
CHAPTER 25 

EXCITATION OF LOW FREQUENCY TRAPPED WAVES 

by 

ROBERT KING*& RONALD SMITH** 

Weak nonlinear interactions in water of non-constant depth between 
an incident wave, a side-band incident wave and a relatively low fre- 
quency trapped wave are shown to lead to the generation of the trapped 
wave. Three situations are considered in detail: edge waves in a wide 
rectangular basin, progressive edge waves on a straight beach, and stand- 
ing waves in a narrow wave tank. 

1.  Introduction 

The formation of crescent-shaped sand-bars along laboratory beaches 
was shown by Bowen and Inman (1971)  to be due to the presence of stand- 
ing edge waves. For their explanation to be relevant to naturally occur- 
ring crescentic bars it would be necessary for the edge waves to have 
periods of between 30 and 60 seconds.  It is thus of interest to consider 
how such standing edge waves are generated. A possible mechanism would 
be via resonant interactions between two edge waves and an incident 
untrapped wave (Guza and Davis, 1974). However, for this to produce edge 
waves of the required period the necessary periods of the incident waves 
would be between 15 and 30 seconds, but, typically, there is not much 
surface wave energy at such long periods (Sonu, 1972). 

In this paper we consider a wavefield consisting of a relatively 
short scale incident wave, the dominant Fourier component of which is 
characterised by (w,k) , and a long scale trapped wave characterised by 
(a,<). The wavelength of the long scale motion is taken to be much 
greater than that of the short scale motion, i.e. |k| >> |K|. This means 
that, except in the immediate vicinity of the shoreline, we can assume 
the water to be "deep" with respect to (u,k) and "shallow" with respect 
to (C,K).  Since the system is non-linear, weakly non-linear interactions 
give rise to the harmonics (w + o,k + K) being present. 
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Now, if 01 » a , then the harmonics (u) _+ a,k +_  K) are very close 
to (w,k) and therefore almost satisfy the dispersion relation for inci- 
dent waves. Thus, there is an almost-resonant triad consisting of the 
short scale wave (oo,k), one of the side-band waves (u + a,k +_ K) and the 
long scale wave (O,K).  Indeed, if the strong inequalities are relaxed 
then there can be exact resonance between two incident and one trapped 
wave (Gallagher, 1971). The existence of such a triad of waves makes 
it feasible for there to be a significant energy transfer from (u,k) to 
(O,K)        (Phillips, 1974). Numerical estimates made in §2.4 
suggests that edge waves in the sea can be generated by the side-band 
mechanism. 

As has been pointed out by Phillips (1974), resonant interactions 
between waves of different length scales can be interpreted as short 
waves propagating on a non-uniform current.  It was shown by Longuet- 
Higgins and Stewart (1961) that there is not a partition between wave 
energy and stream energy. However, in the absence of dissipation there 
is a conserved property of the short waves - wave action - which can be 
identified with wave energy when there is no current (Bretherton and 
Garrett, 1968).  In the present problem the current is of limited extent 
and from wave action considerations it can be concluded that, in the 
absence of dissipation, there is no net energy transfer from the short 
waves to the trapped waves.  Specifically, the energy feed from the 
incident wavetrain is exactly negated by the energy extracted by the 
reflected waves. Through ignoring the presence of any reflected waves, 
the mechanism being studied in this paper relies crucially upon there 
being dissipation, particularly near the shoreline. 

Although the generation of standing edge waves is the primary 
concern of this paper, the side-band mechanism need not be restricted to 
standing waves nor to edge waves.  In §§3 and 4 respectively, we briefly 
consider the generation of progressive edge waves on an open beach and 
the generation of longitudinal standing waves in a narrow wave tank.  It 
is hoped that this latter situation might permit laboratory testing of 
the side-band mechanism using apparatus of modest dimensions. 

2. The generation of standing edge waves 

2.1 Equations of motion 

Consider a body of water, the free surface of which is at rest,z=0, 
where z is measured vertically upwards. The equations for small amp- 
litude oscillations of an ideal fluid can be written in the form 

V2$ + $  =o, 
zz   ' 

$
tt 

+ g* = R at z * 0, 

$ + Vh.VO =0 at z = -h(x), z ~ ' 
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where $ denotes the velocity potential, h(x) the depth, V the horizontal 
gradient operator and R represents complicated nonlinear terms which are, 
correct to second order in the wave amplitude, 

R = -V.($tV$) -3t[i(V$)
2 + \§\  + g~2 0t *ttt]. 

If W(x,z; a) represents a free standing wave mode of the undamped 
linear system with frequency a, then W satisfies the equations 

V2W + W  =0, -o2W + gW = 0 at z = 0, W + Vh.VW = 0 at z = -h(x). zz   '       ° z z V 

For each eigenfunction W an application of Green'o Theorem leads to the 
evolution equation 

(f2 
+ °2) f  Mz=0 

+ sj   f (•- -**)  = |  Mz=o  «•» \  dt2    / J
n    

z      J3f2->-hx  3n    3n /    hi 

where fi denotes the water surface, 3ft the boundary of Q  and 3/3n denotes 
differentiation along the outward normal to 3fl.  If fi is of infinite 
extent, then, to assure the convergence of the integrals, it may be 
necessary to take W to be that leaky trapped wave which decays exponen- 
tially at infinity (Longuet-Higgins, 1967). Equation (2.1) enables us 
to determine the effect of the nonlinearity upon the evolution of the 
standing waves without the necessity of explicitly evaluating the corre- 
ction terms.due to the nonlinearity.  It corresponds to the non-seculari- 
ty or integrability condition which arises in a direct solution of the 
governing differential equations (Bretherton and Garrett, 1968). 

Let w(z;u,h) be a local solution to the progressive wave eigenvalue 
problem for waves of frequency to: 

-(V6)2w + w  = 0, 
zz 

w = 1 and w = w2/g at z = 0, 

w = 0 at z = -h(x) , 

where |V8[ is the local wave-number (eigenvalue). The equation which 
enables us to focus our attention on the effect of nonlinearity on the 
co-component of the wavefield is 

f° 
(32 + uz)$z=0-g    w(V

2+(V6)2)$dz - gvh.[wV$] =_h = R.       (2.2) 
J -h 

Just as it is not essential to explicitly evaluate the nonlinear 
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corrections to $, in both equations (2.1) and (2.2) the vertical 
structure of $ need not be represented exactly. This fact will be used 
subsequently when w(z; <i) _+a ,h) are approximated firstly by w(z; w,h) 
and then by w(z; w,°°). 

The model equations presented above are inadequate to describe the 
complicated structure of the surf zone. This problem is most easily 
overcome by making the following assumptions: (a) The incident short 
waves are not reflected at the beach, yet the trapped waves are totally 
reflected.  (b) The wavelength of the incident waves does not change as 
they shoal. The consequence of these assumptions is that our approxi- 
mation for $, and more particularly R, is grossly in error in the immed- 
iate vicinity of the shoreline. As can be seen from equation (2.1), a 
local error in R need not greatly effect our estimate of the growth rate 
of the standing wave.  In the calculations given below, assumption (a) 
is made at the onset but the use of assumption (b) is delayed. 

The assumptions (a) and (b) were also made by Gallagher (1971). For 
his analysis it is extremely difficult to provide a justification 

because there is not a marked disparity in length scales between the 
incident and trapped waves. Guza and Davis (1974) chose the opposite 
extreme of perfect reflection of the incident waves.  The no-reflection 
boundary condition is also appropriate to situations where there is no 
coastal boundary, such as in the excitation of ducted waves on an under- 
sea ridge (Buchwald, 1969) . 

On vertical sections of the boundary we impose the normal velocity 
conditions 

3W/3n = 0,   3$/3n = Q, 

where Q is non-zero on those sections of the boundary which are being 
used (or interpreted) as being wavemakers for the generation of the 
incident waves. 

2.2 Side-band representation 

For the interaction mechanism under consideration, the wavefield is 
dominated by the incident wave of frequency w and the standing trapped 
wave of frequency a.    A vitally important role is also played by the 
side-band incident waves of frequencies to +_ a. Accordingly, we write 
the velocity potential as 

= exp(iwt-i6(x)) * (x,t)w(z;u,h) + $+(x,t)w(z;(o+cr,h)e 

+ $ (x,t)w(z;oo-a,h)e lff  + W(x,z;a)n(t) 
-  A. J ^ 

(2.3) 

+ * + 

Here $0, $ and n are the slowly-varying amplitudes of the incident, 
side-band and the trapped waves respectively. All other contributions 
to the wavefield are assumed to play no significant role in the gener- 
ation of the trapped waves, and are collectively represented by $. The 
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formally largest of such neglected terms are virtual modes with freq- 
uencies 2u>, 2a and the wave set-up which has zero frequency. Reflect- 
ions on the vertical sections of the boundary 3fi could be represented 
by permitting $ , $ and 6 to be multiple-valued. 

Substituting for $ in (2.2) and equating exp(iwt - i6) terms gives 

2iio$ + $ 
tt 

w{2V8.V(w$ )   + W$ V29}  dz - wV2(wl> ) dz 
i      o 

-gVh.fwV($ w)]r = R 

where w stands for w(z; co,h) and R0 is the exp(iwt - i6) term in the 
side-band representation for the nonlinear terms. For the side-band 
amplitudes <t>+ similar equations involving w(z;to a,h) are obtained. We 

note that even though we shall only represent R correct to quadratic 
terms, the explicit representation for R0 in terms of $T', n is quite 
unwieldy. 

We now make the following simplifying assumptions 

in » a ,  j V6 | L » 1 , u/(L|ve|) » n Jr 

where L is a length scale appropriate to either the topographic varia- 
tions or to the trapped waves. Physically the assumptions mean that 
the incident wave is very short and that an individual wave packet is 
"unaware" that the standing wave is growing in amplitude. Mathematic- 
ally the assumptions mean that in the expression for R0, and the corr- 
esponding expressions in the equation for the side-bands, derivatives 
of the short wave exponent (ait - 6(x)) dominate derivatives either of 
the wave amplitude 0 , $  n or of the mode shapes w, W. Also, we can 
justify approximating w(z;u ± a,h) by w(z;io,h).  Retaining only the 
largest real and imaginary terms, we can simplify the equations for the 
progressive waves to 

c.V$Q + (v + ^V.c)$0 = W m2q2 + iVe.VW 

-  82 

(n $+ + n$_) 

(2.4a) 

- (ve)2 
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c.V$, + ia$ + (v + |V.c)0 

P - (ve)^ 

w A2 + ive.vw 
2 

8 

n$0 

aW 
2w n$, 

(2.4b) 

c.V0_ - ia$_ + (v + |V.c)$ = [wu)2a2 + 
L~1F 

ive.vw Tl 0 

+ [< " W)2] •IT- W)2|f „••., 

(2.4c) 

where £ is the group velocity of the incident waves of frequency w, and 
the v terms are an empirical representation of the damping. The left- 
hand side terms could have been anticipated from the fact that in the 
absence of currents and damping, the wave energy of the short waves 
propagates at the group velocity. 

If the low frequency component of the wavemaker motion is neglected 
and if W is normalised: 

f M   -£_2> 1 a      z=o 

iat 
then substituting (2.3) into (2.1),and equating coefficients of e  , 
we obtain the following simplification of the standing wave equation 

nt + V'n " j     (#*$+ + $Q$*)   U w(|2 - (ve)2)   + i^ve.vwl i2 

- it»H2 

CT 
ft *      Pi A 

3S2.      o +        o -    an      ' z=0 
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($*$ - $ $*) 2 u3a W| I2  - U2 

JJi ° +  °    1*"  z=0  la 
|RW| 

ft-fii   z=0    (2.5) 

Here, v' is an empirical representation of damping, fii denotes that 
region of the water surface in which (2.3) is thought to be an 
adequate description of the waves, and in fli we have only retained the 
largest real and largest imaginary contributions to R.  If 8 were mul- 
tiple-valued (due to there being reflections off vertical portions of 
9fi) then different branches of 6 would contribute separately to the 
nonlinear terms. 

To make further progress we must either give a description of the 
waves which is valid in the surf zone J2 - fii or we must be able to 
neglect the fi - fii term in (2.5). Here we choose the latter alternative. 
It is reasonable to assume that the effects of both reflection and strong 
nonlinearities is to keep the interaction term R bounded. Thus to 
ignore the effect of the fl - fii region it suffices that it has small 
extent relative to the interaction region. The previously assumed 
disparity of length scales between the incident and trapped waves adds 
credence to this further assumption. 

We observe that all the retained quadratic terms in equations (2.A) 
and (2.5) involve derivatives of the short wave exponent (wt - 8).  Thus 
6f the formally largest neglected terms in (2.3) it is only the 
2(wt - 6) virtual modes which would lead to any change in equations 
(2.4) or (2.5). A calculation akin to that of Stokes (1849) leads to 
the extra terms 

iA$2$ ,  iX$2$ ,   U$2$* 
oo'     o -      o + 

on the right-hand sides of equations (2.4a,b,c), where 

X =  £w3k2g~2 (1 + i Coth 4 kh). 

These terms play a very minor role in the energy transfer mechanism and 
for simplicity we continue to ignore them. 

2.3 Onset of instability 

To explain the onset of the instability we assume that the system 
is started from a state of near rest and we can thus regard the side- 
bands $+ and the standing wave n as being of very small amplitude. Thus 
the incident wave amplitude $ approximately satisfies the linear 
equation 



456 COASTAL ENGINEERING—1978 

CoV$    +  (v +  |V.c)$    = 0, 
/W 0 A, 0 

(2.6) 

and the perturbation quantities $ ', $_, n satisfy couple linear 
equations.  The form of equations (2.5) leads us to define the sum and 
difference terms: 

& & ft      w 
11 o1    o+   o-   ' o' o+   o - 

where during the initial stages of the instability S and D satisfy 
the first order differential equations 

c.VS + icrS = 2 uza2w| 
z=0' 

(2.7) 

C.VD + iaD = 2ive.vw| . -(—> - (ve)2) £wi n n, ' Z=0   g U) ' Z=U 

The boundary conditions for these equations are that S = D = 0 far away 
from the interaction region.  It now follows from equation (2.5), with 
the fi - fii term neglected, that r\  grows exponentially with time, the 
exponent being 

I2 s[iw<*£ (ve)2) + i Hi ve.vw a2 

z=0 

J>  I2 D 2 ui3a wlil2    -  I       1$  I 0 "?•      z=0      W   ° 
id) SW 

z=0 8n 

(2.8) 

£2. 

The condition for there to be an instability is that the time 
exponent (2.8) should have a positive real part. 

2.4 Uniformly sloping beach 

In the representation (2.3) no account is taken of any reflection 
of the short waves. As a consequence, even if there is no wave- 
breaking the description is inappropriate near the shoreline and 
predicts spurious singularities. For our present purposes these 
singularities are particularly unfortunate in that the expression (2.8) 
is sensitive to our choice of fii.  It is to avoid this dilemma that we 
invoke the assumption (b) referred to in §2.1. Thus we assume that the 
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beach angle is so steep that the deep water description for the inci- 
dent waves is appropriate in a region Qi  which extends to within the 
order of one wavelength of the shoreline.  Since the modified repre- 
sentation for $ is free from singularities (though still not valid in 
Q  - fii) we can also approximate fii by the entire water region fi in the 
integrals (2„8). 

The only geometry for which an exact solution for a linear trapped 
wave is known is a beach of constant slope in a channel with parallel 
vertical walls which are orthogonal to the beach. The exact solutions 
involve a superposition of exponentials (Ursell, 1952), the normalised 
solution for the lowest mode being 

W = 2 2(cos a)2 TT cos Jly exp(-£xcosa+ £zsin a), a 

where a is the beach angle and TT/£ is the distance between the vertical 
wallso  If we are to retain the convenience of working only with 
exponential functions, then it is necessary that the coefficients c, V 
in equations (2.6-2.7) are constants Fortunately, this is indeed the 
case when the beach angle is sufficiently steep (i.e. (a/w)2 « tan2a) 
that the deep water approximation (b) can be used. For incident waves 
normal to the beach the appropriate solutions to equations (2.6-2.8) for 
the lowest mode edge waves are 

=A exp (vx/c)  with  c = (-c, 0, 0), 

S = 2 u %  sin a wl z=0 

g(c£cos a + ia) 

D = i2 w2£ cos a wl z=0 

g(c£cos a + ia) 

exponent = v1 + |A|
2
 2 u)5icos a 

g3 

1 + i(c£cos a/a) 'ftcosa + 2(v/c) 

Jlcosa - (v/c) 

Thus, if the wave, steepness w3|A|g 2 exceeds the critical value 

V'w 

2g£cosa 

\ Acosa -  (v/c) 1 

I Jlcosa + 2<v/c) ) (2.9) 

then the edge wave will grow in amplitude. 

As a numerical example of the estimate (2.9), to a moderately large 
laboratory size situation we specify the values 
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a = Tr/6,     I = -rrm    ,    a ^ 4s     ,    u a, 20 s     ,    v/c ^ 10    m    „ 

Although the value of v/c corresponds to a dirty surface, we note 
that (vc/J£) is essentially negligible. Guza and Davis (1974) show that 
a laminar model of edge wave damping gives 

_i  l      _i 
v' = v2to2 cotct 2 % 

where v is_the kinematic viscosity. Thus we can estimate that 
v'^ 7 x 10 3s *, critical steepness ^.05. 

Hence the instability would appear to be realisable in a laboratory 
situation. 

If we regard o/w,  V as being fixed, then we can use the above 
results to determine the dependence of the critical steepness upon the 
beach angle a and wavenumber %: 

s l 
critical steepness ^v£sa8„ 

Thus an increase of the length scale, i.e. a decrease of H,  lowers 
the critical steepness,, Regrettably, the deep water approximation is 
not applicable to naturally occuring beaches where (tana)  is typically 
10  or less.  In such cases there seems no alternative but to allow for 
shoalingo Within the framework of the present calculations, this would 
entail choosing fii as to avoid the spurious singularities„  (The authors 
hope to present at a later date a more complicated calculation procedure 
which avoids the singularities)„ 

3. Progressive edge waves. 

For progressive trapped waves the longshore direction plays the role 
of a second time-coordinate. Although the mathematical consequences of 
this change of role are numerous, they are individually quite minor and 
we can follow the pattern of calculations developed in §2. 

On the assumptions that the coastal curvature is small relative to 
the wavenumber of the trapped waves and that the seaward depth topo- 
graphy varies very slowly in the longshore y-direction, the local eigen- 
value problem for trapped waves of frequency a  and longshore wavenumber 

lp2W = 0,      - a2W + gW = 0 at z 
y ° z 

y 
IS 

W 
XX 

+ W 
zz 
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W +hW =Oatz 
2    XX 

The corresponding integral form of the equations of motion is 

(32 + a2) |w$Jc dx - g 
0 z=0 0  J 

W02  + <|j2)$dzdx + g 
-h 

h [w$]   dx 
to     z=-h 

(3.1) 

-0 -.CO        -CO 

($ 9W - W8J> dz  =    [RW]  dx. 
J-h 3x   3x   Jo   Jo    z=0 

For the progressive waves the eigenvalue problem and integral ver- 
sion of the nonlinear equations remain as in §2.1, but it is natural to 
regard the longshore dependence of the phase measurement 6 as being 
imposed by conditions far from the shore. 

The time-like character of the y-coordinate leads us to modify the 
side-band representation of the wavefield: 

i(wt-e) 
$o(x,y,t)w(z;u,h)+$+(x,y,t)w(z;u+a,h)e

l(at ^ 

(3.2) 

+$_(x,y,t)w(z;io-a,h)e i^at~^  +W(x,z;a,y)n(y,t^1^"^****' . 

Thus, the y-dependence on the length scale of tp  is represented 

explicitly by the ty  exponents, and possible very slow y-dependence 
associated with any instability is represented via the amplitude 
factors $ , $ , n. This representation is assumed to be accurate in a 
region (a, °°) which excludes the shoreline. 

Making the same simplifying assumptions as in §2.2, i.e. 

w » a,  |ve|L » i, (o/(L|ve|) » nt/n. 

we can simplify the equations for the incident waves to 

cx4>0 + (V + |Cl )$o W w2a2 + i9 W 
       X X 

"  82 

(n *+ + n$_) 
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+ |£ _ W)2) |W_ ev*Tw yTy 
(n*$ - n*_), 

X3.3a) 

cx$+    + i(a -c„i|i )$+ +(v + Jc-,  )*+ = 
X " X 

"/w" - (ve)2 \ aw - e ^ w 
(72 }^      ". 

W u2a2 + ie 
g 

w L* c xj     0 

n*0, (3.3b) 

c,$_ - i(a - C2^ )$_ + (v + |c 1 >$- =  |"w. x L. 

T/u" - (ve)2\ aw - e <JJ w]n*$ , 
lb2 ITS    yyi    ° 

n*§ 

(3.3c) 

where(ci, C2, 0) is the group velocity of the incident waves of freq- 
uency a) and the v terms are an empirical allowance for the damping. The 
corresponding equation for the trapped wave is 

n + Cn + (v' + |c' )n = £2 

g 
j^(***+ 

+ *0*!> [iw/^ - (ve)
2) 

A ju8W - u6-.Will dx  +CT ($*$ - $ $*) 2u)3a Wl  dx 
0 +    0 -   r  ' _n a g   z=0 

+ iaii) ($ $ + $ $ )W| 
    o +   o - '  » 
g L z=0 

a 

8  - ia I  [RW]  dx.      (3.4) 
g JQ    Z=0 

where c' is the longshore group velocity of the trapped waves and W is 
normalised: 

r 
|W'| dx = ga 

o    z=0 
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We shall assume that the representation (3.2) applies sufficiently 
close to the shore that the (0,a) term in equation (3.4) can be 
neglected. As noted in §2.2 the particularly simple form of the left- 
hand-side terms is related to the fact that in the absence of inter- 
actions or damping the wave energy of the incident and trapped waves 
propagate at their respective group velocities. 

In considering the onset of instability it is again convenient to 
introduce the sum and difference terms S and D. To determine the 
development of n it is convenient to use axes moving with the local 
group velocity c'. The evolution can be assumed to be exponential only 
if the topography and the incident wave amplitude $0 are both 
independent of y. For the special case of edge waves on a uniformly 
sloping beach of large angle (i.e. tan2a » (a/w)2) it is possible to 
obtain an analytic description of the onset condition 

critical steepness = (1 - i,cz\ v'co 
2g£cosa 

\ ^cosa -Wei I 
| Acosa + 2v/ci \ 

(3.5) 

The group velocity C2 of the incident waves is less than the phase 
velocity oil  of the trapped wave. Thus, the extra factor in (3.5) as 
opposed to (2.9) does not make a substantial reduction in the numerical 
estimates. 

4.  Standing waves in a narrow tank 

Laboratory experiments permit much more stringent testing of 
theories than field measurments, but edge wave experiments can make 
severe demands upon facilities due to the large area of water involved 
(Bowen and Inman, 1969). With this in mind, we now show the side-band 
theory can be used to predict the growth of a standing wave in a narrow 
channel. Numerical estimates of the onset conditions are obtained for 
the particular case of a tank with a sloping bottom and a plane wave- 
maker positioned at one end. As with §3, the pattern of calculations 
developed in §2 can again be followed with only a few minor alterations. 

We consider here a tank of length L and breadth B such that L » B. 
Axes are chosen so that x is measured along the tank, y across the tank 
and z vertically upwards.  In this case we have w(y,z;w,h) as a local 
solution to the progressive wave eigenvalue problem: 

d    w + w 
x    yy 

+ w  = 0, w2w at z 0, 

w = 0 
z at z = -h(x), at y = 0, B, 
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with the normalisation 

fB 
[w2]  dz = B. 

z=0 

For each position x, the local energy transport equation for the 
progressive waves is 

Of + 0)2) 

a 
fB (f° fB 

[w$]       dy -        w(32  + 92)$dzdy - g     [wh $ 1 dy 
Jo   z=0   y-h  x   x        J0  

x x z=-h 

fB 

=  [wR]  dy. 
Jo   z=0 

(4.1) 

Following §2.2, the side-band representation of the wavefield is 
written as 

$ = exp(iwt-i6(x)) $ (x,t)w(y,z;w,h)+$ (x,t)w(y,z;u)+0,h)e 

-iat 
+W(x,z;a)Ti(t)e1Cr,:+*+$' . +$_(x,t)w(y,z;u-a,h)e 

We again make the assumptions 

u » a        |e |L » i,  w » L|e |nfc/n. 

The resulting equations for the progressive waves are 

c$„ + (v + Jc )$ = R . 
o  ^    x o   o' 
x 

(4.2) 

c<f> + ia*. + (v + ic )$ = R , 
+     +        x +   + 

c$_ - ia$_ + (v + |c )<< 
x 

where 

R = B 
o 

1  w w (w w2a2 + ie w i (n*$ + n* ) Jo  L W      xx7       + 

+ aw / u w — 
2w V g 

/ (o"w - e2w + w \ 
\ -p  x   yy; 

(n $+ - n*_) dy, 

z=0 
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R  = B"
1
     W W [ W w2a2 + ie w \n$ ~ aw /(AT - e2w + w  \ 

Jo L \ -?•      »] °   2^1^   x     •) 

°-iz=0 

R    = B w w / W w2cr2 + i6 W   \n $ + aW/io'*w - 62w + w     ) 
o     L    {     -gr xxj       o    ^(-p        x yyj 

dy. 

z=0 

The corresponding equation for the standing wave is 

(•B   rL 
n    + v'n = JIB 

9 W ($$+$$ )dxdy x xj o +      o - 
z" 

+10) 
0 

+ JIB     I     I   2w3a w2W 
'a    g' 

+ JIB -M 
Jo 

rB   r 

ito 6 W        w2($ $ + $ $ ) 

($$-$$ )dxdy 
o +      o - 

dy -    iB-1[   [RW]     dy, 
2a    J0 z=0 

where we have assumed the normalisation 

fB     rL 
[W2]   dxdy = BA 

o    z=0 

-1 

If the progressive and standing waves are plane, i.e. w and W are 
independent of y, then the above equations reduce to a one-dimensional 
form of equations (2.4) and (2.5). Thus, provided we can neglect the 
effect of the nearshore region (0,a), we can directly apply the analysis 
of 12.3. 
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For a shallow tank of depth ax an approximate normalised 
solution for the standing wave is 

W = KJ (2 /£x"), 
o 

where 

•T (2 /TL)   = 0, o2 = ag£, K2 = 

J2(2 /Ix )dx 
o 

Following the onset^of-instability calculation of §§2.3,2.4 we 
make the deep water assumption i.e. (a/w)2« tan2a, and define the sum 
and difference terms to be 

S = 2ooV Ke10X/c 

cg^ 

J (2 /Ix")e"iax/c dx, 
X o 

Iu    1 _1 
D = -2i6„ Keiax/c    4*x~!J. (2 /Ix" )e~10X/c dx, 

—<*- X       1 

where c = (-c,0,0). Hence an expression for the onset condition can be 
found, and the standing wave will grow if the steepness at the wavemaker 
exceeds the critical value 

UV'c I J2(2 /£x" )dx 
 ;o o   

2ag[l1 + 2I2 + I3"] 

where the real integrals I..,I„,I. are defined: 

f ^K~K~
2V(

-
L
~^

/C
3A2 /H)J  (2 /£x")sin(a(x-x)/c)dxdx, Il=" 

L 

o 

L 

'L«i —i -2v(L-x)/cT (2 /Ix)J (2 /Ix)sin(a(x-x)/c)dxdx, 

I3 =  I e 2vL/cJo(2 /£x")sin(ax/c)dx. 
' o 
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If we consider a particular situation of a narrow tank of length 4m, 
with a beach of slope a = 0,1, the numerical integration of the above 
expression leads to the graph (fig. 1) of the wave steepness at the 
wavemaker. The damping for the standing wave was taken to be constant 
V = 0.01s-''-, and the damping for the progressive waves was calculated 
using the formula 

= l u>2 

("- 
x viscosity J with viscosity = 1,3 x m~

6 2 "I 10 m s 

This expression for v corresponds to the "dirty water" limit of an 
inextensible surface film. Results for frequencies below w = 20 have 
not been presented because the results are dominated by the beach 
contribution I3, and it may not be justifiable to neglect the effects of 
shoaling and wave reflection. For example, at U) = 20.5 the other two 
contributions are exactly cancelled out. However, by U) =28 the beach 
contribution is less than one percent. The narrowness of the frequency 
band in which the low frequency mode can be generated is due to the 
difficulties in simultaneously satisfying the requirements that the short 
waves penetrate far enough to be "aware" of the nonuniformity of the low 
frequency mode, and yet do not penetrate so far that there is significant 
cancelling of contributions from successive crests of the standing wave. 
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