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ABSTRACT 
The finite element method and boundary integral equation 
method are general approximation processes applicable to a 
wide variety of engineering problems. After a brief des- 
cription of the combined method, several examples are given 
for water waves problems : tides, harbour oscillations and 
waves diffraction and refraction. 

INTRODUCTION 
Most of the studies in coastal engineering are in relation 
with water waves coming from deep sea (tides, long and short 
waves). The difficulty is to take into account the influence 
of deep sea (infinite or supposed to be so) as exciting and 
receiving domain. 

COMBINED FE-BIE METHOD 
The assumption of simple harmonic linear waves yields 
elliptic partial defferential equations. These equations 
may be solved by : 
(i) the boundary integral equation method (BIE) based on 
Green's identity which leads, under certain conditions, to 
an integral equation relating the solution and its normal 
derivative on the boundary. 
(ii) the finite element method (FE) in which the region is 
divided into a number of elements. 
The first one is usefull for simple geometric domains be- 
cause integral equations can be simplificated before inte- 
gration. The second method is fitted for complex geometric 
domains owing to elements. 
Many anthors (Zienkiewicz , Berkhoff, C.C.Mei...) have 
already described the combined method. So the purpose of 
this paper will be to present new results showing its 
advantages. 
In few words, the infinite or semi-infinite domain is divi- 
ded into two regions where each method is applied. 
In the external region, where the water depth is assumed to 
be a constant, the solution will be a superposition of the 
incident wave and an outgoing wave which is due to the 
presence of an harbour or any obstacle. This outgoing wave 
will be represented by a superposition of waves coming from 
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point sources at the boundary V between the sea and the aera 
of interest and must satisfy the conditions at the other 
boundaries : full reflection on rigid walls and radiation 
condition of Sommerfield at sea. So the solution in the 
external region can be written in the general form : 

/, 8n 
a (f(P) - l|)(P)) =/ -5^ (P, M) (f(M) - ^(M)) dM 

Jf/n , (1) 
- / G (P, M) v- (f(M) - lll(M)) dM 

J-n dn 

where 
f is the total potential 
ip is the incident potential 
G is the Green function of the problem. 

The expression is also correct on the boundary r,(M6T) by 
taking the limit (only a changes). 
The solution f must be continuous through the boundary with 
respect to wave height and phase. 
So equation (1) can be interpreted as a boundary condition 
for the internal region. 
In this one, the finite element procedure is possible by 
direct coupling of the solution f and its normal derivative 
on the common boundary T. 
The system is solved only in the internal region but the 
influence of the external one is taken into account thanks 
to the boundary integral condition. 

APPLICATIONS 
Some examples of results from the combined FE-BIE method 
are briefly described here. 
The tides in a semi-enclosed sea opened to a semi-infinite 
ocean are simulated using a linearized, vertically integra- 
ted, dissipative form of the Laplace Tidal Equation. A 
linear bottom friction is used. The tide is modelled by 
setting the tide-generating force terms to zero and speci- 
fying the free surface elevation to infinity as a Kelvin 
wave. So the equations can be written as follows : 

- il»>n + ~- (hy) + -5- (hv) = 0 
dx        dy 

- iwu + g y- - to + pp = 0 

- iWV + g-^-+tt\l+pv=0 

where n, y, v are the complex amplitude of surface elevation 
and current components. 
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h is the mean water depth 
g is the gravity acceleration 
fi is the Coriolis number 
p is the bottom friction coefficient 
to is the tide pulsation. 
These three equations can be transformed in one : 

L[^g+Bg>]+irh<Af-Bi>j +n = o     (2, 
where A and B are complex functions of co, U,  g and p. 
In the external region, the water depth is assumed to be 
a constant, so equation (2) is simplified (the B factors 
disappear) and it can be shown than the Green function of 
the problem is an Hankel function. 
In the internal region, the finite element procedure is 
easily applied to equation (2) . 
The M2 constituent of the tide in the North sea has been 
calculated by this way. The numerical results (fig. 1) are 
in good qualitative agreement with the observations, parti- 
cularly in the reproduction of the amphydromic points. An 
important thing to point out,is that there is only two 
parameters to calibrate to solve this problem : 
- the wave direction in the ocean, but its influence is 
very weak 

- the bottom friction coefficient which fixes the position 
of the amphidromic points. 

The repartition of amplitude and phase on the common boun- 
dary is obtained from the model. 

The response of harbours to long waves of differents 
frequencies coming from deep sea can be obtained by the 
same way. The oscillations are simulated using the same 
Laplace equation but Coriolis effects and bottom friction 
can be neglected. In this case, the B factor disappears in 
equation (2). 
The method yiels eigen frequencies and correspondant ampli- 
fication factors of the harbour opened to the sea (see fig. 
2 in the case of Marseille Harbour). This is particularly 
usefull to study seiches in harbours. 
In "decreasing the wave length, the last example is the 
computation of wave diffraction and refraction. In this 
case the governing equation is 

h (n ff> + h (n ¥' + nk°f = ° (3) 

where k„ is the wave number 
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n is the shoaling number 
f is the potential. 

Equation (3) is similar to equation (2). When the depth and 
consequently the shoaling number are constant the Green 
function is also an Hankel function. The same procedure can 
be applied. 
The main restriction of the model is the numerical requi- 
rement of about five computing points over one wave length 
to compute the surface elevation with a sufficient accuracy. 
Figure 3 shows the solution of wave diffraction and refrac- 
tion for the case of an island on a flat or parabolic shoal. 
The numerical results are in good qualitative agreement with 
the analytical solution. Amplitudes are generally underes- 
timated mainly for short wave lengths (probably in relation 
with the number of computing points). 

CONCLUSIONS 
The mathematical model for linear simple harmonic waves 
described in this paper can be of great help to give some 
quantitative or qualitative information about waves 
coming from deep sea (tides and waves). The main restriction 
of the model is the numerical requirement with respect of 
large area compared with the mean wave length (especially 
for short waves) but the rapidity of the resolution, the 
development of the finite element method and the reduced 
number of parameters to calibrate the model (one or two 
for tides) give quite good informations very quickly. 
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