
CHAPTER 16 

NATURAL WAVE TRAINS: DESCRIPTION AND REPRODUCTION 

H. Lundgren1  and  S. E. Sand2 

ABSTRACT 

In many applications there is a great need for a correct description 
of the natural, irregular three-dimensional sea and its reproduction in 
physical and numerical models.  Because of the tremendous difficulties 
inherent in the nonlinearities, the science of coastal engineering is 
still very far from this ultimate goal. 

Indeed, the scope of this paper is comparatively very modest:  To 
describe and reproduce natural, irregular two-dimensional waves, i.e. 
waves propagating in one direction in a flume.  In addition, this scope 
is fulfilled only by assuming linear superposition of Fourier terms. 

As opposed to the usual spectral description, the deterministic de- 
scription presented here does not eliminate the phase information in 
the wave train recorded.  Because of the nonlinearities, however, the 
linear deterministic description invariably degenerates with the dis- 
tance travelled by the waves.  It appears though from the present paper 
that the degeneration is fairly slow even for rather steep waves. 

1. INTRODUCTION 

Traditionally, irregular waves are represented by their spectra. 
For a number of applications, however, the main interest lies in the 
lengths of groups of higher waves and in the wave shapes.  This is cer- 
tainly true for the stability of rubble mounds, shock forces, rolling 
and pitching of ships, wave drift forces, and generation of long waves. 
Hence, for the last decade the Danish Hydraulic Institute has empha- 
sized the reproduction of natural wave trains (Ref. 4). 

As a consequence of this philosophy, it is desirable in some cases 
to use a deterministic description instead of the stochastic one, with 
a view also to a deterministic reproduction. 

2. DETERMINISTIC DESCRIPTION 

In principle, when progressive waves in a flume are recorded 
at one point, the time series of all other quantities (such as eleva- 
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tions, orbital velocities and pressures) are defined down along the 
flume. The present theory is based upon a linearized decomposition 
in a Fourier series, so that each component propagates independently. 

Let the waves n(x,t) be recorded at x = 0 as the wave train n(0,t). 
It is desired, for example, to calculate the time series pj(x,t) of the 
bed pressure (in excess of hydrostatic pressure) at a fixed distance x 
from the wave recorder,  p^ may be expressed as 

<» a cos (n f t -k x) + b sin (n f t -k x) 
+,   ,     V  n n     n n ?b(x,t) = y I    

n=l 
cosh k h 

(1) 

where an,bn are the Fourier coefficients belonging to a finite interval, 
!tl <t # of the recorded wave n(0,t), f = ir/t , h is the water depth, 
and kn is the wave number corresponding to the circular frequency n f. 

a ,b may be found from the usual integral expressions 

1 
n (0,T) cosn f T dx (2a) 

bn = E n (0,t) sinn f T dx (2b) 

which, inserted in Eq. (1), give 

?+(x,t)   = y  I 
n=l 

t„ n (0,T)   cos (nft-nft+k x) 
o n 

-t 
cosh k h 

dx (3) 

Here, the order of integration and summation is inverted. If, in addi- 
tion, tQ->•">, the basic frequency f may be replaced by dio and n f may be 
written n f = oo, leading to the convolution integral 

Pw<x,t) = Y */i7h 

where 

P(x-t, x) = *Vg 

P(x-t, x) n(0,T) dx 

+°° cos [ (x-t) o) + k^x] 

cosh k, h 
3 CO 

du 

(4) 

(5) 

and ku is the wave number corresponding to to and h. 

For x = 0 Eqs. (4+ 5) give the bed pressures at the point, where n 
is recorded.  P(x-t, 0) is shown as a function of (t-x) /g/h in Fig. 1. 

The curve gives a clear impression of how the bed pressures pb(0,t) 
are influenced by the elevations r)(0,x), and, as could be expected, the 
weighting of n(0,x) is such that x = t has the maximum influence on the 
bed pressure at time t. 

Using the same procedure as above, formulae for all other quantities 
along the flume, such as elevations, orbital velocities etc., may be 
derived.  Each quantity can be expressed as an integral 

(influence function) • n(0,x) dx (6) 
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10   (t-x) i/g7F 

Fig. 1" Dimensionless influence function P(x-t, 0) 

Some dimensionless influence functions are given below: 

For water surface elevations: 

1 v^Ti" 
'o 

E(x-t,   x)   = 
IT 

cos [ (r-t) to +kux]   die a 

to cos [ (x-t) co + kux] 

sinh k h 

(7) 

(8) 

For bed velocities-: 

U(x-t,  x)   = -- I     .   ,   ,   , —   dw IT  g —i-i-i- 

For bed pressures: 

See  Eq.    (5). 

P(x-t, x) is shown as a function of (t-x) /g/h in Fig. 2 for two values 
of x/h. 

Fig. 2 shows that the main loop of P is shifted to the right when x 
is increased.  Hence it follows from Eq. (4) that the main influence of 
n(0,x) on the pressure pi(x,0) for t = 0 originates from increasing 
negative values of x when x increases, i.e. for increasing x the use- 
ful information is found earlier in the time series ri(0,x). 

Fig. 2 also illustrates how far back in time it is needed to know n 
in order to obtain a certain accuracy.  For larger values of x the os- 
cillations of P have longer 'wave lengths' and decrease more slowly, 
due to the influence of the higher frequencies. 
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P(x-t.x)for x/h =11.25 

22.45 

Fig. 2 Dimensionless influence function P(r-t, x) 

In Fig. 3 the influence function, E(t-t, x), for surface elevations 
will be seen as a function of (t-r) /g/h for two values of x/h. As com- 
pared with the P-function in Fig. 2, the E-function decreases much more 
slowly with large values of t-T.  This slow decrease is due to the 
higher frequencies (for which the bed pressures are strongly damped). 
At the same time the 'wave lengths' of the E-function decrease so rap- 
idly that it is not too essential to extend the integration in the con- 
volution integral for n(x,t) very far in the direction of negative T. 

Ed-t.x) for x/h = 11.25 

Fig. 3 Dimensionless influence function E(x-t, x) 
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3. TESTS ON DETERMINISTIC DESCRIPTION 

The theory of deterministic description was tested in a flume (h = 
0.40 m) with the input wave gauge at x = 0 and pressure cells mounted 
in the bottom of the flume at x = 0, x = 4.5 m and x = 8.98 m.  The 
wave trains used for the tests had mean periods of 0.84 s, 1.02 s and 
1.72 s, respectively, i.e. mean wave lengths of 1.09 m, 1.58 m and 
3.4 m.  The maximum steepness ranged from 2% to 8%. 

The record n(0,T) was used as input in Eq. (4) together with one of 
the influence functions in Fig. 2. Fig. 4 demonstrates that the cal- 
culated output pb(x,t) agreed reasonably well with the recorded one 
for x = 8.98 m. 

Fig. 4 Calculated and measured bed pressures at x = 8.98 m 

Fig. 5 Calculated and measured elevations at x = 8.98 m 
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Also the elevations along the flume were tested at x = 4.5 m and 
x = 8.98 m.  Again, the record n(0,x) was used as input in Eq. (6) 
which, together with one of the influence functions in Fig. 3 gave 
ri(x,t).  Fig. 5 shows the elevations for x = 8.98 m. 

At a given position the agreement between measured and calculated 
elevations was the same for all tests.  It was found, however, that the 
deviations increased with x, due to nonlinear interactions. 

4. DETERMINISTIC REPRODUCTION 

For the generation of small, regular waves the exact transfer 
function was in essence derived in 1929 by Havelock (Ref. 5) and pre- 
sented to the engineering world in 1951 by Biesel (Ref. 1) in the fol- 
lowing form 

2 sinh kh „    2 tanh kh  „ lr.. 
sinh kh • cosh kh + kh        1 + G ; 

where 2 e is the stroke of the piston. 

For the generation of waves with a given spectrum Eq. (9) has 
been directly applied (Refs. 2-3). 

For the generation of natural waves in fairly shallow water 
an approximate transfer function was applied by the senior author (cf. 
Ref. 4) with the specific purpose of reproducing, in a short flume, 
shock forces on vertical face breakwaters. 

The scope of the deterministic reproduction has been 
to generate a given natural wave train in arbitrary depth in a flume 
at a distance x from the piston.  This has been achieved by means of 
Eq. (9) in combination with the theory of deterministic description 
presented above, x being equal to - x for calculation backwards to 
the paddle. 

From the Fourier series of the recorded natural wave train n(x ,t), 
the amplitude and phase for each frequency is, by means of Eq. (9) , 
transformed into a contribution to the piston position. 

Thereafter, the procedure is completely analogous to the one de- 
scribed in Sec. 2, resulting in the following convolution integral 
for the piston position 

— f+0° 
x_(t) = v/g7h   X(t-x, xQ) n(x0,T) dT (10) 

where the influence function is 

1 + G 
X(t-x, xQ) sin [ (t-T) u+k x„] dm (11) tanh kh o 

o 
with k = k(to).  The X-function is shown in Fig. 6 for x0/h = 5.56 and 
may be interpreted in a way similar to Fig. 3. 
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X(t-T,x0)for x0/h = 5.56 

Fig. 6 Dimensionless influence function X(t-T, x ) 

TESTS ON DETERMINISTIC REPRODUCTION 

The theory of deterministic reproduction was tested in a flume (h = 
0.36 m) with a wave gauge mounted x = 2 m from the piston.  At this 
position it was attempted to reproduce various wave trains from Hanst- 
holm, Denmark. 

In addition, the piston positions were recorded as a feed back sig- 
nal to be used as the basis for a calculation of expected elevations 
at point x in the flume.  For the latter purpose Eqs. (10) - (11) are 
easily inversed, yielding the surface elevations with the piston mo- 
tion as input.  As stated by Biesel (Ref. 1) one must be aware of the 
local disturbances at the generator. The local oscillations at the 
piston are, however, already reduced to one percent at a distance of 
three water depths from the piston. 

Hence, the test procedure was: 

(a) calculate the piston positions x on the basis of a natural 
wave record, 

(b) by means of the feed back signal calculate the expected 
elevations at x . 

Fig. 7 illustrates the close agreement between the values n(x0,t) 
actually reproduced in the flume and the values calculated from the 
actual piston motion xp.  (The latter deviated slightly from the de- 
sired piston motion because of the imperfect control of the hydraulic 
power system.) 
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Fig. 7 Calculated and measured elevations at xQ = 2 m 

6. FUTURE DEVELOPMENTS 

The encouraging results obtained with the linear two-dimensional 
theory makes it attractive to extend the theory to nonlinear terms 
and to three dimensions. 
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