
CHAPTER 87 

ONSHORE-OFFSHORE   SEDIMENT  MOVEMENT  ON  A  BEACH 

,1 

ABSTRACT 

A theoretical model is developed for the movement of loose sediments 
in oscillatory flow with or without a net current.  In the present for- 
mulation the model is two-dimensional, but may readily be extended to 
three dimensions. 

It is assumed that all movement of sediments occurs in suspension, 
and exact analytical solutions are given for the time variation of the 
concentration profile, the instantaneous sediment flux and the net flux 
of sediment over a wave period.  The model requires as empirical input 
a diffusion coefficient e and pick-up function p(t), for which experi- 
mental data are presented.  Two examples are discussed in detail, illus- 
trating important aspects of the onshore-offshore sediment motion. 

1. INTRODUCTION 

The motion of loose sediments perpendicular to the coastline is one 
of many unsolved problems in sediment transport due to waves and cur- 
rents. Yet it is generally agreed that this particular phenomenon plays 
a vital part in the sorting of sediments on a coast and hence has impor- 
tant bearing on the question of which grain sizes are present in the 
surf zone, where the bulk of the longshore transport takes place. 

In nature the lateral sediment transport depends strongly on three- 
dimensional effects which are responsible for the often significant net 
water motions that occur in particular in the surf zone.  Here the net 
water flux is shorewards in areas where the bottom configuration cre- 
ates heavy breaking, and seawards (sometimes as rip-currents) in the of- 
ten deeper areas where the breaking is weak or absent, moving as a long- 
shore current between these regions. Also appreciable time variations 
occur over some minutes and may even dominate the spatial variations. 

Though obviously crucial for the net movement of sediments it is 
beyond the scope of the present paper to analyse this water motion fur- 
ther.  In the following we shall assume that the water motion is known. 
This is further justified by the observation that the processes involved 
in the local movement of sediments, which we are going to analyse, are 
almost exclusively governed by the local flow conditions.  The purpose 
of the present paper is to formulate a theory that as closely as pos- 
sible models the important part of the processes which can be observed 
to occur in sediment motion under waves. 
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2. PHYSICAL DESCRIPTION 

To do so it is important first to describe the nature of the phenom- 
enon. 

Bottom cojifi^uratj^on 

One of the basic aspects is the bottom configuration generated by 
the water motion.  It is well known that for a wide range of wave and 
sand parameters ripples are formed on the bed. The size, steepness and 
shapes of these have been measured by numerous authors (see e.g. Inman 
(1957) and Dingier (1974)), and lately Nielsen (1977) showed that the 
steepness of the ripples (measured ratio between height n from trough 
to crest over distance X between two successive crests) is almost con- 
stant (0.15 to 0.20) for a value of the Shields' parameter 91 less than 
about 0.4, where 6' is defined as 

6' = jaV fw/(s-l) gd) (1) 

with a the amplitude of water particle motion at the bottom, w = 2TT/T, 
T being the wave period.  fw is a friction factor, s and d are specific 
gravity and mean diameter, respectively, of the sand grains,  g is the 
acceleration of gravity. 

For 9' increasingly larger than 0.4 the steepnes of the ripples de- 
creases rapidly, and for 6' >1 the bed is virtually plane with rela- 
tively gentle undulations. 

These are general trends subject to considerable scattering in the 
individual cases, in particular when field conditions in irregular 
waves are considered. Nevertheless it shows that except for very high 
storm waves, the sand on natural beaches (most often having d » 
0.2 -0.3 mm) will yield 9'-values not larger than 1.  (A wave height 
H = 10 m, say, on a water depth h = 15 m yields 9' ~5), which again 
implies that most often the bed will be covered by ripples. 

Since it turns out that the ideas presented later in this paper can 
readily be adopted to a plane bottom, we first focus on the flow over 
a ripple bed. 

O s c_i_l 1 a t_or y__ £ \ojl_over__a r ipp_le _b e_d_ 

The ripples formed by the oscillatory particle motion under waves 
are entirely different from the bed forms known from steady flow (see 
e.g. Allen (1968)). Also the oscillatory flow itself and the mechan- 
isms by which the sediment is moved show little resemblance with uni- 
directional flow patterns. 

This is due to the strong pressure gradients associated with the os- 
cillatory flow which create strong lee eddies during the phase where 
the main flow is retarded, i.e. twice every wave period.  Successively 
at the turn of the flow these eddies are 'washed' out into the main 
flow, thus yielding dominant contribution to the general turbulence 
level, and carrying appreciable amounts of sediment out in suspension 
(Fig. 1).  Excellent photos showing details of the development of the 
eddy and a description of the process were presented by Bijker et al. 
(1976). Also Nakoto et al. (1977) describe the sequence. 

One of the important features is the large velocities in the lee 
eddy.  In fact the adverse velocity is of the same magnitude as the 
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a) 

erosion 

b) 

erosion 

c) d) 

erosion 

Fig. 1  Pick-up mechanism over a rippled bed.  a) Velocity increasing, 
no separation, no effective pick-up. b) Velocity decreasing, 
separation started, sand accumulation in vortex,  c) Water 
velocity vanishing, the vortex is fully developed,  d) Water 
velocity reverses, the vortex is lifted out. This is when 
the effective pick-up takes place. 

velocity in the main flow outside (Tunsdall and Inman (1975)), in con- 
trast to the back flow in lee eddies in a steady unidirectional flow, 
which is usually only a fraction of the velocity in the main flow. 

Another point is worth mentioning.  The total excursion of the main 
water flow is often less than twice the ripple length. 

Thus the flow pattern above the level of the ripple crests does not, 
as one might expect, attain the character of an oscillatory boundary 
layer in the known sense with the ripple height as a measure of the bed 
roughness.  In fact the flow structure is entirely dominated by the reg- 
ular eddies, their interaction and decay into turbulence. 

Finally direct visual observations and high speed movies of the mo- 
tion of the sand particles indicate that actual bed load transport as 
known from unidirectional flow hardly occurs.  In fact one gets the im- 
pression that once a sand grain has started to move it goes into suspen- 
sion (often via the eddy) before it settles again. This is also in dis- 
agreement with Longuet-Higgins (1972, p. 213) who (quoting Inman) claims 
that 'most of the weight of sediment is indeed in bed load, and not in 
suspended load.' 
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3. OUTLINE OF A THEORETICAL MODEL 

We assume on the basis of these observations that all  sediment is 
moved in suspension.  The sediment is brought into suspension by a pick- 
up mechanism (as described above), which is further discussed in § 6. 
In the model it is described by the amount of solid sediment p(t) being 
picked up per unit area of bottom per second, and the mean value of 
p(t) over one period will be determined experimentally. 

We further assume that the balance between the agitating processes 
tending to keep the sediment in suspension, and the settling of sedi- 
ment (described by settling velocity w) has the nature of a diffusion 
process (irrespective the above mentioned regular nature of the eddy 
motion) with a diffusion coefficient e, which is independent of time 
and horizontal coordinate x.  (In fact the latter corresponds to averr 
aging over a ripple length.) Thus the concentration c(z,t) of sus- 
pended sediment satisfies the diffusion equation 

3c    3c   3 f 3c)   . ,0> 
3t " w 37 " 37 e 3?= ° (2) 

z being the vertical coordinate. 

The assumption of a pick-up mechanism p(t) implies that the process 
of bringing the sand into suspension is independent of the settling of 
the sediments.  In the mathematical formulation this function acts as 
the source for the diffusion equation (2), thus representing the bound- 
ary condition at the bottom level zb 

- e •£ = p(t)      at  z = zb (3) 

One advantage of this formulation is that it is considered easier to 
suggest physically realistic descriptions for the pick-up function p(t) 
(which could e.g. be proportional to the bottom shear stress) than for 
e.g. the bottom concentration c^, often used as a boundary condition in 
suspension models. 

As the second boundary condition in z is used c(z) -> 0 for z •*• <*> 
(though the water depth is h), and the system is closed in time by a 
periodicity assumption 

c(z,t+T) = c(z,t) (4) 

When c(z,t) has been determined the instantaneous flux Q(t) of sedi- 
ment through a vertical section is readily determined from the horizon- 
tal water velocity u(z,t) by 

fh 

Q(t) =  u(z,t) c(z,t) dz (5) 
Jo 

and the net sediment flux then follows from 

= HT Q db (6) 
o 

At this point the model is more detailed than e.g. the approach used 
by Madsen and Grant (1976) who only consider the net motion of sediments. 
A closer inspection of the system shows that the clear separation of the 
pick-up and settling processes yields a memory effect in the model which 
implies that the maximum of sediment in motion occurs later than the 
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maximum of p, and also that the sediment motion does not vanish with p, 
which may itself show a phase difference relative to the fluid motion. 
This is a generalization of the idea of a phase lag between shear stress 
and sediment motion introduced by Kennedy (1963), and used in waves by 
Kennedy and Falcon (1965).  It will be shown that this effect is crucial 
for the understanding of the onshore-offshore transport. 

4. GENERAL SOLUTION 

In the general solution the pick-up function p(t) is considered in 
terms of its fourier series, which is assumed to have the form 

N 
p(t) = l  Pn cos n(ut-\Jin) 

i*.\       ~  [ v „  intut-ti-) l p(t) = Re { I  Pn e     ^n } 

•(7) 

The z coordinate is zero at the level of the ripple crests which is 
also chosen as the level for the boundary condition (3), i.e. zb = 0. 

The phase angle ipn in (7) accounts for the phase difference between 
p and the water motion which will be assumed to vary as e

inut. 

The equation is solved by separation of variables, and to facilitate 
the calculations the physical concentration is considered to be the real 
part of the complex function 

N 
c(z,t) = I  Cn e

inut c (z) (8) 
o 

where for simplicity we assume 

Cn(0) = 1 (9) 

Inserting (8) in the diffusion equation (2) leads to 

^K^n-i^n^ 

where e' = de/dz. The experiments presented later show that e does not 
vary with z in non-breaking waves. If this is introduced into (10), an 
equation with constant coefficients results 

Sn + K-i^^O (ID 

which can be solved by standard methods. 

Invoking (11) and the boundary condition £ •*•  0 we get 
w z+M 

"F anz 

?n(z) = e (12) 

where 
an = i+/T77i r (13) 

The complex coefficients C„ in (8) are determined by the boundary 
condition (3), which using (8) becomes 

E 37 (
cn einUt Cn) = Pn e

ln(ut-V (14) 
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from which we get 

C    = -^2_ e-
in^n n      w a 

(15) 
n 

For n = 0 this yields a relation between the steady part of c(o,t) 
and the steady part of p(t) 

P 
C = — (16) o   w 

which enables us to determine V    from measurements of CQ = c(o,t), where 
the bar denotes mean value over a wave period. 

Thus the complete solution for the concentration profile as a func- 
tion of time becomes 

c(z,t) = T —— e 
o w an 

n_ in (cot-i|>n)  ~ F an : 

1 ^ i/l _, . ni 
an = 2 + IT + X "I 

(17) 

We note that eoo/w2 is an important parameter, which represents the 
ratio of the response time for the concentration profile e/w2 over the 
wave time scale T/2ir. This information could, of course, also be ex- 
tracted directly from (2) by non-dimensionalization. 

The physical concentration is obtained as the real part of (17), 
which is 

c(z,t) I 
o  w lan! 

ut -^n -n(ar9 an+ ^T Im{an}) 
-Re{an} 

(18) 

Fig. 2 shows the variation of <xn, and Fig. 3 that of !otn!, arg an, 
Re {an}, and lm{an}. 

Finally the sediment flux Q is determined from (5). Here we assume 
that the ripple length X is small, i.e. X « L, where L is the wave 

Fig 2 
The position of on 
in the complex plane. 

• lmK? 

2 / - /"o     BID 

4/   ^ 
&yS^hyperbola 

1 

^y r      ,    *w 
0.5             1                              2 
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Fig. 3 
The magnitude of !onl, Re{an), 
Im{an} and arg an versus nw e/w 20 40  100 200 400 

length, so that the horizontal water velocity is approximately constant 
over X,  and the averaging over a ripple length introduced earlier can 
be executed with a constant u(z,t). Thus for convenience we assume 
that u has the form 

N 
u(z,t) = J UJI^

2
' cos n tot 

o 

which include a term uQ(z) constant in time, 
into (6) yields 

fT fTN 

(19) 

Substituting this and (8) 

Q = i I \    I  cn(z,t) un(z,t) dz dt (20) 
••o >o  o 

which is a general expression for Q.  To get practical results from 
this expression we must specify the value of the diffusion coefficient 
e, a problem which is discussed in § 5.  We must also know the form of 
the pick-up function p (i.e. the fourier-coefficients Pn in (7) and the 
phase angle tji ) .  This is discussed in § 6.  And finally un(z) is re- 
quired.  However, the formulation above is actually too general for de- 
tailed discussion, and a number of useful conclusions can be obtained 
from studying special examples.  This will be discussed in § 7. 

5. PREDICTION OF THE DIFFUSIVITY 

One of the basic assumptions behind this model is that the upward 
flux of sediment at any level is due to diffusion as expressed by the 
term - e 3c/3z. 

To test this assumption and to obtain results for e, the sediment 
concentrations were measured over a sand bed subjected to waves in a 
60 cm wide wave flume with a water depth of about 40 cm. The water/sand 
mixture was sucked out through thin pipes (1,5 mm diameter) at different 
levels, and the concentration determined from the sample. Thus all 
measurements represented mean values over several wave periods.  In ad- 
dition to these results, measurements published by Nakato et al. (1977), 
and some unpublished results performed in the pulsating water tunnel 
described by Lundgren and S0rensen (1958), have been used in the fol- 
lowing analysis. 
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The value of e for each experiment was determined graphically from a 
semilogarithmic plot of the measured concentrations versus the vertical 
coordinate z. Fig. 5 shows examples of such plots which clearly illus- 
trate that e is nearly constant under non-breaking waves, and also may 
be taken as a support of the assumption that the phenomenon may be ap- 
proximated by a diffusion process with e = constant. 

The results thus obtained for e have been analysed in several ways. 
First it is worth to notice that Svendsen et al. (1977) analysed the 
motion of suspended particles in accelerated flow and found that sand 
grains would follow the oscillatory water motion practically identically 
(apart from the settling due to gravity).  From their results for sinus- 
oidal oscillations may be deduced that even in the relatively low fre- 
quency turbulence in the flow in question, the grains must very nearly 
follow the water flow, from which we can conclude that the diffusivity 
e is equal to the turbulent eddy viscosity v~. 

e or vT are often considered as the product of a typical length 
scale 1£ and a typical velocity ue. 

A natural length scale (of vertical motion) in the flow over a rip- 
ple bed is the ripple height r\. 

When no ripples are present, the scale is K 6, where K is Von Raman's 
constant and 6 the boundary layer thickness.  6 may then be calculated 
from the equation 

6/a = 0.072 (2.5d/a)0*25 (21) 

as given by Jonsson and Carlsen (1976). 

For the characteristic velocity u , is normally used the friction 
velocity u^ = /xmax/p. One might then conjecture a simple relation like 

e = F(uf[n+ K &)) (22) 

where K 6  « r\ in situations with noticeable  ripples. 

In  fact it turns  out  that the best empirical  correlation in the  re- 
sults  for e  is obtained if we  use 

(TI +K 6) g T "ft 
(23) 

as shown in Fig. 4. The physical background, however, of this correla- 
tion is not clear, and the subject obviously needs further consideration. 

The diffusivities mentioned above are all determined in non-breaking 
waves and from measurements of concentrations within about 5 ripple 
heights from ripple crest level. Above this level there is hardly any 
bed material in suspension. 

If, however, the waves are just gently breaking as spilling breakers, 
the turbulence generated by the breaking will reach the bottom after 
4-6 wave periods, and significantly change the shape of the concen- 
tration profile, down to a few ripple heights (centimeters) above the 
bed. As a result the suspended material is spread from surface to bot- 
tom. The effect is surprisingly strong, particularly for fine materi- 
als with large u/w, and indisputable as shown in Fig. 5, where the con- 
centration profile from under a spilling breaker is shown together with 
that of an unbroken wave with the same height.  It also forms a remark- 
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Fig.   4    A plot for semi-empirical determination of e 
from Uj/w and the vertical length scale   (n+ic6). 
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Fig. 5 The distributions of.suspended sediment under breaking and 
non-breaking waves of equal heights.  Breaking gives much 
larger diffusivities but slightly smaller concentrations 
at the bed level. 
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able illustration to the ideas about the turbulence conditions in 
spilling breakers presented by Peregrine and Svendsen (1978). 

It should be noticed that the concentrations at the bed level are 
nearly unchanged by the breaking, and the measurements show that the 
total amount of sediment in suspension is practically unchanged too. 
This indicate that the pick-up process is only moderately affected by 
the surface turbulence, which has been decaying over 4-6 wave peri- 
ods before it reaches the bottom.  On the other hand, the relative 
change in turbulent intensity is large from the surface down to about 
5 times the ripple height above the bed, and the already suspended 
sand is easily spread over a whole depth of water. 

6. ANALYSIS OF PICK-UP FUNCTION 

The pick-up function p(t) is always non-negative and therefore has 
a positive time mean value P .  In the following we divide the discus- 
sion between P , which is determined experimentally, and the time var- 
iation of p(t) (i.e. the rest of fourier-coefficients in (7)). 

Thj__time__mean__value of_ p (t) 

In the solution for c(z,t) we found in § 4 that the true mean value 
PQ of p (t) was equal to w CQ where C in the time mean value of the 
concentration at z = 0. This means that P can be determined directly 
from the measurements described in the previous paragraph. 

A closer analysis af these shows that C0 depends on the horizontal 
position of the measuring point relative to the ripple.  CQ is larger 
over the crest than over the trough. We find that CQ crest •** 
1-° cb,trough- 

However, the net transport Q must be the same through any vertical 
section. And since we have chosen our reference level z = 0 at the 
level of the ripple crest to be consistent, we must also in the calcu- 
lations use the C values obtained over the ripple crest. 

Fig. 6 shows the measured values of C crest as a function of the 
Shields' parameter 6' (i.e. the non-dimensional shear stress) given 
by (1), in which we have used Swart's (1974) empirical fit to the ex- 
perimental results for f in an oscillatory boundary layer, i.e. 

fw = exp(5.213 (2.5d/a)
0-195 - 5.977) (24) 

It is important here that fw is based on grain-roughness, not on 
the ripple-height, say. 

As we see from the figure, the results for C varies fairly consist- 
ently with 8'. 

The_ time_ variation of p(t) 

As mentioned in § 2 most of the sediment grains that move over a 
rippled bed are ripped off the upstream side of the ripples, pass over 
the crest into the lee eddy, and are then washed out into real suspen- 
sion with that eddy. Thus we must expect the pick-up function p(t) to 
show significant peaks twice every wave period. No measurements are 
available to quantify this, but observations in a wave flume or on a 
beach clearly show strong puffs with high concentration of sediments 
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Fig. 6 The steady part of the concentration at 
ripple crest level is a function of 9'. 

emerging in the general 'pea soup' over each ripple, and at the right 
time.  Often the puffs occurring right after the wave crest has passed 
(i.e. after the highest velocities) are more significant than those 
produced after the weaker return flow in the wave trough. 

Tentatively this can be modelled by a pick-up function of the form 

p(t) 
po   (2m):: 

1 +g (2m - 1) : ! 
cos r(ut - f

1") + cos2m i(ut- *") (25) 

where m is a positive integer,* and £ is accounting for the difference 
between crest and trough velocities.  (3 may be determined as 

["trough12 
(26) 

crest - 
with the u's as maximum values of the bottom velocities in the water 
motion (notice that weak currents may be included here). 

According to the description above the phase angles IJJ  and i/~  are 
determined as the phases where the velocity in the main flow is chang- 
ing direction.  Notice that this choice, however surprising, may also 
be expected to apply as an approximation to the case of a plane bed. 
Then the thin boundary layer adhering to the bottom separates shortly 
before the time of velocity shift, yielding a situation similar (though 
less pronounced) to the release of eddies over the ripple bed. 

1(2m):1 = 2 • 4 • 2m; (2m-l):: = 1 (2m-1), 
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Thus ii+  and <|T depend on the wave motion considered.  In the exam- 
ples in the following paragraph ifi = ty~  -  ir = ir/2 for sinusoidal waves 
(example (1)), whereas ifi+ < TT/2 and i|T > 3ir/2 for second order Stokes 
waves with zero mass flux (example (2)). 

9 
1 P(D/P0 

I                   -r-  

8 - (3=0.4 

7 A - 

6 M m = 32 - 

5 1    1 - 

A - 

3 i/-\\\m = 12 - 

2 //f        W /\ 

P°"l 
/ \         \\V m = A ^r?W- ." 

Tt/2                TC 3TC/2              2TC   Wf 

Fig. 7 The time-variation of the pick-up function 
for different values of the power 2m. 

The exponent 2m gives the shape of the pick-up function.  For m •> « 
(25) corresponds to two 6-functions at tot = IJJ

+
 and ifT, respectively. 

Fig. 7 shows some examples for different choices of m.  The important 
pointy however, how much the choice for m is influencing the results 
for Q is analysed in more details in example (2). 

7. EXAMPLES 

_(1_) Sinusoidal wave__mot_i_on 

The simplest example one can think of is that of a sinusoidal wave, 
where 

u(t) = Uj cos tot (27) 

Here p(t) must have two peaks, equal in height and with a phase differ- 
ence of IT, i.e. 6 = 1 in (25), so that p(t) is 

p(t) P cos2m(tot -lj)) (28) 

(29) 

Without loss of generality we can take m = 1 to obtain 

p(t) = PQ(1 +cos 2(a)t- i)))) 

Fig. 8 shows the variation of the pick-up function and the concen- 
tration at the bed level in this case. 

We see from (15) that the phase shift is \  arg 02, and that c(o,t) 
does not go to zero as p(t) does.  Hence this important property of 
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the suspension mechanism is modelled correctly because of the separa- 
tion between the pick-up and settling process. 

Equation (20) shows that Q = 0 because of the symmetry of the prob- 
lem. Note that this result is independent of \fj and of the power 2m in 
(28). 

1 

\ 

\ arga2 

p(t) 

/\      c(o,t) 

/   /V\_ u(t) 

i         i 

/           \,.«Dt 
Ml/2               Tl /3tt/2           2rt 

Fig. 8 The variation mode of p(t) and c(o,t) when u(t) is simple 
harmonic.  Note that c(o,t) is not in phase with p(t), 
and that c(o,t) does not go to zero as p(t) does. 

Fig. 9 The choice of m is not critical for Qi + Q2. 
(QQ is independent of m). 
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(2_)   Second   order_ Stoke_s_[_ wave_ 

In the  second example we assume a second order Stokes' wave motion, 
i.e.   a velocity u at the bottom given by 

H30) 

u = U    + Uj cos tot + U2 cos 2wt 

with , 
U    =        ltB 0    = J_ c     (kH) 

•»       T sinhkh ^       16      sinh*kh 

i.e.  we neglect the  z-variation of u.     Notice  that UQ can represent a 
'return flow'   corresponding to a zero net mass transport   (i.e.   (30) 
will represent a pure wave motion),  if 

If   (30)   is substituted into   (20)   together with   (25),  we get the fol- 
lowing expression for the net sediment flux 

Q= °-°—T-   2(1+3) -    5"     —n-n—[cos(niJj++2 arga_)+ B cos|m|T+2 argaj 
2w2(l+ef   I n=i.2 uo>V     l >> 

= Q0+Q! + Q2 (32) 

The parameters of this expression are the wave data H/L and T/g/h, 
the grain diameter d, and m. Fig. 9 shows for a particular wave the 
influence on the oscillatory part of Q (i.e. Qx +Q2) of three choices 
for m in the range, which is considered realistic, m •*•  °° yields less 
than 10% change in Q  relatively to m = 32. The dependence on m is mod- 
erate, and we choose m = 12 in the following. 

The results for the ripple height n required for evaluation of e 
from Fig. 7 have been obtained from the mean curve shown in Fig. 10, 
which gives n/a (a being the water particle amplitude at the bottom 
determined from linear theory) versus t^/ts-l) gd, s being the relative 
density of the sand. 

Figs. 11 through 14 show the variation of Qx +Q2, Q0 and the net 
discharge Q  for waves with T/gh = 10 and height up.to 4 metres (0.4 
times depth of water), and four typical grain diameters d = 0.1, 0.2, 
0.4 and 1 mm.  In these calculations U has been determined from (31), 
i.e. the Q-represents zero net transport in the water motion.  Some 
characteristic values of e and 9' obtained in the computations are 
shown in the figures too. 

The figures show that under these conditions the sediment will move 
seawards under almost all wave conditions (Q < 0). 

A number of other observations and conclusions may be extracted from 
the results. 

(i) The rather sharp decrease in the numerical value of all Q-curves 
corresponds to the region between 0 = 0.4 and 0 = 1.0, where the rip- 
ples suddenly disappear and e, as given by Fig. 4 and Fig. 10, conse- 
quently decreases by a factor of 10. 

(ii) For the larger grains sizes the oscillatory contributions are pos- 
itive (shoreward movement) for high waves, and of the same order of mag- 
nitude as Q0. Thus if Q0 had been less negative (or even positive) — 
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Fig. 10 Semi-empirical plot for determination of the ripple height n 

for instance due to three-dimensional effects, vide the introduction — 
Q might well have been positive. 

(iii) The finer the material, the less important the oscillatory part, 
and for d = 0.1 mm net sediment discharge is entirely dominated by QQ, 
i.e. U . Then the net sediment flux may be determined by 

Q « Q0 = U0 P0 e/w2 (33) 

and this corresponds to situations where the variation of c over a wave 
period is small. 

(iv) The values obtained for e by the procedure described above appear 
in a wide region without ripples to be close to 1/4 KUf6 (K von Karman's 
constant, Uf friction velocity, 6 boundary layer thickness).  This esti- 
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mate can in fact be inferred from Kajiura (1968) (Jonsson, private com- 
munication) .  Since part of this region is outside the region where 
measurements for e are available, this is taken as an indication that 
our extrapolations in the computations are reasonable. 

Finally it is emphasized that all these results apply to non-breaking 

waves only. 

d = 0.1 mm 

10-IO"!(m!/s) 

8.1UW/S)    d = 0.2mm 

Fig. 11-14 Transport versus wave height for different grain diameters. 

(Or •gH2/8ch) 

Compari s o n _w i th_ex_perini_ents 

The model has also been compared with measurements in a wave flume. 
Fig. 15 shows measurements of Q obtained on a horizontal bottom from 
the changes in bed elevation over a recorded number of waves.  Fig. 16 
shows the corresponding measurements of the mean water velocity UQ. 
When this is used in the calculation of Q, we get the value shown by 
the dotted line in Fig. 15.  (The straight line approximation in Fig. 

16 was used for UQ). 
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Fig. 15-16 Calculated and measured transport for a flume experiment. 
(ISVA, 1978). 

8.   CONCLUSIONS 

A theoretical model has been developed which yields analytical re- 
sults for the instantaneous distribution of sediment concentrations 
c(z,t), when the oscillatory water motion (the wave) and the net mass 
flux (the current) is prescribed. The result for c is given by (17). 
Also the sediment flux (instantaneous and time mean) is determined 
(Eqs. 5 and 6). 

Experiments are used to determine the diffusion coefficient e (§5) 
required as input to the model (Fig. 4), and the results indicate that 
it is reasonable as done to assume the suspension of sediment can be 
approximated by a diffusion process.  The actual physics of the sedi- 
ment motion is described and discussed in detail in § 2. 

In the solution a pick-up function p(t) occurs. Mathematically it 
acts as the boundary condition at the sea bed for the diffusion equa- 
tion (§ 3-4).  Physically it accounts for the process (also described 
in § 2) of picking up the sand and bringing it into suspension.  The 
mean value of p(t) is determined experimentally in § 6 where also the 
time variation of this process is discussed, and equation (25) is a 
heuristic suggestion for p(t) and further discussed in example (2) in 
§ 7. 

In 5 7 two examples are analysed, showing the consequences of the 
model for the onshore-offshore sediment flux in two different wave mo- 
tions. The first (a simple sinusoidal wave) always yields zero net sed- 
iment movement. 

In the second example a second order Stokes' wave with specified mass 
flux is considered.  Here the results are far more complicated.  For a 
wave motion with zero net mass flux, the net sediment motion Q is always 
against the wave direction.  The balance, however, is delicate, and in 
a pure oscillatory flow (no return flow) the motion may go in either 
direction (Figs. 11 through 14). 
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Finally the model is compared with a measurement of Q in a wave flume 
with zero net water flux, using a second order Stokes1 wave model and a 
measured mean water velocity profile (Fig. 16).  In Fig. 15 the computed 
and measured values of Q  are shown to compare within the accuracy of the 
measurements. 
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