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During the twenty last years, tidal modelling has been intensi- 
vely developed. Following the growth of engineering needs in coastal 
areas, more and more accurate models have been established, and this 
constant research of better accuracy in the representation of real pheno- 
mena bring*us to very expansive models. One way of reducing these costs 
is to use variable grids in space, in order to concentrate refined meshes 
in areas of interest. But the finite difference schemes are not well adap- 
ted to this kind of procedure : this is why several attempts have been 
made recently to use finite element technics : C. TAYLOR and J.M. DAVIS 
in 1975 DO , C.A. BREBBIA and P.W. PARTRIDGE in 1976 D 3 , ••• But 
these applications are not easy. 

During the same period, since 1975, more complex tentative 
have been made using Fourier transform of the equations, previously to 
any kind of numerical integration : tides are effectively quasi periodic 
phenomena, and their spectra are well known. Two important points arise 
in doing this : 

- time variable is eliminated from the hyperbolic problem of propaga- 
tion, transformed into a set of elliptic problems. 

- for each elliptic problem, a variational formulation is available. 

It becomes thus possible to look at the various components of 
the real tides, and to use finite element technic to integrate numerical- 
ly these problems in real basins. In this way, B.M.JAMART and D.F. WINTER 
have used recently a purely numerical procedure based upon the Fast 
Fourier Transform to carry their tidal computations in fjords, cf.fjsj, 
while A. ASKAR and A.S. CAKMAK introduced a perturbation technic to 
handle the non linearities, very important in such problems, cf. [j J . 
We have followed a similar approach to study the complete spectrum of the 
tides in shallow water areas for the european seas : North Sea and 
English Channel, cf.£9j . The aim of this paper is to illustrate the 
main ideas of our method applied on an academic one-dimensional problem. 

I. THE EQUATIONS. 

In the study of the dynamics of tidal waves in shallow waters, 
the long wave equations are classically used. They are obtained from the 
Navier Stokes equations by integration over the vertical coordinate, 
under theassumption that the characteristic vertical scale H is much 
smaller than the horizontal scale L (H/L « 1). With this assumption, 
it can be shown that the pressure is hydrostatic. Without any meteorolo- 
gical effect at the sea surface, and neglecting the horizontal eddy visco- 
sity, the NS equations reduce to : 
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(1-1) 

— +  u — +  v — -  fv  +  g -=- +       «U     +  V     u 
It Dl 1,y 7>x       h  +S 

l-l+uf-L+v^— +fu  +  g2-i + ———,    (u     + v    v  =  0 
H 3x 'Sy T)y       h+3 

Similarly,   the continuity equation can be written   : 

(1.2) 
n , 1(Z  +S)u , 3(h + S)v _ Q 

tft      2x dy 
^/ *J 

with :   x, y  : horizontal cartesian coordinates in the plane of 
undisturbed sea surface 

z : vertical coordinate 

t : time 

h : undisturbed depth of water 

3 : elevation of the sea surface 

u, v  : components of the depth averaged currents in the 
x, y directions 

(1.3) u = u(x,y,t)=   „ |u(x,y,z,t) dz, v = v(x,y,t)= -:—x,  v(x,y,z,t)dz 
h +S J.h h +5 </£ 

f    : Coriolis parameter (f = 2-asinA , with-fl-= -jTyT  ana 

A : latitude of point (x,y) 

c    : coefficient of quadratic bottom friction 

g    : acceleration due to gravity. 

Tidal problems are generally solved in areas §) limited by 
coastal boundaries f   and open boundaries T" .   Along IT the classical 
boundary condition is V =0 (impermeability of coastal lines). Along J~y > 
several conditions are used : 

(1.4) J = i(x,y,t)  or V = V (x,y,1:) , normal velocity to T 

f  being a given function on (x,y)e FT,, for all  t . 

It should be noted that, with formulation (1.1), tides are 
assumed to be induced in S3 by the open boundaries T„. But the method 
here presented can be applied to the more general case of an oceanic 
basin influenced by the tide generating potential (cf. C. LE PROVOST and 
A. PONCET, 197 7 [8] ). 
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•   T1-   GENERAL  PRESENTATION  OF  THE   SPECTRAL METHOD. 

II.1.   Dimensionless  equations. 

In order  to  simplify,   it  is convenient  to use non dimensional 
variables 

*v *— *y 
X      1=1     h = -     t x  = — ,   y 

L L H H 

IL.iL , w* -*L ,A -^ 
tit 2/t S 

  ,   u = — ,  v = — with c = 1/gH 
*< , A/ ny /%/ 
L/C C C 

A/ 

~ L 
A'   = — ,  k = c - 

k   ][7 

Thus  equations   (1)   are   : 

"bu  ^       ^u,       "iu       n „     •   s ,   'S'S'  , — + u =r— + v 2J1 sinX v + .r— + 
3t dx 3y ^x       h + 3 

/n   os    ^v   ,      'Jv   .       }v   .   „.     .  s        .  "Sir  .       k      \/2   .     2 
(2.2)    *—• + u ^— + v —- +  2A sin* u + ^— + yu    + v 

»t 3x 3y ay      h +Jf    ' 

~aS     ^hu      ^hv      ISu + ^Xu _ 0 

"^t      5x        ~by        >x        3x 

+ v  u = 0 

which can be written : 

(2.3) MS = B + E 

with 

3t 
- 2Jtlsin\ 

9x 
hu 

M = 2A sinX 
^y 

S = hv 

3x 

" h(u S¥ + 

"d 
^y at 

kh 
h +3 

X 

Tlu. 
v *—) 

}y 
- \/ 2 x    2 

Vu    + v       u f 
X 

B = -*«£* *&> 
E  = - kh 

h +5 
\nrr~2 yu   + v     v = f 

y 

- A <*»> " " h <*> 0 0 

II.2. Introduction of small parameters procedure. 

We know from the theory of oceanic tides, and from observations, 
the structure of the tidal spectrum at the open boundary f"„. We can thus 
suppose that (1.4) are of the form : 
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(2.4) 

U„T =    II   U*   cos   (Z.t +f *) U„ =   2! A.  U*  cos   (w. t + y* ) N        u-i     i     N.                 l         IN. N        u-t l    N.                 I         IN. 
11 11 

3 =   2i   A.' V*   cos   (oi.t  +*».*) or    5=2! A.'I*   cos   (w.t  + </^) 
is*       IT.                         1          '1 I"* 11                         1             ' 1 

where U  , Ip  , and o., y.  are given functions on I „ corresponding to 
the N   i   i tidal components of pulsation u>. inducing the movement 
in c?)  through the open boundary ; the orders of magnitude of each of 
these components are characterized by parameters A. or A.'. 

When vectors B and E are neglected, resolution of (2.3) with 
boundary conditions (2.4) is not difficult (cf. HANSEN, 1962 £4 J ). But 
in coastal areas, non linearities are important. In order to handle the 
different orders of magnitude of these non linearities, we have introdu- 
ced a perturbation method (cf. J. KRAVTCHENKO and C. LE PROVOST, 1977 
£ 6j )• Solutions of (2.3) are considered under the form : 

(2.5) A. S., + A.' 
l  ll    l i-P 

+ A q A.r S.. 
ijqr + 

where i, j - 1, 2, ... N  and p, q, r = 1, 2, ... °° 
Taking (2.5) in (2.3), and gathering the terms of same power in A., we 
obtain for each order of magnitude in A. a set of equations defining S. , 
S. , S : x xl 

ip'  ljqr' 

MS., =0 
ll 

(2.6) 
M S. 

IP 
3.  + E. 
ip    ip 

MS..   = B. .   + E. . 
ljqr    ljqr    ljqr 

with corresponding limit conditions 
coming' from (2.4) 

Si. 

Following  a  classical  procedure  in forced vibration  theory,   solutions 
of   (2.6)   are expected under  the form  : 

h Uil(x,y) cos[w.t +fil(x,y)] 

h Vil(x,y) cos [uKt + Xi,(x,y)] 

^(x.y)  cosjw.t +(fi] (x,y)] 

h u[a,b,C,,)cos   f(aW]   + bo-2  + c(^  +   ..)t +^a'b'-')3 

hvg'b'c-->cos   [(a«,   +b«.2 + cc3 +  ..)t +Xip'b'*')J 

Pip'b'C")cos   t^l   + hU2 + <~3  +   ••)' +fg'b"°!l 

(2.7)   S.   =s^a'b,C-i) 

ip     ip 

S. . 
ijqr 
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+   + 
with a, b, c, .. = 0, - 1 , - 2, ... «>• 
The resolution of each system (2.6) is consequently splitted into a set 
of systems of the following form, of which time is eliminated : 

(2.8) 

M.,.S.. =0 
ll  ll 

jj-U.b.c.^-gCa.b.c..) = -(a,b,c.) + -(a,b,c.) 
lp        lp lp lp 

where  S.   are vectors of 6 unknows of two variables x and y : 

huiicosfii> huiisinrii' hviicos^ii' hvii8inXii.5ii
co8<fii.:rii8iiitfii 

(a b c  ) 
(and the same for S: ' '   , ...). 

lp 
—     (a  be  ) 

The matrices M. ,  M> ' '    are easy to deduce from (2.3), (2.6) and 
(2.7) ; it is tne samePfor vectors B(a,b,c--)( B(a,b,c..)5 ._ But an 
important difficulty arises for vecto?  E, the terms of which are not 
analytical in the vicinity of small values of the parameters A., and 
impossible "a priori" to develop under a form E(a>b>c..). 

II.3. Development of the quadratic terms of friction. 

We have established an approximate development of vector E, in 
the form of generalized Fourier series (cf. C. LE PROVOST, 1973 Cl] ), 
under the assumption of the existence of a "dominant" wave in the comple- 
te tidal spectrum over the studied area. This "dominant constituent" 
must have everywhere in S)    a maximum of velocity much bigger than the 
other constituents in the spectrum. As an example, the M„ constituent of 
the tide is the "dominant" wave for the european seas. Taking index 1 for 
this "dominant" constituent,  f  and  f  are expanded as follows : 

Kf 
x       y 

(2.9) 

f  =A.A.k ZFX. COS (w,t +<bX.) 
x   l j iTi      i      1   T l 

f  = A.A.k ZLFY. COS (w.t +4>Y.) 
y   i J  i.4  i      1   Y i' 

where FX. , FY.,(J7X., <f)Y.  are functions of the amplitude and the phase 
of the dominant constituent, and of the other constituents of the spec- 
trum. N is theoretically infinite, but in fact it can be limited to a 
finite value N_ ( > N ). 

The aim of this paper is not to present the details of this 
development. Let us notice only that two classes of terms can be distin- 
guished in (2.9) . 

a_. A first group corresponds to the damping effect played by friction 
for all the constituents in the tidal spectrum. Considering these terms, 
it appears that : 

- For the dominant wave, this damping can be considered indepen- 
dently of the other constituents of the spectrum, as a first approximation. 

- For the other constituents, this damping is strongly 
influenced by the local characteristics of the dominant wave. 
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b. A second group of terms corresponds to linear combinations of 
the pulsations of the different constituents of the complete tidal 
spectrum : they represent the generating effect of new constituents 
played by friction in shallow water areas. 

II.4. The perturbation method . 

In coastal areas, friction is so much important that a simple 
small parameter method applied as presented in II.2 to solve (2.2) is 
not rapidly converging towards the real solution within practical 
limits : this has been noticed in 1971 by B. GALLAGHER and W. MUNK. It 
is necessary to use a perturbation method in which the first approxima- 
tion of the solution is already representative of the damped solution. 
The developments (2.9) show us the way : the first order solution must 
be the dominant wave studied in the presence of the damping effect of 
friction, and the other constituents of the tide will appear as pertur- 
bations, studied separatly as prescribed by a classical process of succes- 
sive orders of approximation, cf.["6 J . 

III. ILLUSTRATION OF THE PERTURBATION METHOD APPLIED TO A MONO DIMENSIO- 
NAL PROBLEM. 

Let us consider a channel o of constant depth h, closed at 
one end by a vertical wall, and connected with the ocean at the other 
end. The problem is reduced to a monodimensional one, with the following 
equations : 

(3.1) 

9u .  ^u . 3£  .  kh ^— + u ^— + —    + - Y  u u = 0 dt ^x   dx    h +5  ' ' 

51 + ^hu + <&u = o 
"3t  3x   ^x 

The limit conditions are expressed in such a way that they correspond to 
a monoperiodic wave coming inside the channel, of pulsation co , and that 
every non linear wave induced in X? by non linear processes is coming out 
of this channel through the limit x = 0 without any reflexion. This kind 
of radiation condition has been established from the theory of characte- 
ristics and is formulated as follows : 

u + 2 Yg(h + ?) = 2A cos wt + 2 Vgn^ 
(3.2) 

u + 2 yi +5 = 2A cos out + 2 i.e. 

III.l. Development of the friction term. 

Let us assume that, limited to the second order of approxima- 
tion, the solution can be written : 
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u = Z Ap u    = A u. .   cos   (wt  + V. .)  + 

+ ^ [U
O2 

+ u12 C0S   (wt + fl2>  + u22  cos   (2wt + ^22>  + 

+ u32 cos   (3wt  + \y32)   +   ...]   + 0(A3) 

(3.3)     I = IA
P
5    = A 3. .   cos   (<«t  + <f>,,)   + p 11 111 

+ ^ [*O2  
+ *12 cos   (wt +?12>  +522 cos   (2wt +f22}  + 

+ i"32 cos   Out + Cf32)  +   ...J+ 0(A3) 

As  it was  said  in §   III.3,   the friction term  : 

* = j-TT l«l    u 

can be expanded into a Fourier serie. We do not present here the details 
of the analytical development (see. C. LE PROVOST and A. KABBAJ, 1978, 
p0] ) ; let us write only the result of these computations : 

f = lul u = 

second order s damping 

third order 

K generation 
of non 
linear 
constitu 
ents 

,2 8ull 
A • -3n~un cos(£d fc +Vn> 

A2
   Tin u

n
2cos(3wt + 3Vn> 

"To?¥ un2 cos (5u>t + 5
TV 

JE damping 
4u, 

A3-^[uo2  +U[2 cos (<ot +i^2)  + 

+ u22  cos(2wt +y22)  + u32 cos(3wt + <+/
32)   +   • •] 

K genera- 
tion of 
non li- 

A3
{?

U
11   

u22 +3TiUll  [u,2
cos(ut + 2(Hl   -ti2> 

near cons-+ "32 cos(wt +  21^- l^) 
tituents 

Tk~U\ l^U32 cos(ut + 4%1   "(fi2)   + 

s(,ot +  6yn   -y52)] + 

unfu52 cos(»t +  6 1ft,   -«^52)  + ..]+] 

+   U-,   CO 

3511 
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The different terms considered as "damping" terms appear to be 
a kind of linearization of friction. Using the notations : 

/o /N  \  8k .      V 4k .      \    8k     \       8k (3.4)  ^= — Au, ,  , A = ^r Au, ,  , ^„n= TTZ     ,     V 
3n ii '   3n ii '  32  isn '  52   losn 

F    can be written   : 

F = T-4xPAul   +  ^ ^2  + ^32 A2U
11

2
  

COS  3(wt  + flP   + 

+ X52  U[1
2  cos  5(wt  +fu)   +   ...   +  0(A3)J 

Y   -1 f 1 i.e.,   using development   :   (1   +J)       =   1   - A}    + 0(A ) 

(3.5) 
F  = XAU.   -\A U.J.   + X A U„  + A      A u cos  3(wt  + W {) 

+ X52 ur!
2  cos  5(wt  +yn)   +   •••   + 0(A3). 

We must notice that coefficients A and A , which can be called "linea- 
rized friction coefficients" are not constants and depend on the solution 
Au . itself. 

III.2. Application of the perturbation method. 

?i^st_order : Following the formulation (2.6), the system giving the first 
order solution is : 

ft-+3— "° 

' + _L +>u  = o 
at       3x     1 

with the limit conditions deduced from (3.2),(using development 
(1 +J)l/2 . , +1 +   ...) . 

2      J 

u (1) = 0 
(3.7) 

u (0) + J (0) = 2 coswt 

Notice that, doing this, we introduce in the definition of the first order 
solution, the damping effect of friction A u which is, strictly speaking, 
a term of second order. 

Let us use the complex notations : 

*.. -i \. e J?ki 
ki  2  ki 

(3-8>        k       i jni 
/'ki = 2 Uki e 
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i.e. 5k.co.(k«:+<fii.).Wkie^t
+<ie-Jta't 

with    f       being  the  conjugate  of  the  complex function    f    .   Equations   (3.6) 
and   (3.7)   reduce  so   to   : 

dAl 

(3.9) d* with 

>/n + -dx-+Vn =0 *n<°> +A,(°) - • 
which can be written : 

(3.10) with 

d >1 1   2      X i d/l 1 (0) 

dx 

Finally, we have to solve a second order differential equation of the 
complex function^ , of one variable only : x. This equation is non linear, 
because of the presence of A = /*(u..). We have solved this equation by 
a numerical finite difference scheme, using a method of successive appro- 
ximations for the non linearity : as a first approximation, "X is taken 
equal to zero, which corresponds to the linear solution of (3.1) without 
friction. 

A numerical application has been done with the following nume- 
rical values : 

h = 50 m, L = 495 km, T = 12 h. 25 mn, A = 1 m/s, c = 3.I0~3 MKSA 
(which schematically corresponds to the semi-diurnal tidal wave in the 
English Channel). On figure 1, we have plotted the amplitude of the sea 
surface elevation and of the current at x = 0, x = L/2 and x = L, obtained 
at the different steps of the iterative process used for the integration 
of (3.10). As it can be seen, the solution is stable after five itera- 
tions. 

In order to check our solution, we have integrated problem (3.1) 
under the same limit conditions, with the same numerical values by a 
classical Lax Wendroff finite difference scheme. The solutions u(x,t) and 
S(x,t) thus obtained have been expanded by Fourier analysis under the 
form : 

(3.11) 
u  (x,t) = UQ (x) +.£u  (x) cos [_kut + lfV (X)J 

*LW(x,t) =3jf(x) +I^
W(x) cos [tat +(f•(x)J 

We have plotted on figure 2 and 3 the results for U.  and 3,  in order 
to compare these values with u. .  and "5   deduced from the integration 
of (3.10). The results fit very well. 
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nrv 

2._ 

1— 

iteration 

• \/ A     o- -o- -o- -o- -o U'   'X      - 
\ /   ^x—-x—x- 
o 

\^-—— •——• 

/     'x 
Nx-'X^x--x--x > 

•'  I   I   I   I   I  I   I 
1     2     3    A     5     6     7    8 

m 

-4. 

-3. 

-1. 

Fig. 1. Convergence of the iterative method 

—— Velocity    Sea surface elevation 
* mouth of the channel 
x middle of the channel 
o end of the channel 



1114 COASTAL ENGINEERING—1978 

~°-+-a.. 

2,5 

1,5 

0,5 _ 

>^+    Fig. 2.  Fundamental. Elevation 

A   -o—  analytical solution       ^ 
\   +   numerical LW solution    jf 

**** 

\ 

X 
/ 

/ 

\ 
/ 

v      / 
\ / 

-i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 

0 L/2 L' 

m/s 

^+~o+^+ 

0,5 _ 

X 
p* 

.J* ,'+ 

Fig. 3. Fundamental. Velocity 

-o—  analytical solution 
+  numerical LW solution 

\ 

\ 

V 
-i 1 1 1 1 1 1 1 1 1 1 1  i 1 1 1 1 1 r 

0 L'/2 L 
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This numerical example illustrates the details of our method : 
the basic solution used for our perturbation procedure is the damped 
dominant wave ; it can be seen on figure 1 the important role played by 
the friction term : iteration 1 corresponds to no damping, and the cor- 
responding solution is  1,8   the exact solution, for the maximum of 
amplitude of the velocity field. The agreement shown on figure 2 between 
our approximate solution and the Lax Wendroff solution, which can be consi- 
dered the exact one, is sufficient to convince of the interest of the pro- 
posed method. 

Knowing this dominant solution with a good accuracy, we calculate 
now the second order solution, following formulation (2.6). 

Second_order : The system giving the second order solutions is : 

3$2    3u2     ^(^u,) 

"ht >X       ^ X 

-i.  2 

(3.12)   "3t  ' "Sx     2 3x     2 7T + 
W2 

"ax          : 

u2(l) = 0 

u2(0) + *2(o) = 
v  2 

4 

with F2  = An     - Xuj 5    + V     u cos  3(<at  + y    ) 

+ ^52 u,,2  cos  5(u)t  + <fu) 

Using the complex notation defined in (3.8), the second members of (3.12) 
can be written : 

^•E^/II1 +%7v + [h «..fl>>'2jwt + —] 
"*u/         ^ll/li*    r^ll2      2j«t 7 fc.c.   :   complex 
TIT    =  2 TS  +l3^~    6 +  C'°i conjugate] 

V    =-„^„^hl2e2JWt-.c.J 
F2    =V%2-^h^,,H^,,^„3+tX>,2^

t + —] 

fe +  2W  ^'l^ + ^J 

(3.13) 
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(3.12) is a linear system of equations which therefore can be splitted up 
into differential systems of the variable x only : 

Term of zero frequency Hq : 

du 

-^-o^nAi^nV,,) 

(3..4)     ^ = -%/ii\-^2+^ii/,i*+V/n> 

uo2(l)-0 

*o2<°> +%2(0) =I°'ll<0>e(l,,<0> 

Term of frequency 1 : 

No forcing term occur in the corresponding equations dedu- 
ced from (3.12) and (3.13). The corresponding solution is evidently 0. 
No correction of solutions u , 5, occurs at the second order of approxi- 
mation. 

Term of frequency 2, Hp : 

-£i+2^2--d£<°'ii;'ii> 

(3.15) ~^r + 2>ufa = - I   5x" <Al2)   "X>22  4 "ll/ll 

A2<1)=° 
«„   (0) 

/*22(0)  + *22(0>   - — 

Term of  frequency 3,   H,,   : 

¥3 + 3jwo< . dx J    32 

d*„ 
32  + (3.16) dx     '   3>/32 = "X>32  -  2\2Al2 eJri1 

/*32(i) = 0 

A2
(0)   +0<32W   =0 
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15 _; 

10 1 

5  J 

r+-~°1 

/             \              / 
P                                                  »                       + 

"V   \ / V 

/ 
+ 

0 ' i  i  i  •   i  i  i   i  i   >  '   »  i  i   * '  '  ' J 

cm/s 

10 

Fig.  4.   Harmonic 2.  Elevation 

-o- analytical   solution.  2n 

+    numerical  LW solution 

-*~v 

rf    ^ 

/      +\ 

K^ \ / \ 
-i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 9" 

lj2 

Fig. 5. Harmonic 2. Velocity 

•-0- analytical solution. 2n order 
+ numerical LW solution 

0 
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cm 

Fig. 6. Harmonic 3. Elevation 

-o- analytical solution. 2  order 
+ numerical LW solution 

cm/s 

5 _ 

Fig. 7. Harmonic 3. Velocity 

-o- analytical solution. 2  order 
+ numerical LW solution 
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System (3.14) can be numerically integrated without any diffi- 
culty. Systems (3.15) and (3.16) are of the same kind as system (3.9), 
but with second members, and purely linear coefficients ( A is function 
of the dominant solution u.   only). These systems can be numerically 
integrated without any difficulty. 

With the numerical values already used to illustrate the compu- 
tation of the dominant wave, we obtain solutions presented on figures 4 
and 5 for the harmonic KL, and on figures 6 and 7 for the harmonic H 
(higher harmonics are too small to be considered). As comparison, on the 
same figures, the numerical solutions obtained from integration of the 
time dependent problem with the Lax Wendroff scheme are plotted. We can 
see that the correspondence is quite good. This agreement illustrates the 
ability of the method to reproduce the non linear harmonic constituents 
produced by sinusoidal tidal waves propagating in coastal areas. Let us 
notice in (3.14), (3.15) and (3.16) the presence of damping terms Au.., 
with \ function of the dominant velocity field u,.   : as for the defini- 
tion of the first order dominant wave, it is essential to take into 
account these damping terms for the computation of the non linear wave of 
second order. 

In the numerical case here considered, the second order is suf- 
ficient to correctly represent the complete solution, but for smaller 
relative depth areas, the non linear contributions can be amplified, and 
higher order approximations may be necessary. 

With this very simple mono-dimensional problem, the principal 
steps of the perturbation spectral method have been clearly illustrated : 

- computation of the "dominant" solution : resolution of a non linear 
problem (damping coefficient being function of the solution itself) sol- 
ved by an iterative process 

- computation of the other components of the spectrum : resolution of 
linear problems (with damping coefficients fixed by the dominant solution). 

IV. CONCLUSION. EXTENSION TO THE TWO DIMENSIONAL PROBLEM. 

No important difficulty arises when the two dimensional problem 
is considered. Similarly to (3.10), the dominant wave is defined by a 
second order differential equation of the complex variable <*,,,  correspon- 
ding to the sea surface elevation ; because of the damping effect of fric- 
tion, this equation is non linear. It can be shown that a variational for- 
mulation is available for this problem (C. LE PROVOST and A. PONCET, 1978 
C 9 7), so that the natural way to realize numerical integrations in real 
basins is to use finite element methods. A first application has been done 
for the M„ tide in the English Channel : the primilarly results published 
in C  9J are satisfactory (cf. figures 8, 9). We are actually computing the 
M, constituent in the same area. 
4 

With such a procedure, computations are very cheap, because we 
have to solve a stationary problem for each important component of the 
tide in the studied area : except the dominant wave, for which an itera- 
tive process is necessary to take into account the non linear damping 
effect of bottom friction, the second order differential equation defining 
the amplitude of each constituent is solved only one time. It becomes thus 
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possible to realize a detailed study of all the components of the tidal 
spectrum in coastal areas, which has still not be realized in any case, 
because of excessive computing time necessities. 

Fig. 8. Finite element grid for the English Channel 

from C. LE PROVOST and A. PONCET 9 
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