig. 4, it is clear that the resonant response due to a in-line 
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SYM. rmsK-C 
o 0-3 
o 3-6 
© 6-10 
• 10- 15 
o 15  

Tw/Tn 

Fig.4 amplification ratio in X-direction 

0 2 3.1 

M if *^ ASV 
0 

Tw/Tn 

force appears at the 
period ratios Tw/Tn 
=1,2,3,4,5 and 6, 
but there is no 
response at the 
period ratio Tw/Tn 
=7.  Among these 
resonances, the well- 
known resonance at 
Tw/Tn=l is the most 
predominant, but the 
resonance, at the 
period ratio Tw/Tn 
=2 and 3 are also 
comparatively large. 

The reason for 
the appearance 
of the response at 
Tw/Tn=2 and 3 may be 
due to the fact that 
the in-line force 
(Fx) and the over- 
turning moment (Mx) 
caused by the in- 
line force have 
higher frequency 
components than the 
wave based on the 
non-linearity of the 
drag force and the 
finite amplitude 
nature of the water 
wave.  A good example 
illustrating this 
fact is presented in 
Table 2.  This table 
shows the result of 
a harmonic analysis 
of Fx and Mx acting 
on a vertical circu- Fig.5 Amplification ratio in Y-direction 

lar cylinder in waves during one wave cycle.  Here Fx and Mx are calcul- 
ated by using the Morison's equation and the linear wave theory.  Table 
2 (I) is the result of the consideration of the effect of the finite 
amplitude nature, the wave force still being considered as a sinusoidal 
wave, i.e. the integral region of the wave force is from the bottom of 
the circular cylinder to the elevating water surface. On the other hand 
Table 2 (II) indicates the result of neglecting the above^described 
effect.  It is seen that Fx and Mx have higher harmonics than the wave 
frequency as shown in Table 2 (I) and (II).  Moreover, it is clear that 
these components with the second harmonic frequency of the wave differ 
significantly between (I) and (II), but this significant difference 
between (I) and (II) cannot be seen when n=3.  The non-linearity of the 
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nfw (I) (ID 
n=l 18.46x10-3 18.38xl0"3 

(Kg) (Kg) 
2 1.63 0.10 

FX 3 2.13 2.08 
4 0.06 0.10 
5 0.31 0.31 
6 0.08 0.10 

n=l 353.63xl0"3 348.25xl0"3 

(Kg cm) (Kg cm) 
2 56.03 1.89 

MX 3 43.96 40.98 
4 3.76 1.89 
5 5.84 6.15 
6 1.29 1.89 

T=l .5sec H=8cm    rmsK-C= 11.53    D=2.5cm 

Table 2 Harmonic anlysis of Fx and M- 

most predominant in case of rmsK-C being larger than 3 

drag force and the 
effect of the finite 
amplitude nature of the 
water wave on the 
dynamics of the pile 
will be described later 
on in detail. 

From Fig. 5, it is 
evident that the reson- 
ant response due to the 
lift force appears at 
the same period ratios 
as those in the X dir- 
ection.  In this case, 
however, the resonant 
condition depends on 
rmsK-C, i.e. the reso- 
nance at Tw/Tn=l is 
predominant for values 
of rmsK-C smaller than 
3, and the resonances 
at Tw/Tn=2 and 3 are the 

It may be 
considered that these facts have a close relation with the frequency 
characteristics of a lift force and the magnitude as shown in Fig. 6 and 
7o  Fig. 6 shows the variation of the predominant non-dimensional lift 
energy (SjJ(nfw)M/a2i,   n=l-4) for each harmonic component of the wave 
frequency with rmsK-C.  This figure was obtained by using the experimen- 
tal result of the wave force on a rigidly supported vertical circular 
cylinder and was presented in Ref.(3), too.  Here, SL(nfw)Af is the lift 
energy for the n-th harmonic of the wave frequency, and a2,   is the var- 
iance of the lift force.  From this figure, it can be seen that the 
predominant lift frequency equals the wave frequency in the range where 
rmsK-C is smaller than 3 approximately, corresponds to the second harmonic 
frequency of the wave in the rmsK-C range of 6 to 12, and equals the 
third harmonic frequency of the wave in the range of rmsK-C larger than 
13, and the rest is the transition region from fw to 2fw and from 2fw to 
3fw.  Fig. 7 shows the ratio of the one-tenth maximum lift force (FTJ/IO) 

to the mean value of the maximum in-line forces (FTm) with rmsK-C as a 
parameter, and this figure was obtained by using the same experimental 
results described above.  Furthermore, the experimental results of 
Sarpkaya5', using the U-shaped water-tunnel, are given by the dotted line 
in Fig. 7.  From this figure, the magnitude of the lift force increases 
rapidly as compared with the in-line force as rmsK-C increases(from 5 to 
10) and it reaches the maximum value of 1.1 times the in-line force at 
rmsK-C=10. 

Therefore, from the characteristics of the lift force described above, 
it can be considered that the resonance at Tw/Tn=l in the Y-direction 
appears only when rmsK-C is lower than 3, due to  the predominant lift 
force component having the waver frequency(see Fig. 6)„  However, this 
resonance can be neglected as shown later, because the magnitude of the 
lift force is comparatively smaller than that of the in-line force when 
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rmsK-C is smaller than 3 as shown in Fig. 7, and the dynamic displacement 
in the Y-direction is very small compared with that in the X-direction 
at this period ratio.  Furthermore, at Tw/Tn=2, the resonant response 
appears only when rmsK-C is larger than 3, due to the predominant second 
harmonic frequency shown in Fig. 6.  From the investigation described 
above, it can be concluded that the resonant characteristics of the pile 
due to both the in-line and the lift force have a close relation to the 
charcteristlcs of the wave forces, including the frequency and magnitude 
of the wave force. 

5 10 

Fig. 6 Predominant lift energy versus rmsK-C 

15       20 
rmsK-C 
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3) MAGNITUDE OF THE 
Y-BISPLACEMENT 

From the practical 
point of view, it may 
be important to know 
the magnitude of the 
Y-displacement in rela- 
tion to the X-displace- 
ment.  Fig. 8 shows the 
variation of the ratio 
of the Y-displacement 
to the X-displacement 
in terms of Tw/Tn. 
Here, the one-tenth 
maximum displacements 
in both directions are 
used.  From this figure, 
it is clear that the 

X-displacement is predominant when the period ratio is smaller than 1.5 
approximately.  On the other hand, the Y-displacement is predominant in 
the range where the period ratio is larger than 1.5 and especially the 
predominance of the Y-displacement is conspicuous near the resonance 
points described above except at Tw/Tn=l, when rmsK-C is larger than 6. 
This reason can be given by the characteristics of the lift force as 
shown in Fig. 6 and Fig. 7. 

Therefore, from the above-mentioned experimental results, it can be 
pointed out that rather than a in-line force, a lift force is the more 
significant force when the natural period of the structure is lower than 
the wave period and rmsK-C is higher than 6. 

)        5        10       15 rmsK-c20 

7 Ratio of maximum one-tenth lift force 
to in-line force versus rmsK-C 

ESTIMATION OF DYNAMIC RESPONSE 
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ment versus period ratio 
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1) FORMULATION OF THE 
LIFT FORCE EQUATION 

As mentioned above, 
the computation of a 
lift force is necessary 
in order to estimate 
the dynamic response of 
a structure due to it. 
However, it is difficult 
to formulate the lift 
force equation which 
can express the time 
variation of the lift 
force, because the lift 
force is generated by 
the alternate breaking 
of the eddies and it is 
irregular even in regu- 
lar waves.  Therefore, 
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the formulation of the lift force 
is performed empirically based on 
the experimental result of wave 
forces on a rigidly supported 
vertical circular cylinder. 

It may be assumed that the for- 
mula is expressed by the super- 
position of each predominant fre- 
quency component of the lift force 
as shown in Fig. 6, given by Eq.(l). 

<L. 

&- 

Phase angle of the n-th 
harmonic lift force 

fL(t)=0Ltf^-^ 
aT 

X cos(2nTTfwt-en)      (1) 
Here, fL(t):the lift force per unit 

J length; SL(nfw):the variance of 
the lift force; and £n:the phase 

-i angle between the n-th harmonic 
lift force component and the inci- 
dent wave. The spectral energy of 
the n-th harmonic lift force may be 
given by the experimental result of 
Fig. 6. In this study, the non- 
dimensional n-th harmonic lift force 
energy is given by the empirical 
formula which is specified at the 
right side of Fig. 6, and it is 
shown by the solid line in this 
figure. Further, the phase angle 
was obtained by using the result 
of harmonic analysis of both the 
measured lift force and wave records. 
The change of phase angle with rms 
K-C is shown in Fig.9, in which 

the predminant region of the n-th harmonic lift force is also shown by 
an arrow mark. The scattering of the experimental results is relatively 
large, but if attention is focussed on each predominant region en may be 
considered as a constant value, i.e. e2/2 =25°, E3/3=-15° and Ei,/4=0°. 
However, as £j is scattered from 60° to 120° in the predominant region 
of fw frequency, it seems to be quite all right to consider that the 
average value of ei is 90°, because the magnitude of the lift force is 
quite small in comparison with the in-line force in the region where 
rmsK-C is smaller than 5, as shown in Fig. 7. 

On the other hand, Chakrabalti et als) have presented the lift force 

as shown in Eq„ 2. 

fL(t)=4pDumJcLnsin(2niTfwt-an) (2) 

: the Here, U  : the maximum horizontal water particle velocity; C^n 
lift coefficient for the n-th harmonic lift force; D : the diamter of a 
circular cylinder; and p : the dencity of water. 

Since the lift force in regular waves is irregular, fx,(t) is considered 
as a random function of time. With the exception of C^, the terms on 
the right hand side of Eq. (2) are the regular functions or constants. 
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Fig.  10 Ratio of significant lift force 
to mean lift force versus rmsK-C 

Therefore, Cin  must be 
a random variable. On the 
other hand, the distribu- 
tion of the peak lift 
force is simlor to the 
Rayleigh distribution from 
the authors'experiments. 
Fig,10 shows an example 
of the relation between 
the ratio of the signifi- 
cant value of the lift 
force and its mean value 
and rmsK-C. The theoreti- 
cal value of this ratio 
based on the Rayleigh 
distribution is 1.637, 
and it is shown by a 

strait line in Fig.10. As seen in this figure, the experimental values 
are scattered around the theoretical value independent of rmsK-C. 

Moreover, the lift force spectra in the predominant region of each 
harmonic lift force component can be considered to be a narrow-band 
spectra 3). 6) From the above investigations, the lift force can be assumed 
to be a random variable of the narrow-band Gaussian random process. 

Thus, the variance of the lift force can be given by Eq. (3) , 

o£ =E[f£(t)] ={±-pDUm}2 4E[C£] (3) 

Here, QL is the lift coefficient of the peak lift force and is a 
random variable of Rayleigh distribution. Therefor, using the following 
relation, 

( CL )rms=vi[c£] = CL,/io/1.8 

aL is given by Eq. (4) from Eq. (3). 

1 

The validity of Eq.(4) is examined by investigating Eq.(5) deduced from 
Eq.(4). 

-^DU»<o$-0) (4) 

aL /(-ipDUm ) = CLI/io / (1.8^2) (5) 

Here, we express the value of the left-hand side of Eq.(5) as 5, and 
that of the right-hand side of this equation as %,'.   The value of E,  can 
be calculated by the standard deviation of the lift force obtained from 
the measured lift force records. On the other hand, the value of ^ can 
also be calculated by using the one-tenth maximum lift coefficient 
obtained seml-empirically by the authors3 and is given by Eq.(6) : 

0.245[rmsK-C] + 0.245 
, 0<rmsK-C<9 

CLI/IO = i _0.l55[rmsK-C] + 3.85 
(6) 

, 9<rmsK-C<18 



2390 COASTAL ENGINEERING—1978 

If Eq.(4) is valid, ? and 5' have to agree with each other. This 
agreement of £ and 5> is shown in Fig. 11, from which it can be seen 
that £ and 5' agree well regardless of rmsK-C. Therefore, the lift force 
equation can be expressed as Eq.(7) from Eq.(2) and Eq.(4), 

fL(t) 
1  rT  /    n nn*  ?  SL(nfw)Af J-gCLi/io p DUm | •  

oi 
cos(2nTTfw-en) (7) 

15 rmsK-C 20 

2) EQUATION OF MOTION 
OF THE PILE 

In order to estimate the 
dynamic response of a single 
pile structure (see Fig. 1), 
the pile was idealized by a 
two-degree of freedom eqiva- 
lent spring-mass system with 
a viscous damper as shown in 
Fig. 12. The idealization is 
based on the assumption that 
the rigidity of the cylinder 
section on Fig. 1 is much larger 
than that of the spring bar 
section, allowing to assume the 
circular cylinder and the con- 
centrated mass to be a rigid 
body. In this case, the dis- 

Fig.ll Comparison g and C versus 
rmsK-C 

placements of the top of pile, X and Y (X and Y are for the X and Y 
directions respectively), are given by the horizontal displacements at 
the bottom of the circular cylinder, x and y, and the rotation angles 
of the circular cylinder, 6X and 8y respectively. Furtheremore, assuming 
sin8~6, X and Y are given by Eq. (8). 

X = x + L 

Y = y + L 
(8) 

Here, L the distance from the bottom of the cylinder to the top of 
the pile. 

In this study, the mass of the spring bar and the 
wave force on this bar are assumed to be negleglble, 
because these values are very small. On these assump- 
tions, the equation of motion of the pile in the X 
direction due to the in-line force may be given by 
Eq. (9) and Eq. (10). On the other hand, that in the Y 
direction may be given by Eq„ (11) and Eq. (12). In 
these equations, it was assumed that the mutual inf- 
luence between the vibrations of X and Y can be 
neglected. 

(m+mv)TT2 +(m+mv)G- 'dt' dt-2 
+xTt+o AC_dt 

nmiiiiiiiu 6EI,„ 
-?T(2X- <) 
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- | cDPDf V§£. - ,.& )|u- %- - Z^UZ +£Vf&. 
(9) 

,ZL 

(m + mv)G^f + [IG +IGv + (m + ^dl^ + clegs + ^(z^ - 3x) 

r^+l) 1    ,   dx     d0^< i    dx   d6v] 

,   TO2 3u , , 
+ CMP 4 5t *dz 

+[mgGA . Pg^
2(h+n-2L)

2 ]9x (10) 

(m + mv)g + On + n,v)G^ + C-§|- + GAC^i dt 
h + i) 

+ ^L(2y- 0y) = /  fL(z)dz 
5- \ 

(11) 

(m + mv)G^| +{IG + IGv + (m + mv)G
2}^ + GAC-g|- 

+ G|C% + MD + ^p(2£0y - 3y) 

h+f,z*fL(z)dz + {mgGA - 
P^2(V " - ZL>}6y 

ZL 
8 (12) 

Here, G : distance from the lower end of the cylinder to the center 
of gravity including the added mass of the cylinder ; GA : distance from 
the lower end of the cylinder to the center of gravity minus the added 
mass of the cylinder ; El : flexible rigidity of the spring bar ; C : 
structural damping coefficient ; I  :  length of the spring bar ; h : still 
water depth ; n • water surface elevation ; IQ '•  moment of inertia about 
the center of gravity due to the total mass minus the added mass of the 
cylinder ; IQV 

: moment of inertia about the center off gravity due to 
the added mass of cylinder ; CD '•   drag coefficient ; CM : mass 
coefficient ; u : horizontal water particle velocity ; m : total effective 
mass minus the added mass; mv : added mass of the cylinder given by Eq.(13). 
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mv =  CvirpD   (h + n -  zL)M (13) 

In Eq.(13), Cv is the coefficient of added mass (Cv=C>i -1); z^ : distance 
from the bottom of the water to the lower end of the cylinder; z*: z-z^; 
Fj) and Mj) are the fluid damping force and moment in the Y direction res- 
pectivly, and these are given by Eq. (14) and (15). 

;ht^cDpD(^+z^)i^ + z^idz      (u) 

MD -£* i-Cnpdz*(-£ + .*•&.) |& + zA|d2        (15) 
In this analysis, it is assumed that the lift force can be calculated 

by Eq.(7), and the values of drag and mass coefficients, Cp and Cj^, assumes 
the following values, i.e. CD=1.5 and Cj^=2.2, based on the experimental 
results of the authors3' . 

Since the equations of motion described above are nonlinear differential 
equations, no exact solution can be obtained.  Hence, only approximate 
solutions can be obtained by using the numerical techniques.  In this 
calculation, Newmark B-method8' is used to solve the equation of motion. 
The value of B is selected as 1/6, which is equivalent to a linear acce- 
leration method.  The time interval, At, is taken as 0.005 sec, because 
the natural frequency of the second mode of the vibration model ranged 
from 31 to 35.5Hz for the five kinds of masses shown in Table 1.  Taking 
a stationary response condition into account, the calculation time was 
as 15 seconds for each case. 

3) CALCULATION RESULT 

At first, the dynamic displacement in the X direction was computed to 
investigate the estimation described above (refer to Table 2).  Fig. 13 
shows a few examples of computation results in the X direction due to the 
in-line force for values of period ratio about 2 or 3.  In this figure, 
the solid line indicates the calculated result by the method (I), which 
considers the effect of the finite amplitude nature of the wave, the 
latter being considered as a sinusoidal wave, on the in-line force, and 
the dotted line indicates the calculated result by the method (II), which 
neglects the above-mentioned effect on the in-line force.  In other words 
the integral region of the wave force on the pile is from the lower end 
of the cylinder to the still water level; n in Eqs.(9) and (10) is 
assumed to be 0.  The measured results are also shown in this figure by 
small circles. 

From this figure, it can be seen that the calculated results by means 
of method (I) agree well with the measured results.  On the other hand, 
there is much discrepancy in the frequency and magnitude of the displace- 
ment between the calculated results by method (II) and the measured 
results at the period ratio Tw/Tn=2, as shown in Fig. 13 (A) and (B). 
However, there is little difference between the results of methods (I) and 
(II) at Tw/Tn=3, as shown in Fig. 13 (C).  From this fact, it can be 
considered that the resonance in the X direction at Tw/Tn=2 is caused by 
the finite amplitude nature of waves and that at Tw/Tn=3 is caused by the 
non-linearity of the drag force. Moreover, the dynamic displacement in 
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(A) fw/fn=0.49 rmsK-C=9.4 

Tw=1.06sec H=10.1cm 
X(cm)     (Tw/Tn=2.0) 

(B) fw/fn=0.49 rmsK-C=ll.l 
Tw=1.50sec H=7.7cm 

X(cm) 
(Tw/Tn=2.0) 

(C) fw/fn=0.32 rmsK~C=11.6 

Tw=1.61sec  H=7.4cm 

X(cm)    (Tw/Tn=3.1) 
It 
0 

-1 - 
w 

t(sec) 

Fig. 13 Calculation results of 
cylinder displacement 
in the X direction 

(A) fw/fn=0.48 rmsK-C=7.2 

Tw=l.lsec H=7.6cm 

v,  >  (Tw/Tn=2.1) Y(cm) 

(B) fw/fn=0.33 rmsK-C=15.0 

Tw=1.60sec H=9.6cm 
Y(cm)        (Tw/Tn=3.o) 

(C) fw/fn=0.25 rmsK-C=15.6 

Tw=1.55sec H=13.4cm 

fLCm)       (Tw/Tn=4.0) 

t(sec) 

Fig. 14 Calculation results of 
cylinder displacement 
in the Y direction 
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the X direction for other ranges of the period ratio were computed by 
method (I).  As a result, it was confirmed that the dynamic response in 
the X direction can be calculated by Eqs. (9) and (10) based on method 
(I) in the range where the period ratio is smaller than 6.5. 

Next, the dynamic displacements in the Y direction due to the lift 
force were also computed by Eqs. (11) and (12) based on method (I) 
described above.  Some examples at the resonance points in the Y direction 
are shown in Fig. 14.  The solid line shows the calculated result and 
small circles denote the measured result.  In this case, as the Y 
displacement is not regular, the displacement nearly equal to the maximum 
value is plotted for both the experimental and calculated results. 

This figure indicates that the calculated results agree well with the 
measured results for each resonance point including the properties of the 
frequency and magnitude of the Y displacements.  Therefore, it is concluded 
that the dynamic response in the Y direction due to the lift force can be 
calculated by Eqs.(7), (11) and (12). 

Finally, the combined dynamic displacements of the pile were computed 
by composing the calculated displacements in two directions, because the 
maximum dynamic displacement considering both displacements is desired 
for an engineering design.  Furthermore, comparison between the computed 
and measured combined dynamic responses gives the whole judgement for the 
validity of the estimation method of the dynamic responses in both direc- 
tions.  Fig.15 shows this comparison, and the right-hand side of this 
figure is the calculated result while the left-hand side indicates the 
measured result.  As in Fig. 2, the X-axis is the direction of the wave 
propagation direction and the Y-axis is the direction normal to the wave 
propagation direction.  Because of the irregularity of the Y displacement, 
the combined dynamic displacements during one wave cycle in which the 
maximum combined displacement appears are plotted in Fig. 15.  It is 
apparent that the period raito gradually increases from (A) of Tw/Tn»l 
(fw/fn«l) to (G) of Tw/Tn*5 (fw/fn*l/5).  A little difference between the 
measured and calculated locus is observed in the case of (G), in Fig. 15. 
However, taking into consideration the irregularity of the Y displacement, 
the calculated results can safely be said to have good agreements with 
the experimental results.  It is concluded that the combined dynamic 
displacement can be calculated by Eqs.(7), (9), (10), (11) and (12). 

CONCLUSION 

The dynamic behavior of a fixed circular pile due to the in-line and 
the lift forces is investigated from the theoretical and experimental 
stand point of view. It enabled us to arrive at the following conclusions. 

First, the resonant responses of a single circular pile due to the 
lift force in the direction normal to the wave propagation direction 
are found to take place at the period ratios of Tw/Tn=2,3,4,5 and 6,when 
rmsK-C is larger than 3„ Furthermore, the resonant responses in the wave 
propagation direction due to the in-line force also appear at the same.period 
ratios as the former case, in addition to the well known resonance at 
Tw/Tn=l- Moreover, dynamic displacements of the cylinder due to the lift 
force in the direction normal to the wave propagation direction are larger 
than those in the wave propagation direction due to the in-line force at 
the above-mentioned resonance points except at Tw/Tn=l, when rmsK-C is 
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Fig.  15    Calculation results of dynamic loci 
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larger than 6. Therefore, the lift force is more significant than the 
in-line force when the natural period of the structure is smaller than 
the wave period and rmsK-C is comparatively large. 

Secondly, the dynamic displacements in both directions and the 
combined dynamic displacement can be calculated by applying the Morison's 
formula and the lift force equation to the equation of motion in each 
direction. 
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