
CHAPTER 26 

VOCOIDAL THEORY FOR ALL NON-BREAKING WAVES 

by D.H.   Swart  and C.C.  Loubser 

ABSTRACT 

The ideal theory for the prediction of wave-induced phenomena 
should be sufficiently accurate in all relative water depths, 
easy to apply and extensively tabulated.    No available theory 
meets all these requirements.     Vocoidal theory has been 
developed for application in all water depths.    An extensive 
evaluation against experimental data proves that this theory 
meets the above requirements. 

1.   INTRODUCTION 

During the past two decades great progress has been made in the development 
of new techniques for the prediction of wave-induced phenomena, such as the 
flow field in the vicinity of a coastal structure, longshore currents, forces 
on marine structures, ship motions, coastal sediment transport and combined 
wave diffraction and refraction.  With the development of these more sophisticated 
techniques came the need for more accurate wave theories.   Coastal sediment 
transport is an example of such a need. 

Until about 10 years ago, the only way of predicting longshore sediment transport 
was to use an overall predictor [26], i.e. a formula yielding the total longshore 
sediment transport across the breaker zone.  An example of such a theory is 
the well-known CERC-formula [22],  In 1967, Bijker published the first detail 
predictor [2], based on a uniform flow sediment transport formula.  This method 
predicts the local longshore sediment transport rate.  Subsequently, various 
researchers refined the Bijker technique, although the basic principle has 
remained the same. As the predictors become more sophisticated, the input required 
gets more extensive and it becomes more important to have accurate values for 
these input parameters. For example, because the transport is proportional 
to the longshore current raised to some power (between 3 and 6 [32]), a wrong 
prediction of the current by 10% will result in an error of 33% to 77% in the 
estimate of the transport.  The longshore current, in turn, is determined from 
the balance between wave thrust (radiation stress) and dissipative forces (bed 
friction and lateral mixing).  The Airy wave theory, which is the theory most 
frequently applied to water wave problems, can result in a radiation stress 
estimate at the breaker line up to 300% higher than the actual radiation stress. 
However, this does not imply that the longshore current will be overpredicted 
by the same amount, because the current velocity is linked to the radiation 
stress via an empirical roughness coefficient.  It does, however, underline 
the importance of finding a more accurate description of the wave characteristics 
in shallow water. 

Both for the prediction of erosional/depositional patterns in the vicinity of 
a coastal structure, by making use of a composite mathematical model, and for 
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the computation of longshore sediment transport on a straight coast, accurate 
wave characteristics are required over the whole area of active transport. 
This zone can extend to depths of more than 50m [26], depending on the wave 
and sediment characteristics. For the prediction of erosional/depositional 
patterns wave characteristics and sediment transport computations are needed 
at numerous grid points.  This requires large computer storage [8].  Both for 
this application and for the hand-computation of sediment transport rates, it 
must be possible to calculate the required wave characteristics easily. This 
can be done only if the wave theory under consideration either has simple 
algebraic expressions or is extensively tabulated. 

A review was made of the available water wave theories [27] and the conclusion 
drawn that no existing theory meets all the above requirements. Vocoidal 
theory has therefore been developed in answer to these needs. The analytical 
and experimental validity of this theory is compared in Section 4 with that of 
other theories. 

2.  DERIVATION OF EXISTING WATER WAVE THEORIES 

An insight into the techniques used for the derivation of the various existing 
theories is crucial for the understanding of the key differences between the 
results obtained.  It is also the determining factor for the choice of a 
technique for the derivation of the new wave theory in Section 3. 

2.1 Assumptions 

The following well-known assumptions are common to all existing water wave 
theories and are therefore given below without any discussion, namely : (1) only 
non-breaking waves are considered; (2)  the water movement is two-dimensional; 
(3)  the water depth is constant, i.e. the bed is horizontal; (4)  the flow is 
frictionless; (5)  the fluid density is invariant; (6)  surface tension effects 
are neglected; and (7)  the wave motion is periodic and the waves propagate with 
constant velocity in water of constant depth. 

2.2 Basic governing equations 

The basic governing equations for the wave boundary value problem can be derived 
by making use of the above-mentioned assumptions. These governing equations are 
(1) equation for the conservation of fluid mass, (2) equations of motion and 
(3) expression for the rotation of a fluid particle. These equations are given 
below without further explanation, as they can be found in numerous text books 
(e.g. [11] and [20]). 

Conservation of masa  (CM) 

¥ + ¥• - ° ••• <« dx   dz 

where x and z are the horizontal and vertical coordinates and u and w are 
the horizontal and vertical orbital velocity components. 

Equations of motion (EM) 

In the x-direction : 

1 3p , 3u ,   3u    3u .  . 
p 3x  3t    3x    3z 
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In the z-direction : 

. 1 3p . 3w ,   3w    3w     „ ,,, 
g+^-^ + TTT+UTr— +w-s— =   0 ...(3) 
°  p 3z  3t    3x    3z 

where p is the pressure, g the gravitational acceleration, p the fluid density 
and t time. 

Rotation of a fluid particle  (RF) 

The mean angular velocity R of an element of water is : 

R= Kg-*) ...(4) 

If R = 0 the flow is irrotational, otherwise it is rotational.  For cases 
where R # 0 Van Hijum [29] shows, by using the equations of motion, that 

DR   3R .  3R ^  3R    n ,,-, 
;r-=-5— + U-5— + w^— =0 ... (5) 
Dt   3t    3x    dz 

Equations (1) to (4) are the basic governing equations common to all solutions 
of the water wave problem. 

2.3 Boundary conditions 

All solutions to the system of equations (1) to (4) above should satisfy a 
number of boundary conditions, namely : (1) a kinematic boundary condition 
at both (a) the bed and (b) free surface, stating that no particle can pass 
through these boundaries (i.e. both bed and free surface are stream lines) 
and (2) a dynamic boundary condition  which specifies that the pressure just 
inside the water mass should equal the atmospheric pressure. 

re (la) The kinematic bed boundary condition  (KBBC)  implies that 

w = 0  at  z = 0 ... (6) 

re (lb) The kinematic free surface boundary condition  (KFSBC)  can be 
transformed to : 

w = (u - c) |^ at z = d + n ... (7) 

where r) denotes the free surface wave profile, d the mean water depth and c 
the wave celerity 

re (2) The dynamic free surface boundary condition(DFSBC)  states simply that 

p = 0 at z = d + n ... (8) 

where p is the amount by which the pressure exceeds atmospheric pressure. 

2.4 Solutions to the problem 

The solutions found to date for the wave boundary value problem can be classified 
as follows : (1) irrotational theories, (2) rotational theories and (3) modified 
theories, which  are   discussed under these headings below.  Discussions of 
these classes of theories can be found in numerous text books and original papers 
so that only those characteristics of the theories which are relevant to the 
present study  are  given in the following discussion.  Table 5, in turn, is 
a summary of the discussion below. 
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Ivvotatiora.il wave theories 

When R = 0 in equation (5) it is possible to define a velocity potential $ 
(or stream function HO which, in a reference system moving along with a celerity 
the same as that of the wave, is given by 

... (9) 

...(10) 

With the aid of the above definition for $, the equation for conservation of 
mass (equation (1)) is transformed into the well-known Laplace equation 
(V2$=0) and in addition the rotation is identically zero when equations (9) and 
(10) are substituted into equation (5).  Similarly, when the stream function V 
is used, the rotation R in equation (5) is transformed into the Laplace equation 
(V21'=0) and the conservation of mass equation (equation (1)) is exactly satisfied 
when equations (9) and (10) are substituted into it. Therefore 

V2$ = 0 
or ...(11) 

V2"? = 0 

In all irrotational theories, the Laplace equation is used instead of equation 
(1) when solving the governing equations.  The velocity potential $ (or stream 
function t)   is determined by the domain in which it exists, i.e. it is a function 
of n, which in turn specifies the free surface.  It is, consequently, not possible 
to find a unique solution to equations (6), (7), (8) and (11) above. These 
equations must be simplified by means of approximations to linearize the problem 
in such a manner that the non-linear terms in the defining equations become 
small when compared with the linear terms. These approximations determine the 
specific form of-the irrotational theory. Three main methods of solution are 
used, namely:(i) analytical perturbation of $, r| and c, as is performed in 
the Stokesian wave theories, which are valid for deep water, (ii) analytical 
perturbation of $, leading to the cnoidal wave theories, which are valid for 
shallow water and (iii) numerical perturbation of $ or V,  which leads to the 
so-called numerical theories, valid for H/d £ 0.78. 

re  (i)    Stokesian wave theories 

Taylor series expansions are assumed for 0, ri and c. By assuming that H/d «1 
(where H is the wave height) and thus that the free surface boundary conditions 
(7) and (8) can be applied at the mean water level, i.e. at z = d, a first-order 
solution, called Stokes I, is found. A second-order solution is obtained by 
making use of the first-order solution, etc. The higher the order of the 
expansion-, the greater the mathematical effort required to obtain a solution. 
Although higher-order Stokesian theories do exist, only Stokes I (Airy), II and 
V are used frequently. The first-order Stokes theory is valid for deep water 
only because of the assumption that H/d «1.  In addition, higher-order Stokesian 
theories become unstable in shallow water because of the magnitude of the expansion 
parameter. 

Earlier comparisons with experimental data show that predictions given by Stokes I 

are good for deep water but get progressively poorer as the water depth decreases. 
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re  (ii)    Cnoidal wave theories 

The assumption is made that both d/A and H/d are «1 where A is the wave length, 
i.e. small-amplitude waves in shallow water are considered.  The choice of an 
appropriate expansion parameter, allows the expansion of 4> into a Taylor series. 
The Laplace equation and kinematic bed boundary condition (equation (6)) are 
used to simplify this Taylor expansion to  an equation in terms of the first- 
order term in $.  Only the terms necessary to obtain the first-order cnoidal 
theory are retained.  Substitution of this expression for $ into the free-surface 
boundary conditions (equations (7) and (8)) yields the well-known long-wave 
equations, which are simplified to the Korteweg-de Vries equation and solved for 
n and c.  Cnoidal theories can only be applied in shallow water, because of the 
assumptions made regarding the expansion parameter which yields imaginary wave 
celerities forA^d < 10. However, comparison with measurements show that, provided 
the wave length is known, the cnoidal theory offers a good representation of the 
wave profile for deep to shallow water. This is not surprising since the cnoidal 
wave profile has as limiting cases a sinusoidal profile in deep water and a 
solitary wave profile in shallow water. 

re  (Hi)    Numerical wave theories 

The rapid development of digital computers over the last three decades has opened 
up a new way of solving the defining equations (6) to (8) and (11) above by 
finding a solution, using direct numerical calculation.  The best known numerical 
irrotational theories published to date are those of Chappelear [3], Dean [6], 
Von Schwind and Reid [31] and Cokelet [4].  The principle used is 
straightforward, namely : (1)  find a Fourier series solution to the Laplace 
equation, and (2) optimize iteratively the coefficients in the Fourier series by 
means of the free-surface boundary conditions.  The order of the Fourier series 
determines the accuracy to which the boundary conditions can be approximated.  Each 
additional term of the Fourier series expansion added reduces the error in the 
free-surface boundary conditions.  Dean used a variable number of terras in the 
Fourier expansion, and terminated the iterative procedure as soon as consecutive 
iterations (additions of further terms) resulted in small improvements in 
the error in the free-surface boundary conditions.  The number of Fourier terms 
in Dean's solution varies between 2 (for deep water) and 19 (for shallow water). 
Dean showed that his stream function solution corresponds more closely to the 
free-surface boundary conditions than the theories of Chappelear and Von Schwind/ 
Reid do.  Cokelet raised the level of accuracy by using 110 Fourier terms.  As 
a result,his solution to Laplace is more accurate than any other to date. However, 
the advantage of Dean's method over that of Cokelet is that Dean's results are 
tabulated more conveniently for engineering use. Furthermore, the resulting 
celerities for 24 arbitrarily chosen sets of initial conditions (T, d, H) as 
computed by using Dean's and Cokelet's theories differed by a maximum of 2.8%; 
the mean difference being 1.4%. In all cases Cokelet's theory yielded larger 
celerities. The conclusion is that the improvement obtained in the celerity by 
extending the Fourier series to the 110th order is not significant for engineering 
purposes.  Furthermore, Cokelet's theory has not yet been tabulated to permit 
the prediction of time-dependent wave properties, such as the wave profile and 
orbital velocities. 

Earlier comparisons with measurements have shown Dean's stream function theory 
to be in good agreement with data for all water depths within its tubulated 
range. 
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Rotational wave theories 

The assumption of frictionless flow can normally be regarded as a good 
approximation over the greater portion of the water column.  Frictionless 
flow implies irrotationality.  It is possible to obtain an easy solution for 
the horizontal orbital velocity by making use of the conservation of mass 
equation (1).  Because frictionless flow is also assumed for this approach, 
the resulting theory should be an irrotational theory.  However, it is 
possible that due to approximations made in finding a solution, a finite 
value of R, as given by equation (4), remains. Such theories will be called 
rotational theories. The equation for conservation of mass (equation (1)) is 
integrated over the depth. After substitution of the kinematic boundary 
conditions (equations (6) and (7)) and assuming no net mass transport (which 
is valid as long as no set-up occurs) an equation is found for the mean 
horizontal orbital velocity u, namely : 

As no assumptions are made regarding rotationality, equation (12) is equally 
valid for irrotational wave theories and can, in fact, be used to check whether 
any given theory adheres to the original continuity equation (1) (see Table 5). 
Any expression for the instantaneous horizontal orbital velocity u which 
satisfies equation (12) therefore also satisfies equation (1). Expressions for 
the wave celerity c and wave profile n are found from the equations of motion, 
by making use of an assumed form of the orbital velocity u.  Two recent examples 
of this approach are the rotational wave theories of Van Hijum [30] and 
Mejlhede [19]. 

To date no comparison has been made between actual measurements and predictions 
given by rotational theories. 

Modified wave theories 
As stated above, the simple-to-apply Airy wave theory yields predictions which 
become poorer as the water depth decreases. Various modifications have 
therefore been suggested to improve Airy theory's correspondence to wave 
characteristics in shallow water. The two most successful modifications are 
(1) Goda's empirical modification [9] of the Airy horizontal orbital velocity 
and (2) Hedges' theoretical modification [10][18] of the Airy wave celerity. 
Rather than modify Airy, another approach is to simplify the cnoidal solution, 
which is in any case applicable to shallow water conditions.  In this manner, 
a good theory is obtained for shallow water which at the same time is easy to 
apply. The best example of such a simplified theory is Van Hijum's simplification 
[30] of the cnoidal wave profile, in which the cnoidal function is approximated 
by a cosine function raised to a variable power (depending on T, d, H). 

Earlier comparisons with measured horizontal orbital velocities showed that 
Goda's approximation for the orbital velocity under the wave crest is 
superior to that predicted by Airy theory and is surpassed only by predictions 
for horizontal orbital velocity made with Dean's stream function theory. 

2.5 Summary 

The discussion above indicates that : 

(1)  Numerical theories show the greatest overall adherence to boundary 
conditions. 
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(2) None of the available theories agrees well with data for all water depths. 
The best theory which is still applicable in practice is Dean's numerical 
stream function theory. 

(3) No one analytical theory is clearly superior to any of the other analytical 
theories as far as experimental validity is concerned. 

The derivation of a new theory is described in the next section.  This theory 
incorporates the properties of the best contemporary theories and is easy to 
apply. 

3.  VOCOIDAL WATER WAVE THEORY 

3.1 General 

As indicated in Section 2 above, the theoretical derivation of a water wave 
theory involves the approximation of the free-surface boundary conditions. 
Depending upon these approximations, various classes of solutions are found. 
A different approach is used below, namely,(1) qualitative assumptions 
are made regarding the expressions for n» c and u in terms of unknown 
parameters (Section 3.2),  (2) by substituting these qualitative expressions 
into the free-surface boundary conditions, three equations are found from which 
the above-mentioned parameters can be solved numerically (Sections 3.3 and 
3.4) and (3) algebraic formulae for the parameters are determined by means of 
curve-fitting techniques (Section 3.5). 

3.2 Qualitative assumptions 

Wave profile  n 
A wave profile of the type given by the cnoidal theory provides the best fit 
to data, mainly because it has as theoretical limiting forms a sinusoidal 
wave in deep water and a solitary wave in extreme shallow water. Van Hijum 
[30] showed that the following expression has the same characteristics : 

£- (COS2TTX)P - n*t ... (13) 

where X = x/X, n  is the dimensionless ( + H) trough elevation and P is a 
parameter which  depends on the wave conditions (H/d, X/d) .  By expressing 
(COS

2
ITX) as an infinite series, n_ is found, after integration, to be : wt 

ri*t - (TTP)_i{l - (8P)"1 + J(8P)"2} ... (14) 

When P = 1 equation (13) represents a sinusoidal profile and when P»l the 
profile given by equation (13) tends towards a solitary profile. Equation 
(13) is used here to define the wave profile t). 

A new function, which simplifies the representation of formulae in the new 
wave theory, namely the variable order cosine function, or i>oc-oidal function, 
is defined : 

voc (P,X) = (cos2-rrX)P ... (15) 

where P.is the order of the function. 

Wave celerity a 

Hedges [10] has shown that when applying the free-surface boundary conditions 



474 COASTAL ENGINEERING—1978 

at some fixed "effective" level d the wave celerity is given by : 

... (16) 
c    1 
—r = r-T tanh Nkd 
gd   kd 

where N = d /d. He shows that N tends to unity in deep water (same result 
as given by Stokes I) and to 1 + ru/d in very shallow water (n = crest 
elevation of wave - same result as given by solitary theory).  Equation (16) 
is used here to define the wave celerity c.  N remains to be determined in 
terms of the wave conditions (H/d, \/d). 

Orbital velocity u 

The approach leading to equation (12) is used to define the horizontal orbital 
velocity u. Mejlhede [19] shows that the following expression for u satisfies 
equation (12) : 

en M(X)k cosh [M(X)kz] 
U    sinh [M(X)k (d+n) ] (17) 

where M(X) is a function of the wave conditions (H/d, X/d) and also of X. 
Equation (17) is used to define the orbital velocity u in the new wave theory. 
Thus the new theory is not derived from the Laplace equation.  It does not, 
however, necessarily imply that the theory is rotational, as will be seen in 
Section 3.3.1.  Equation (17) represents an exact solution to the continuity 
equation which satisfies both kinematic boundary conditions. 

3.3 Formulation of the governing equations 

The wave boundary-value problem has now been reduced to a set of equations in 
which the unknowns are not n, c and u but the wave profile parameter P, the 
wave celerity parameter N and the orbital velocity parameter M(X). An expression 
for M(X) in terms of P is found below by using equation (4), after which optimum 
values of P and N are found by evaluating the pressure p from the equations of 
motion and equating it to the pressure in Bernoulli's equation. 

3.3.1    A value for M(X) in terms of P 

Equation (5) specifies that any particle retains its rotation.  For the free 
surface, which is a stream line, it is possible to write R[z=d+r|] = constant. 
An expression for R at the free surface is found by combining equations (4), 
(7) and (17) : 

tRWrf "••& {<u"c> IS* - cr,(M<x) k)2 Wn 
which can be rewritten as 

M(X)2 = 

3u 3n j_ ,    N3 n -5— •— + (u-c)TT-r 
3x 3x      3x 

enk2 

-2R 

At the wave trough, that is at X 

-2R 

z=d+n 

0.5, equation (19) reduces to 

M(0.5r 
cntk' 

(18) 

(19) 

(20) 

z=d+n 
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where subscript t denotes the wave trough. 

R [z=d+n] = 0 (and consequently M(0.5) = 0) is a solution to equation (20). 
Therefore R[z=d+n] = 0 is used .     At the wave trough, where M(0.5) = 0, 
equation (17) reduces to equation.(12).  Substitution of this equation (12) into 
equation (4) indicates that R [X=0.5] = 0 for all 0 £ z £ d + n. As all 
stream lines in the flow field pass through X = 0.5,  this implies that the flow 
will be irrotational,  provided that M(X)  is determined exactly from equation  (18). 
However, since small approximations have to be made to obtain a usable 
solution (see below) the flow will not be completely irrotational but will 
retain a small rotation, which can be neglected when secondary wave properties 
are derived. 
Substitution of zero rotation into equation (19) and rearrangement yields : 

M(X)' 

3(u/c) 
3X 

3(n/H) 
3X 

+ (u/c - 1) 
32(n/H) 

3XZ 

4TT2(n/H) 
(21) 

z=d+n 

Equation (21) provides an implicit equation for M(X) in terms of P and X. 

3.3.2    Optimum values of P and N 

Integration of equation (3) to z and substitution into the resulting equation 
of the dynamic free-surface boundary condition results in an expression for 
the pressure p, which at the bed (z=0) becomes : 

d+n 

[*L = g(d+n) + + w' 
(22) 

Since the bed is a stream line,the pressure at the bed should also satisfy 
Bernoulli's equation, that is 

rc gd - 
(u-c)2 

+ k. (23) 
z=0 

where ki is a constant. 

The pressure can be eliminated from equations (22) and (23) to yield, after 
substituting the kinematic bed boundary condition into the resulting equation, 
an expression for c /gd : 

n/d 
gd 

where w = - c 
o 

when n=0. 

(u/c)-J{(u/c)2+(w/c)*-(w„/c) 2} 

3n| 
3x 

... (24) 

_ z=d+n 

that is,w is the value of w at the free surface 
r)=0, z=d+n 

Because of assumption (7) in Section 2.1 above, the wave celerity defined by 
equation (24) must be a constant, that is 

3_ 
3X 

ci 
gd 

0   for 0 < X < 0.5 (25) 
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Equations (21), (24) and (25) are the governing equations used to find 
solutions for P, N and M(X). 

3.4 Solving the governing equations 

The solution is determined in two phases, namely (1) a first-order solution 
is found by assuming u/c «1, and (2) a second-order correction is applied to 
compensate for the fact that u/c is not negligible with respect to unity. This 
two-phase approach is necessary because M(X) cannot be determined at wave 
breaking. 

The exact solution to equations (21), (24) and (25) above can only be obtained 
numerically for u/c<l. The following wave conditions (H/d, A/d) are used : 

0.01 < H/d £ 0.8 1 < X/d < 75 
0.01, 0.02, 0.05, 0.1(0.1)0.8 1, 2, 5, 8(2) 20, 20(10) 50, 75 

Equation (25) is satisfied by computing c2/gd from equation (24) at 1000 discrete 
intervals in the area 0 < X < 0.5 and choosing that combination of P and N for 
which the relative standard deviation of the computed c2/gd-values is the least. 

Although the maximum theoretical breaker index H/d is about 0.78, experimental 
data indicate that H/d-values as high as 1.3 can occur. To ensure that the 
theory developed herein is applicable in this area the numerical solution of 
equations (21), (24) and (25) is repeated with the assumption that u/c <<1 for 
an extended H/d range 0.01 < H/d < 1.3. The following ratios are computed for 
those wave conditions at which an exact solution was found above. 

Ep  - Tf/tl 

\    = N/Nj ... (26) 

and R^ = MM/M^O) 

where subscript i denotes the solution with the small-amplitude assumption 
(that is u/c «1) and P, N and M(0) denote the "exact" solution, that is the 
solution in which no assumption is made regarding the value of u/c. 

The results obtained for the above-mentioned wave conditions indicate the 
following : 

(1) It is possible to find solutions for P , Nj and M (0) for all wave 
conditions listed (H/d < 1.3). 

(2) The values of R^ and R^ vary systematically with H/d for all X/d- 
values. 

(3) For any given X/d-value N tends to 1 + r|c/d for large H/d. 
(4) For any given X/d-value M(O) tends asymptotically towards a constant 

value with varying H/d. For all practical purposes M(0) is constant 
for H/d > 0.7. 

(5) Rp varies systematically with X/d for all H/d-values. The variation 
of Rp with H/d is analogous to the variation of P with H/d at large 
X/d-values (say X/d = 50). 

The above observations imply that it is possible to use the small-amplitude 
solution to extend the range of the "exact" solution. 
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3.5 Algebraic . expressions for P, N and M(X) 

The values determined as described above for P , N , M (0), Rp, R^ and R are 
correlated to the wave conditions (H/d, A/d) and algebraic expressions are 
determined by curve-fitting.  The resulting algebraic  expressions are listed 
below. 

Wave profile parameter P 

(1)  P, 

U - D 
where  Fs  =   r e -r° ... (28) 

U =       (H/d)(A/d)2     =    Ursell parameter 

Uro    =      63+90  (H/d)1-"8 ...   (29) 

A.01 exp   (3.31(H/d))   for H/d > 0.505 
0 -   ) ...   (30) 

/ 5.38 for H/d  <  0.505 

(2)            Rp      =     Rpi -   (Rp±- l)exp   (b A/d) ... (31) 

where  Rpi = 1 + 0.0021 (P . - 1) + 6.09 x 10~'(P .- I)2-56       ... (32) 

b   - - 0.0916 + 2.718 x 10""P . ... (33) 
IX 

P   .     =    P -value  for  A/d = 50 
li 1 

(3) P        =    Rp P[ ...   (34) 

Wave celerity parameter N 

1 + 0.19 F 1-5 for F„ < 0.72 

for F„ > 0.72 
(35) 
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where FN = (H/d)(X/d)
0-1 ...(36) 

1 for FD„ < 0.093 RN (5)   h"L„„       , _ ,  „._ ••• (37) 
0.67 F„„ + 0.938 for F„„ > 0.093 

RN RN 

_1 
where F^ = (H/d) (X/d) 4 ... (38) 

(6) N  = RNNj ... (39) 

Orbital velocity parameter M(X) 
(7) For any given wave condition (H/d, X/d) equation (19) can be used to obtain 
numerical values of M(X) for 0 < X £ 0.5. These M(X)-values vary systematically 
from >L at X = 0 to zero at X = 0.5.  It is shown in [27] that M(X) can be 
closely approximated by 

f(M -JOcosirX + 11 for r P < 0.5 
P S        S > > ... (40) 

M voc(r P ,X) for r P > 0.5 
p     l l 1 l 

M is defined in (8) to (10) below and M in (11) below and where r as determined 
by curve-fitting equals : 

rt = 0.4 {1 - Pj"
0-9} ... (41) 

Maximum value M   of orbital velocity parameter MCX) 

(8) The maximum value M of M(X) as determined by equation (19) is always found 
at X = 0. An expressionpfor Mj(0) is determined analytically from equation (19) 
by setting X = 0 and rearrangement : 

Ml(0) -  <-!i_) ... (42) 

where nA  = 1 - nAt and subscript 1 refers to the first-order approximation. 

fl+6.7(H/d)» + °"46 for H/d < 0.7 

(9) Rj, -1 ... (43) 
/ 0.667                    for H/d > 0.7 

for H/d < 0.7 
(10)   Mp = M(0) = \*?i ... (44) 

(R,, M ) for H/d > 0.7 
^ pl H/d=0.7 
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Minimum value M   of orbital velocity parameter M(X) 

(11)  The solution to equation (20) indicates that M =M(0.5) = 0.  However, when 
Pi=l, that is, for very deep water, r =0, thereby indicating a constant 
M(X)-value for 0 < X < 0.5.  The resulting discontinuity at X = 0.5 is 
unrealistic.  To a lesser extent the same phenomenon occurs for 1 < P < 2.  To 
prevent the discontinuity from occurring, the following approximations are 
made : (i) M(X)-values in the area 0.45 < X < 0.49 are extrapolated to X = 0.5 
and the value thus found is used as a minimum value M for M(X) where 

Mt = P^ exp { - 4.2 (Pi - 1)} ... (45) 

and (ii) the X-variation of M(X) is determined by equation (40a) rather than by 
equation (40b).  It is shown in [27] that the effect of the approximations on 
the predicted horizontal orbital velocity amounts to less than 2%  of the actual 
velocity for any location within the fluid. 

Because M(X) as determined from equation (40) is an approximate solution to 
equation (19), the flow will not be Irrotational. However, computations covering 
the same wave conditions used in Section 3.4 above indicate that & never exceeds 
a few per cent of (2IT/T) and can for practical purposes be assumed equal to 
zero.  This implies that although the flow is,as a result of the approximation 
of M(X).rotational, the rotation is negligible. 

3.6 Presentation of other wave properties 

As stated in Section 1, the aim of the study is the derivation of a simple- 
tc-apply wave theory in which wave characteristics can be computed from algebraic 
expressions.  For this reason, algebraic  expressions were also derived in [27] 
for the following primary wave characteristics, namely,vertical orbital velocity, 
horizontal and vertical orbital excursions, mass transport velocity, group velocity, 
wave energy/unit surface area and the pressure within the wave. Where necessary, 
further parameters were introduced and expressions determined for them by curve- 
fitting techniques, in a similar manner as in Section 3.5 above. 

A quantitative knowledge of secondary wave-induced phenomena, such as shoaling 
of water waves, wave refraction, diffraction and breaking, principal radiation 
stresses, wave set-up, generation of longshore breaker-zone currents, shear 
stresses exerted on the bed due to combined current and wave action, wave-induced 
bed-form generation, sediment entrainment and sediment suspension, is essential 
for the prediction of the effect of waves on the coastal environment.  These 
aspects will be studied in follow-up reports to [27]. 

3.7 Tabulation of parameters 

To facilitate the easy use of the theory, it is essential to tabulate the main 
parameters in terms of the wave conditions (H/d, X/d), in a way similar to 
that for linear wave theory.  It is intended to publish such a book of tables 
in 1979.  However, abridged tables are included here as Tables 1 to 4. 

4.   VERIFICATION OF WATER WAVE THEORIES 

4.1 Evaluation 

The various theories mentioned in Section 2 are evaluated in this section (see 
Table 6).  The data sets used in the evaluation are summarized in Table 7.  There 
are various methods for the verification of wave theories.  Dean [7] mentions 
two methods, namely (1) an analytical verification, that is, the adherence of each 
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TABLE t  :  \/i A * FUNCTION OF B,'d AMD T^7d 

^ .01 .0! .01 .10 .20 .30 .40 .50 .60 .70 ... .90 1.00 

.64 
2.51 2.51 

.16 

,64~ 
2.51 

.16 

1 
.64 

2.52 
';_  .64 

2.53 2.53 2.54 
6 

7.17 
4.91 

7 20 
5.05 5.13 5.21 5.28 

7.97 8.26   ; 8.53 8.77 
10 9,34 9.34 9.15 9.37 9.49 9.72 9.95 10.20 10.52 10.98 hi.42 11.84 12.23 
11 11,45 11.45 11.47 11.49 11.63 11.92 12.22 12.54 13.00 13.62 t*.21J_ 14.78 15.33 
14 13.53 13.53 13.55 13.59 13.73 14.08 14.45 14.81 15.44 16.20 16.94 i 17,66 18.35 
16 15,59 15.59 15.61 15.66 15.81 16.22 16.65 17.09 17.84 18.75 19.63   \ 20.49 21.33 
16 17,64 17.64 17.66 17.71 17.88 18.34 18.82 19.34 20.23 21.27 22.29 23.29 24.26 
20 19,67 19.68 19.70 19.76 19.93 20.45 20.99 21.57 22.60 23.78 24.9* ^   26.07 27.17 
25 14,74 24.75 24.78 24.86 25.06 25.68 26.37 27.09 28.52 30.03 31.51 ;  32.96 34.39 
30 29.78 29.79 29.83 29.93 30.19 10.89 31.71 32.58 34.41 36.2* 38.05 ; J9.82 4i.se 
3S 34.82 34.83 34.88 34.99 35.30 36.08 37.04 38.05 40.29 42.45 44.57 ! 46.60 48.73 
to 39.84 39.85 39.91 40.05 40.41 41.25 42.34 43.63 46,17 48.65 51.11 • 53.51 55.88 
45 44.86 44.87 44.94 45.10 45.51 46.42 47.64 49.19 52.05 54.86 57.64 1 60.35 63.02 
SO 49.88 49.89 49.97 50.14 50.61 51.59 52.94 54.75 57.94 61.07 64.16 I 67.19 70.17 
75 74.93 74.95 75.07 75.36 76.10 77.35 79.37 82.60 87.44 92.18 96.87 Il01.44 105.95 

100 99.95 99.99 100.15 100.55 101.60 103.08 105.76 110.57 117.07 123.43 129.70 ll35.83 141.86 

SH/d 
.02 .05 -.0 .» .30 ... .50 .60 .70 .80 ... ,... 

1.00 1.00 1.00 1.01 ; 1.02 

I 1.00 

1.00 

1.00 

1.00 

1.00 1.01 

1.02 

1.01 

1.03 

1.0* 1.08 1.13 

1.12 •"".»-. ,.,2 

1.18 T.Ta ;     2.9i 

8 1.00 1.01 1.02 1.05 1.20 1.20 1.22 1.2* 2.89 4.79 6.19 7.18 

12 

1.00 l.Ot 

1.33 2.10 

2.26 

3.66 5.31 

3.42 3.67 

8.24 

5.92 

10.17 

7.46 

11.09 l"l"l736! 

9.00 

11.31 

9.34 

14 1.00 1.01 1.67 2.87 5.50 8.46 11.60 14.50 IS. 78 15.71 IS.Oil 14.14 13.31 

16 1.00 1.14 2.0) 3.80 7.75 12.41 17.57 22.54 22.82 21.39 19.43 17.52 15.88 

IS 1.00 1.31 2.57 4.90 10.46 17.19 24.84 32.37 31.30 28.15 24.64 i      21.47 18.86 

20 

25 32.58 

10 1.66 2.88 7,10 15.51 36.41 62.85 94.75 128.4* 112.34 91.27 72.36 "l   57.15 45.47 

35 2.09 3.S3 9.91 22,03 51.86 89.87 136.68 187.42 161.23 128.67 100.28 |   77.86 60.87 

40 2.61 4.97 13.31 29.76 69,63 121.35 185.99 257.80 219.03 172.48 132.77 ! 101.89 78.72 

45 3.21 6.32 17.29 38.63 90.25 157.22 242.61 339.66 285.69 222.63 169.78 i129.18 98.96 

SO 3.90 7.88 21.85 48.61 113.09 197.51 306.46 433.01 361.15 279.04 211.26 ;159.70 121.58 

75 S.90 19.06 52.77 114.46 263.18 462.16 731.16 1069.56 867.24 652.74 484.39 j360.24 270.11 

100 16.64 35.74 96.45 206.64 472.91 831.74 1326.40 1979.69 1560.47 1175.31 865.54 1640.13 477.35 

i DinusiOMLCSS r A nntCTiOM or aid AKD \/A 

.01 .02 .05 ..0 .20 .30 ... .50 .60 .70 .80 .90 1.00 

, • *980 .4*78 .4974 .4966! .4951 

2 .4979 .4976 .4968 .4953 .4923 !  .4893 

6 .4976 

.4973 

.4970 

.4957 .4930 .4674 

.4832 

.4819 

.4754 

.4775 .67591 

.4666' 

.4763 

i     .3170 

8 .4975 .4967 .4941 .4691 .4649 .46*6 .4618 .*583 .3180 .2511 

.2028 

.2323 .2069 

ID .4974 .4965 .4909 .4262 .3550 .3163 .2941 .2646 .2271 -1.191* .1855 .1621 

12 .4973 .4963 .4* S9 .3667 .2641 .2390 .2108 .1936 .17*7 .1675 \V6S8 .1659 .1672 

14 .4973 .4962 .4047 .3186 .2351 .1911 .1639 .1469 .1*09 .1412 .1444 .1487 .1532 

16 .4972 .4736 .3679 .2801 .1994 .1585 .1136 .1182 .1175 .1213 .1272 .1338 .1403 

IS .4972 .4*75 .3353 .2484 .1723 .1351 .1126 .0988 .1004 .1059 .1131 !      .1210 .1290 

20 .4952 .4225 .3068 .2224 .1514 .1175 .0973 .08*8 .0876 .0937 .1015 ;     .1101 .1189 

25 .4496 .3657 .2497 .1743 .1155 .0885 .0725 .0627 .0662 .0725 .0803 1    .0691 .0985 

30 .4065 .3182 .2061 .1421 .0912 .0710 .OS79 .0497 .0532 .0S90 .0662 ,   .0745 .0834 

35 .3676 .2790 .1769 .1195 .0782 .059* .0482 .0412 .0444 .0497 .0562 !   .0638 .0722 

40 .3332 .2*67 .1532 .1030 .0674 .0512 .0413 .0351 .0381 .0429 .0489 |  .0558 .0635 

45 .3030 .2200 .1347 .0905 .0593 .0450 .0362 .0306 .0334 .0378 .0433 ;   .0496 .0566 

so .2766 .1978 .1200 .0807 .0530 .0401 .0322 .0271 .0297 .0338 .0388 i   .0446 .0311 

75 .1665 .1284 .0775 .0527 .03*8 .0262 .0209 .0)72 .0192 .0221 .0256 !  .0297 .0343 

100 .1373 .09*0 .0574 .0392 .0259 .0196 .oiSS .0127 
•01" 

.0165 .0192 ;  .0223 .0258 

»pproi«im«t* th«ore 
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kXIMUJI ORBITAL  VELOCITY  PARAMETER   ( 

^r 01 .02 05 10 20 30 40 50 60 .70 80 ,0             , 00 

I 000 1.000             1 000             1 000 ;        1 000 

2             ] 000 

000 

1.000           1 

1.000             1 

000             1 r 000        '• 1 000 

OOO 000           1 000             1 000           1 000 ;          1 

6             ] 000 1.000             1 000             1 000             1 000             1 000             1 000             1 000           1 000 '     1.000 

8             1 000 1.000             1 000             | 000             1 018             1 000             1 000             1 000           1 005 1.104 1         1 104             1 104 

10             1 000 1.000             1 002             1 115             1 261             1 326             1 308             1 216           1 320 1.313           |l 313             1 313             1 313 

12             I 000 1.000             1 084             1 260             1 514             1 670             1 721             1 673           1 642 1.540             1 540;           1 540             1 540 

14             1 000 1.000             1 173             1 415             I 776            2 018             2 13)             2 114             1 970 1.779             1 7 79    ;        1 779             1 7 79 

16            ] 000 1.037             1 270             1 579            2 047            2 371             2 539            2 548            2 301 2.026            2 026            2 026            2 026 

18             1 000 1.087             1 372             1 750            2 325            2 727             2 94 5            2 974             2 633 2.278             2 278      !     2 278             I 278 

20             1 001 1.139             1 480             1 928            2 609            3 085            3 347             3 392             2 964 2.533             2 533       ;    2 533             2 533 

2*             1 085 1.285             1 769            2 39 7             3 332           3 977            4 335            4 406            3 781 3.175            3 175        '   3 175             3 175 

30           ! 179 1.446            2 08!             2 888            4 060            4 856             5 29R             5 389            4 584 3.814             3 814          i 3 814             3 814 

35           l 283 1.621             2 4IU            3 391             4 783             5 721             6 24 2            6 353            5 376 4.450            4 450         i 4 450             4 450 

40             ] 394 1 .806            2 752            3 899            5 500            6 576            7 175            7 305            6 162 5.083            5 083         i  5 083             5 083 

45             1 513 2.001             3 101            4 408             6 21 1             7 423            8 101             8 249            6 944 5.715             5 715        i 5 715             5 715 

SO           1 638 2.203             3 4 50            4 915          6 917            8 266            9 022            9 188            7 723 6.345             6 345         i 6 345             6 345 

75           2 332 3.285           5 241             7 418         10 410         12 440         13 585         13 845          1 1 594 9.487           9 487         [9 487             9 487 

100            3 097 4.412             7 007            9 893         13 876          16 587         18 119         18 472          15 448 12.622         12 622          HI 622           12 62 2 

TABLE  5   :   REVIEW OF AVAILABLE  PERIODIC < HAVE  THEORIES 

NAMES  OF 
THEORIES 

COVERUING 
EQUATIONS 

IRROTATIO- 
NAL     FLOW 
 ANALYTICAL VALIDITY 

ADHEKENCE TO 

ADVANTAGEOUS 

PROPERTIES 

REFERENCE TO 
LITERATURE 

CONTINUITY KEBC KFSBC DFSBC 

Stokes  I,   II,  V, La  Place 
La Place 

•/ / ' * « n   In all  water  depths 
HI.   [5],   HI], 
[23], [24 3, [15], 
[19J, [25] 

D-n'. nu-Krlcl  » La Place / / / / * c, n  In  tabulated range [6],   [7] 

Hedges modified  c 

Van Hijunfc simplified 
cnoldal  (p-uave) 

La Place 

mas9 and eq 
of 

/ 
/ 

/ 
/ » 

c  in all waterdepths 
u at wave  crest   In all 

useful  simplification 
of  cnoldal  n 

[10], [18] 

E9] 
[30] 

Mejlhede's cnoldal m^nr*,0 of 
of 

* / / / / useful higher order [19] 

Van Hijum's  numerical rotational  f low 
14 / / / / all boundary conditions 

exactly  satisfied   for 
both (13! and  [29] 

[29] 

:   THEORIES EVALUATED TABLE 7   :   NUMBER OF DATA SETS  FOR EACH DATA ORIGIN 

NAME OF THEORY 
THEORY 

NUMBER 
REFERENCE TO LITERATURE 

Stokes  I  (Airy) , Airy  11],   Ippen  [11] 

Stokes  II 3 Stokes   [24],   Ippen   [11] 

Stokes V 10 Be  [5],   Skjelbrela  [23] 

Dean 11 Dean  [6],   [7] 

Svendsen's cnoidal 4 Svendsen   [25] 

Keulegan et al's cnoidal 12 Keulegan et  al   [15] 

Mejlhede's cnoidal 13 Nejlhede  [19] 

Mejlhede   1    ;   B"0 6 Mejlhede  [19] 

Mejlhede  2  ;  61*0 7 Mejlhede  [19] 

Hedges 9 Hedges   [10],   Lewis   [18] 

Coda 2 Coda   [9] 

p-uave 8 Van Hijum   [30] 

Vocoidal 5 Swart  [27] 

DATA ORIGIN ORBITAL 
VELOCITY u 

WAVE 
PROFILE n 

WAVE 

LENGTH X/d 

Le Hehaute et al  (1978)[17] 8 1 

Iwagakl and  Sakai  (1970)[12) 12 21 

Morison andCrooke (1953)[2l) 5 

Goda (1964)[9] 18 

Van Hijum (1972)[30] 25 

Tsuckiya & Yarnsguchi  (1972}[28] 2 75 

Knoesen (1976)[16J 36 

Wlegel  (1960)   (33] 2 

Dean  (1965)    [6] 1 

Iwagakl t, Yamaguchi  (1972)[13J 67 

Karpul (1968M14] 29 

NRIO  (1977) 27 217 217 

TOTAL 124 280 359 
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theory to the free-surface boundary conditions, and (2) an experimental 
verification, based on the adherence of each theory to observed data. Another 
possibility exists, namely,(3) a comparison of each theory with an exact solution 
to the governing equations, such as Cokelet's numerical theory. Possibilities 
(1) and (3) test the extent to which any given theory adheres to the governing 
equations and boundary conditions, but do not necessarily indicate the correlation 
with observed data.  The reason for this is that the governing equations are in 
themselves approximations;  they do not include the effects of, for example, 
surface tension and the bed slope, both of which are important near wave breaking. 
Provided that observations can be made with sufficient accuracy under controlled 
conditions, i.e. when errors due to both measuring equipment (techniques) and 
the generation of waves in too shallow water are minimized, experimental 
verification is the most reliable of the above methods.  However, the available 
data are frequently contaminated, especially by secondary waves because of the 
method of generation used.  Because of the large number of data sets used (see 
Table 7) errors due to both generation and measuring techniques are to some 
degree averaged out. 

Dean's computations [7] regarding the adherence of various theories to the free- 
surface boundary conditions indicate that this measure (analytical verification) 
is not always a true reflection of the relative validity of the various theories. 
For example, the Stokes I (Airy) theory (derived for deep water) has a smaller 
dynamic free surface boundary condition error than the cnoidal theory (derived 
for shallow water) under shallow water conditions (H/H^ 1 where b.denotes breaking 
waves, d/XQ <0.195) (Dean [7]). Therefore, the analytical verification,in the 
way defined by Dean [7], is not discussed further in this paper.  However, an 
extensive analysis of the analytical verification of the above 13 theories will 
be contained in a follow-up to [27], which is being prepared at present. 

A practical comparison with Cokelet's theory is not yet possible, because the 
tabulation of parameters in Cokelet's theory permits only the calculation of 
wave characteristics which are independent of time. However, the comparison 
between the theories of Dean and Cokelet, mentioned in Section 2.4 above, indicates 
that Dean's theory can, for engineering purposes, be assumed to be an "exact" 
solution to the "approximate" governing equations. 

The following procedure has been adopted to establish experimental validity : 
(1) The relative error E for each wave characteristic W is given by : 

W - W 
Er -  I -JVJl I ••• (46) 

m 

where subscripts p and m denote predicted and measured values, respectively. 
(2) Relative errors for the orbital velocity u under the wave crest, wave length 

X and wave profile n are computed by applying each theory to all data sets 
for which relevant data are available. 

(3) To assist the evaluation of the application range of the various wave theories, 
an Ursell-like parameter which depends solely on the wave conditions T, d 
and H, is defined, namely, 

F = (H/d)* T ^ ... (47) 
c c 

where T = T (g/d)* = (2ir) * (X /d) * ... (48) 

A wave with a height H = lm and period T = 8s has Fc-values of 0.3, 17, 

934 and 3143 in water depths of 200m, 20m, 2m and lm respectively, that 
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is;F varies from zero in very deep water to a few thousand in very 
shallow water.  The values of F for shallow water are limited by 
wave breaking. 

(4) For each wave characteristic and wave theory the mean and standard 
deviation of the absolute values of all relative errors are computed 
for each of the following F -groups (0-50, 50-100, 100-200, 200-500, 
500-1000 and > 1000).  Those theories which do not differ at a 5% 
significance level from the theory with the smallest mean relative 
error in each of the above-mentioned F -groups are singled out as being 
the best theories for the prediction of the specific wave characteristic 
in that F -group.  A theory is considered to fall within its validity 
area if it passes this statistical test. 

(5) The resulting validity areas of the various theories for the prediction 
of u, A and ri are shown in Figures 1 to 3.  Also shown in each F -group 
is the average of the mean relative errors of the equivalent good 
theories. 

(6) Figure 4 indicates the overall validity areas of the evaluated theories 
and, as such represents a generalized experimental validity, which is not 
bound to a specific wave characteristic.  The theories listed in this 
figure are those with a higher than average occurrence in any given 
F -group (that is those appearing two or three times in the specific F - 
group on Figures 1 to 3). 

4.2 Results 

(1) According to Figure 4 only two wave theories are valid for all F -groups, 
namely, Dean's stream function theory and Vocoidal theory, that xs, only these 
two theories are suggested for application in all relative water depths 
(theory numbers are listed in Table 6). 

(2) However, Dean's tabulated range restricts the application of his theory 
at both high and low H/d values. 

(3) In the restricted range of Dean's tables there is no significant difference 
between Dean's results and those obtained by Vocoidal theory.  It can 
therefore be concluded that Vocoidal theory is equivalent at a 5% significance 
level to Dean's theory, which in turn was shown,for engineering purposes, 
to be an "exact" solution to the governing equations. 

(4) The wave profile predicted by Vocoidal theory for F <200 is not statistically 
equivalent to the best theories in this range.  The relative errors in 
the 0-50, 50-100 and 100-200 F -groups for Vocoidal theory are 6%, 7% and 
8% respectively, as compared to 5%, 5% and 7% for the best theories. 

(5) Within its application range, i.e. for (T/g/d) <0.126, Mejlhede's gravity 
cnoidal theory is statistically equivalent to Dean's stream function theory 
and Vocoidal theory. The same does not apply to the Keulegan/Patterson and 
Svendsen cnoidal theories [15], [25]. 

(6) Stokes I, II and V are statistically equivalent to the better theories for 
F < 200, 100 and 200 respectively, which indicates that the use of Stokes 
II theory for anything but deep water is normally not advisable and that 
Stokes I is, generally speaking, equivalent to Stokes V. 

(7) Goda's theory is listed in the 500 < F < 1000 column only because of its 
good adherence to orbital velocity data. 

(8) Mejlhede's rotational cnoidal theory is statistically equivalent to the 
better theories for F < 200.  Beyond this range, it yields unrealistic 
horizontal orbital velocities under the wave crest, which tend to zero at 
the bed and to some extremely high value (far greater than the wave celerity) 
at the free surface. 
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(9)  The simple-to-apply Van Hijurn-approximation to cnoidal theory is statistically 
equivalent to the better theories for F < 200.  It should preferably not be 
used beyond this range because the predicted horizontal orbital velocity 
tends to a constant value over the full depth from bed to free surface. 

5.   SUMMARY AND CONCLUSIONS 

1. There is a need for a water wave theory which is (i) sufficiently accurate in 
all relative water depths, (ii) expressed in terms of algebraic expressions, 
(lii) relatively easy to apply/require little computer time and (iv) well-tabulated. 
None of the available theories meets all these requirements. 

2. Vocoidal theory has therefore been developed from first principles in answer 
to these needs.  The theory is simple to apply and is expressed algebraicly (see 
equations (13), (16) and (17)). 

3. Frictionless flow was assumed in the derivation of Vocoidal theory, but because 
of an approximation made in the representation of the time-variation of the 
horizontal orbital velocity, the theory contains a small rotation, which can, for 
practical pruposes, be neglected. 

4. An extensive analysis of the experimental validity of thirteen different theories 
indicates that only two of the evaluated theories consistently yield good results 
in all relative water depths, namely, Vocoidal theory and Dean's stream function 
theory. 

5. Dean's theory is only applicable in a restricted H/d-range (see - 11 - line in 
Figure 4), which can never be extended beyond H/d = 0.78. 

6. Vocoidal theory is therefore recommended for general application for all relative 
water depths. 
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