
CHAPTER 14 

EXTREMAL PREDICTION OF SIGNIFICANT WAVE HEIGHT 
Enrique Copeiro* 

The most generally used procedure for estimating the extremal distribution of ge_o 
physical variates consists in obtaining a sample of extreme values (for instance a number 
of annual maxima) and fitting to them a distribution function. One of the main problems - 
involved in this procedure is the choice of the type of distribution adequate in each ca- 
se. No general agreement exists, to date, for any geophysical variate. This means a serio 
us trouble because of the wide range of extrapolations which can usually be obtained by - 
using different functions. Some of the authors who have tackled this problem have adopted 
a strictly empirical point of view, going as far in it as to advise to make a choice for 
each particular case, according to the goodness-of-fit obtained when several types of dis 
tribution functions are fitted to the sample. Others have instead tried to base the choi- 
ces on some theoretical foundation, placing less emphasis in the goodness of the fits and 
generally suggesting the use of one or other of the three well known Asymptotic Extremal 
Distributions. 

In actual practice, the casuistic choice of function from each extremal sample — 
does not provide a reliable solution to this problem as a general criterion. The methodo- 
logy in use today for estimating distributions from extremal samples (or, in general,from 
samples of independent values) of a random variate suffers from ambiguity in several res- 
pects (1). Because of that, it is often uncertain to determine how much of the differences 
observed between goodness of fits is due to the methodology itself or to the different de 
gree of adequacy of the functions which are being tried. This reduces the meaning of  the 
differences between fits, particularly when they are small. Minor differences between fits 
can not be considered relevant in the choices. This is unfortunate because in most real - 
cases the extremal sample available is not too large and usually some different functions 
can be used which give only minor differences betwen its goodnes-of-fits but which diver- 
ge considerably in extrapolations. The variate significant wave height (H ) is a good exam 
pie, its extremal samples being obtained by hindcasing (or visual estimates) and resulting 
not only of small size generally but also of moderate (or low) accuracy. In Figs.(2) to (6) 
two published extremal samples of H  (2) hindcasted for Cabo Machichaco (Bay of Biscay , 
Spain) and Valencia (Spain) have been fitted, with minor differences between fits, by dis 
tribution functions Asymptote-I, Asymptote-II, Asymptote-III, Weibull and Log-Normal. All 
of these functions have been recommended for general use (Asymptote-I, (2); Asymptote-II, 
(3); Asymptote-III, (4), or used in some published cases, for the variate H . The disper- 
sion of extrapolations is broad (Fig.(l)): For T=100 years the maximum difference between 
results is 3 m. at Valencia and 7 m. at Cabo Machichaco. These differences would have lar_ 
ge repercussions in the design of maritime structures, and the differences between goodness 
-of-fits could not provide a reliable choice criterion in both cases. It can be proved (1) 
that the reliability of every extremal sample (or any set of observed probabilities obtai^ 
ned by random samplig) is not constant but varies along the values of the variate. The — 
approximation to the true (population) probabilities is best at the center of the distri- 
bution function F(x)=0,5 , and diminishes towards both tails. From this point of view,  a 
non-ambiguous fitting criterion was developed (1). When using it, the upper and lower ta- 
ils of the sample points are excluded from the fits because of their low reliability. The 
refore it must be realized that the effective or useful size of the samples is quite sma- 
ller than their total size. The need for very long samples is thus emphasized, the others 
not being capable to yield reliable extrapolations in individual analysis. 

The theoretical justifications stem from the basic extremal equation for a random 
variate X : $(x) = (F(x))n, where $(x) is the probability of x not to be exceeded in any of 
n random trials, and F(x) is the distribution function of the variate or probability of x 
not being exceeded in a single trial. For x approaching 1 and n large enough,the extremal 
distribution converges asymptotically towards one of the so-called First, Second and Third 
Asymptotic Extremal distribution functions, when one of three types of conditions is ful- 
filled by the tail of interest of F(x). Because these conditions are quite broad, cove— 
ring a very wide spectrum of distribution functions, and n is supposed to be large for — 
most geophysical variates along one year (the basic geophysical cycle), a great number of 
authors have assumed (notably after the fundamental work of E.Gumbel (5))that the extremal 
distribution of any geophysical variate could be closely approximated by one or other of 
the three Asymptotes. References (5) and (1) mention a good number of published applica— 
tions of the Asymptotes in extremal analysis of variates like temperature, wind speed, — 
rainfall, river discharge, significant wave height, etc. In the justifications for the — 
use of the Asymptotes it has generally been assumed that, for instance, a variate like — 
the average discharge in 24 hours has in a year a value of n=365, a number whichis fairly 
high and supposed to yield statistical independence at high levels of the variate (E.Gum- 
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bel, (5)). This interpretation of the parameter n. is erroneous. Variates like temperature, 
whose evolution is not discrete but continuous with time, can not be said to "occur" a cer 
tain "number of times" along a year. The variate takes an infinitude of values within a fi 
nite time interval. Therefore, it is not possible to asign directly a value to _n. This, — 
which is self-evident for an instantaneous variate like temperature, can be shown to be al_ 
so true for other variates. J.Battjes (6), commenting on an extremal analysis of H , showed 
that when parameter n is given a value equal to the duration of the year divided by the dja 
ration of each H record, an absurd result is obtained. This author was the first, to the 
knowledge of the writer, to realize for a particular variate that such an assumption for n 
is not correct (in spite of what, some further extremal analysis of H with the same erro- 
neous criterion for n have been published later) . Actually the same applies to all geophy_ 
sical variates which consist in averages or totals within a fixed time interval. These va- 
riates belong to a group whose evolution with time is continuous, to which most of the -- 
variates relevant in civil engineering belong: Rainfall in a time interval: Discharge in 
a time interval; Average wind'speed in a time interval; Significant wave height; etc. The 
average discharge in 24 hours does not take on 365 values in a year, but an infinitude. — 
The fact that just 365 of them are juxtaposed in time is not particularly relevant. It can 
be shown (1) that an assumption like n=365 leads to an absurd result in the extremal analy_ 
sis of this variate too, and so for all the variates of the same type. It will be shown la 
ter on that, for that type of variates, n is not a constant value but a function of the va 
riate. From this follows that the derivation of the Asymptotes, which was done with the im 
plicit assumption n=constant (see, for instance, (5)), is not valid for the continuous-eyo 
lution variates. Therefore the extensive use which has been done of the Asymptotes for 
those variates does not have any theoretical justification as yet. The writer (7) presented 
a model by which the extremal equation can be applied to continuous variates: 

1.- EXTREMAL EQUATION FOR CONTINUOUS EVOLUTION VARIATES 

The extremal equation $(x)=(F(x))  was stated on a discrete basis for the occurren 
ce of the variate. In order to apply this equation to a continuous-evolution variate,  the 
variate itself must be prepared for a discrete analysis. This can be done when, instead of 
the individual values taken by the variate, the undulations described by the variate in — 
its evolution along time are taken into consideration. The undulations can be said to ha- 
ve individual physical entity with finite dimensions and can therefore give support to a - 
discrete analysis. Each entire undulation can not be assigned a certain duration. Instead, 
only a fixed level x of the variate will be considered. Cutting the continuous curve at 
the level x_, a number of isolated undulations (what will be called  "curves of exceedance 
of x" or more simply "x-exceedances") remain above the cut. Now a dichotomy can be establis 
hed at each level JC : The probability of occurrence of a x-exceedance, or of its non occu- 
rrence. This entails to change the continuous axis "time" into a discrete "number of times" 
(or statistical trials) in which an event (x-exceedance) might happen or not. For that, 
the "duration" of each statistical trial is taken as the average duration t(x) of the x-eic 
ceedances. The "number of trials" at the level x is> in ai average year of duration T : 
n(x) = ^y   • Being n  the average number of " 

t(x) X       Etxi Xt x-exceedances in a year or n = • -_• ••• • . 
x  tXx) 

rXi V"/ lx2 
V *x3 V ,y       txl 

the probability that in a single "trial" a 
nx   £txi 

x-exceedance does not occur is 1 - —-r-r=l-  
n(x)   Ty 

This is the expression for the distribution - 
function F(x) of the former continuous-evolution variate X. Therefore, the probability that 
in the n(x) trials of the average year no x-exceedance will appear, or extremal distribu— 
tion function, is: 

«*) =(F(X)]"(X) 

The resulting expression is similar to the extremal equation for a discrete evolu- 
tion variate except for the exponent, which now is not constant but a function of the varia_ 
te. The type of function corresponding to $(x) will be determined once the types of furic— 
tions F(x) and n(x) are found. This will be done in the following for some variates, chiejE_ 
ly H . An empirical determination of the form of F(x) and n(x) from several samples is far 
more reliable tham the same direct estimate for $(x), due to the incomparably higher number , 
length and accuracy of the samples of F(x) and n(x) than of <Kx)• The extremal samples can 
best be used as control checks for the predictions made with the extremal equation. This - 
was done in (1) for a few cases. 
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2.- FUNCTION n(x) 

It will be first indicated which is the kind of relationship existing between the 
values of n(x) corresponding to the whole population and the estimates of this parameter - 
obtained from a limited sample or observation period. For each sample,  estimates of n(x) 
are obtained from-the observed average durations t(x) of the exceedances. 

- The higher the number of exceedances, the more reliable (close to the population) 
the estimate of t(x) and thus of n(x). In every single observation period that number va— 
ries along the range of values of X (Fig. 48), having a sharp maximum at a certain level - 
(very close to the center of the distribution function, F(x)=0,5, (l),and steadily diminis 
hing towards both tails. The reliability varies in the same way too. 

- Assuming that along a certain "central" stretch of values of X the n(x) estima— 
tes are correct or acceptable, the estimates belonging to the adjacent zones in both direc 
tions will show a random deviation from the population values due to their low reliability. 

- The variate may be in general unlimited in both directions, but each sample will 
instead be necessarily limited by a maximum and a minimum values. The observed values of - 
n(x) will show, at both ends, systematic deviations: Towards n(x)=0 at the minimum observed 
value of X, and towards n(x)= °° at the maximum. Most geophysical variates, such as H , have 
a natural lower limit at x=0, and then only the upper systematic deviation exists. 

STATION SITUATION VARIABLE OBSERVATION PER USEFUL 
TIME 

INTERVAL 
BET.06SERV. ^ITTI   S0URCE 

LOS     LLANOS CUCNCA' (SPAIN) RAINFALL IN 30 OATS I-X-L940- -XL970 30 DAYS tNTECSA   (MADRID) 

INSTITUTO   METEREOLO- 

OICO  NACIONAL (MADRID) 
VALLA DO LID VAU-AOOUD (SPAJN) AVERAGE     WIND 

SPEED  IN   24   HOURS 
l-X-1.970- •XL975 

12-24 HOURS 
PEINADOR VIGQ    (SPAIN) 111-1970- •X-IA72 

TRILLO RIVER  TAJO (SPAIN) AVERAGE   DISCHARGE 

IN  24  HOURS 

IX 1.963 - •X-1.973 
24   HOURS J.CIRUJEDAKENTRO DE ES- 

KIMOS  HIDROGRAFICOS ) ORUSCO RIVER TAJUNA (SPAIN) IX-1.952— X   1.963 

OSBORNE   HEAD NORTH ATLANTIC (W.) 

SIGNIFICANT  WAVE 
HEIGHT (INSTRUMENTAL 
LLY RECORDED) 

1S-X1IL970- 1 IX 1ST* 37.138 H   (70-1%) 

3   HOURS 

30.3 

DON    BIRRELL 
(MARINE INFOR- 
MATION   DIREC- 
TORATE, CANADA1 

WESTERN   HEAD NORTH ATLANTIC (W.) IS-IV ISTO- -5-V-1.973 19.494 H. (742%) 40-43 

CHEMDUCTO   BAY NORTH ATLANTIC (W.) 24-X-I.974- 4111.976 9.091 H. (61.3%) 26.7 

ROBERTS  BANK STRAITS OFOEOMtA 7-II   1.974- -3IV1978 I2.2S2H. (70.0 %) 139 

TORONTO LAKE  ONTARIO IS-IV 1.972- I8-V1J.973 7.16SH. (61.2%) 106 

OWERS LWHTVESBCL ENGLISH CHANNEL IX-1.978 1 • X • 1979 8.704 H. (99.4%) 13-13 L.DRAPER(I.OS,UKJ 

PENROO 96 NORTH SEA Mil- 1873 1-111-1974 7. 130 H   (81.9%) 26 E.90UWStKHM4.NE1H 

BILBAO, P.  LUCERO BAY OF    BISCAY 21V' 1.976 2IV-1.978 17335 H. (98.6%) 3-4 HOURS 40 L1EJE00R (TKUA- 
«A,  HAMIOI 

WEATHER   SHIP   aB " 

NORTH ATLANTIC (WJ 
VISUALLY   ESTIMATED 

WAVE  HEIGHT 

1.949 — 1.972 91 % 

1-3 HOURS 
ENVIRONMENTAL  DATA 
SERVICE (U.S.A) 

WEATHER   SHIP   "C " 1.952 — 1.972 92% 

WEATHER   SHIP    "E " I-8S2 — 1.972 88% 

WEATHER  SHIP    "l " 
NORTH ATLANTIC (E.) 

1.949 — L97I 66% 

WEATHER SHIP    "j" 1.949 — 1.971 88% 

WEATHER SHIP    "it" 1.949 — 1.969 93 % 

These conditions were satisfied by the linear relationship n(x)=A(x-B), in the ana 
lysis of 13 sets of data (see Table 1) belonging to the following continuous evolution va- 
riates: Instrumentally recorded significant wave height (8 cases); average wind speed in - 
24 hours (2 cases); average river discharge in 24 hours (2 cases); and total rainfall in - 
30 days (1 case).  In Fig. 7 the location of all observation stations is shown. Figs. 8 to 
20 show the linear fits. In this figures, the points for whose computation less than 10 ex 
ceedances were available have been excluded. That has limited considerably the deviations 
which could be seen. The fact that in the cases analyzed the upper deviation next to the - 
central stretch starts more often towards large n(x) values than towards small ones,goes in 
well with the skewness which was appreciated in the distributions of the durations at each 
level of X. The skewness indicates a higher frequency of durations below the average than - 
above it. The proper fit of the function n(x) to the data calls for the use of "accuracy in 
tervals" as defined in (1).However, visual fits are acceptable for extremal analysis provi- 
ded that the "central" stretch of reliable extimate is long enough. Later on some interes— 
ting results concerning H are obtained. 

In Figs. 21 to 26 six long duration sets of visually estimated wave height, are ana- 
lized. These are not intended to be a check of the linear function, since the reliability - 
of the visual estimates is as yet less clear than should be. However, they have been inclu- 
ded here because of the practical importance of visual wave observations. The central and - 
lower points lie in a peculiar sinuous pattern, which only becomes straight on a log-log 
paper  (X). This seem to give support to the power relationship between H and H  sugges- 
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ted by Nordestrom (9). But the log-log plots yield a quick systematic deviation of the upper 
tail, which might indicate that the power relationship is not applicable to the higher waves . 
It is possible that no single simple relationship is valid for the whole range of wave heig_ 
hts. This point still needs clarification, and in the mean time the linear fits of Figs. 21 
to 26 will be used (in following sections) as an approximation which probably (in view of - 
the acceptable behaviour of the upper points) is reasonably accurate for extrapolations. 

3.- FUNCTION F(x) 

Only the variate significant wave height will be tackled in this section. The 8 sets 
of instrumental data used in the preceding section (Table 1) will be analyzed, together with 
other 12 sets selected from the technical literature (Table 2). The aim of the selection was 
to choose the longest possible durations (and complete annual series when duration consists 
in a small number of years) and waters not too shallow at the site. The result is a compro- 
mise which seems acceptable as a whole. Fig. 28 shows the location of the 20 stations. 

A comparison has been done between the distribution functions Exponential, Log-Nor- 
mal, Weibull and Double Exponential (Asymptote-I) which are  the most widely used today for 
H . No general agreement exists today in this respect , what is unfortunate because of  the 
large differences which can be obtained in the extrapolations when one or another of those 
functions are used. The comparative study is set up under the initial hypothesis that for - 
any geophysical variate a single type of distribution is valid, at least within each type - 
of homogeneous climate which can be discriminated in the behaviour of that variate. The re- 
sults obtained prove that the hypothesis works in the case of H . The relative amount of sw 
ell existing within the waves recorded at each site has been chosen as an operative crite— 
rion to discriminate between different "wave climates". The situation of the stations relati 
ve to prevailing winds, size and limitations of available fetches and local shelters, and - 
tables of coincidence wave height-wave period, have been evaluated in order to assign each 
station to a certain group. According to this, four different groups have been defined:  In 
both extremes  are the groups denominated "Very low swell" (Toronto, Roberts Bay, Morecambe 
Bay, Mersey Bar, Nice, Benghazi, Chausey Sud, Dunkerque), and "Heavy swell" (important rela 
tive weight of swell reaching relatively high values of the variate: Sevenstones, Bilbao , 
Cattlewash, CampPendleton). As intermediate groups, "Low swell" (Chebaducto Bay, St. John - 
Deep, Smith's Knoll) and "Moderate swell" (Osborne Head, Western Head, Penrod 36, Varne, - 
Owers Lightvessel). It must be admited that the border between the two intermediate groups 
is not altogether clear, but that is not a serious trouble in the comparative study. 

STATION SITUATION DEPTH 
(m.) OBSERVATION PER. 

USEFUL 
TIME 

INTERVAL 
BET. OBSER. SOURCE 

DUNKERQUE NORTH. SEA    (S) l2-IVI.960-l7Vlllt.966 706    DAYS R.  80NNEFILLE     ET   AL. (1.967)      ( Hmox,~ H« ) 

CHAUSEY   SUD ENGUSH CHANNEL 19.5 27-VI 1.956-4- IV- I.96C 1204   DAYS 
H   ALLEN    (1.970) 

NICE 

CAMP fCKXXTCt 

MtOIT.   SEA   (K) 9-(4 l7IXI.9a4-27.VI.S6C IS06   DAYS 

NORTH PACIFIC (W.) 9.8 1.954 ANO I.95S 6H. H   POWERS    ET   AL.    (1.966) 

BENGHAZI MEDIT SEA   IS.) 126-14.6 1.961-L965 {IRREQULAN H.   SINOH    ET    AL.      (1.966} 

ST.J0HN DEEP NORTH ATLANT.tW.) 36.6 MII-I.972-26-II-IS73 J.   KHANNA   ET   AL.   (1.974) 

CATTLEWASH CARia SEA   (E.) XII-1.972-X!   1.973 C.   DEANE    (1.974) 
MORECAMBE BAY IRISH    SEA 21.9 XI- 1.966- X-  1957 6760 HOURS 3H. 

J.  6ATTJES    (1.970) 

MERSEY BAR IRISH   SEA 17.6 IX'i,968-VIII-19M 6760 HOURS 3H. 

SEVENSTONES NORTH ATLANT. (W.) «0.4 1    1.662- XII   1.962 6760 HOURS 9H. 

VARNE ENGLISH CHANNEL 27. S 11- 1.960-  1  - 1.966 6760 HOURS 3H. 
SMITH'S    KNOLL NORTH SEA 4».4 III  1959- II - 1.960 6760 HOURS SH. 

TABLE-2 

Similarly to what was done for parameter n(x), it will be indicated which kind of - 
relationship exists between the values of F(x) corresponding to the population of the varia 
te and the values observed in a sample of limited size (observed distribution): 

SAMPLE OF INDEPENDENT OBSERVATIONS: In a sample of N independent observations of a 
random event, the probability of the observed probability of success being B can be compu- 
ted from the binomial distribution, P(m)N = (N) pm (1-p) m where £ is the true (popula— 
tion) probability of success in a single trial. Now, the event "success" is the occurrence 
of a value higher than x in each observation of a random variate X with a distribution func 
tion F(x). The probability that in N independent observations the observed probability at - 
the level ^ (the observed frequency of x being exceeded) is 

/Ns ^N-m 
Rq(x)m )l-q(x))"' '" where q(x) = (l-F(x)) . The reliability of a sample estimate of q(x) - 

e measured as the probability of the observed probability • to fall inside a certain - 
(arbitrary) interval around the true probability q(x): ((1-k) q|x)<q(x)<(l+k)q(x)). It can 
be shown (1) that: a) The convenient intervals ("accuracy intervals") -should be defined in 
relative terms with respect to q(x), so that k  is a certain percentage of q(x) to be deter- 
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EXCEPTIONALLY  STORMY   WINTER 
I REGION   OF 

A     RANDOM       <J   "NORMAL"  WINTER 
DEVIATION 

Xm. 

*• F(X) 

(FIG. 27).- OBSERVED   DISTRIBUTION   CURVES! CHARACTERISTIC  REGIONS. 

DUWiEROUE|H.m«) 

(FIG. 28l- DETERMINATION  OF    F(H,): LOCATION  OF  STATIONS 
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mined accordingly to the accuracy required by the user; b) the appropiate "true" probabili 
ty to be used as reference for these intervals is q(x) for the upper half of the distribu- 
tion function (q(x)< 0,5) and F(x) for its lower half (F(x)< 0,5). The use of the binomial 
distribution as indicated above shows that, for any fixed width of the accuracy intervals 
(any constante value of k),the reliability of the observed probability (probability of that 
probability to fall inside the intervals) is maximum at the center of the distribution furc 
tion F(x)=q(x)=0,5, and diminishes towards both tails of the distribution. Thus, for any - 
sample of independent values of a random variate X, provided -it is large enough, two charac_ 
teristic regions can be discriminated in the set of observed probability points: 

- A central region of good estimate, where the observed probabilities are. close to 
the true (population) probabilities. 

- Regions of poor estimates at both tails, where the observed probabilities are ex. 
pected to show wide random deviations from the population probabilities. Limits between — 
both regions can be set by use of accuracy intervals, as discussed in (1) (Accuracy inter- 
vals can be defined in terms of the probability or of the value of the variate, and diffe- 
rent procedures for estimating their values from the sample itself can be used). 

SAMPLE OF CONTINUOUS OBSERVATIONS: If a continuous-evolution variate is observed - 
systematically with short time' intervals between records (for instance. H , with typical ob 
servation intervals of 2-3-4 hours), statistical independence between observations can not 
be assumed. The high density of observations allows the whole curve of evolution of the ya 
riate to be drawn, and from it a complete observed distribution (with probabilities     
from _0 to 1)   can be obtained. It can be shown (1) that also for these samples the observed 
probabilities have a maximum reliability at the center of the distribution function and lo 
wer reliability towards both tails. For a sampling period long enough, three characteristic 
regions can be distinguished in the observed distribution curve: Two of them are the same 
as indicated above fo£ independent observations, and the third is a final systematic devia 
tion of the uppermost and lowermost tails, which converge asymptotically towards cumulati- 
ve probabilities _1 and J) at the maximum and minimum values of the variate observed in the 
sampling period. This is a natural consequence of any finite sample having a maximum and a 
minimum observed values, in contrast with the population whose values are in general unli- 
mited. In Fig. (27) the three characteristic regions of an observed distribution of H  are 
shown. The lower systematic deviation does not appear, since this variate has a natural lo 
wer bound at H =0. When estimating the distribution function of the population from one of 
such observed distributions, only the central region of expected good estimate should be - 
considered for the fit. 

Comparative studies published in previous years have adopted the criterion of choo 
sing the function which would give the best fit to the whole set of sample points, and spe_ 
cially to its upper tail if extrapolation is the final goal. Such a criterion is erroneous, 
particularly for continuous or almost-continuous observations, as Fig. 27 makes it evident. 
The aim of fitting the complete observed distribution and the aim of estimating from it — 
the distribution of the population are not only two different purposes but in fact incompa. 
tible. In particular, to place the emphasis of the fit in following the uppermost tail of 
the observed distributions means to follow the points with the poorest reliability, belon- 
ging to the region of expected random deviation or, worse, to the final systematic devia— 
tion. This can only lead us away from the expected behaviour of the population, in extrapo^ 
lations. 

In order to compare the behaviour of the 4 functions, it will be checked whether - 
the deviations of the observed values in the regions of "random deviation" are actually — 
random in the set*of fits, or whether they are systematic This criterion suffices to sol- 
ve satisfactorily the comparison. Although the strictly correct method would be a simulta- 
neous use of accuracy intervals to make the fits and confidence intervals to evaluate the 
deviations quantitatively, such laborious procedure does not prove necessary in this case. 
The Exponential and Log-Normal functions will be compared first and later on the Weibull - 
and Double Exponential which are closely related to the Exponential. 

EXPONENTIAL - LOG.NORMAL.- In Figs. 29, 30, 31, 32, the fits corresponding to  the 
group "very low swell" can be seen. The Exponential fits are uniformly  satisfactory, with 
deviations which are not systematic and start at reasonable levels of the probability. 
The longer the observation period, the longer is the central region of good fit (Nice, 
Dunkerque, Chausey Sud). Instead, the Log-Normal fits are uniformly poor. The upper tails 
show systematic deviation towards low values of the variate, deviation which begins to 
show very quickly. In Figs. 33, 35, the group "heavy swell" is fitted, showing quite a di- 
fferent behaviour. The Log-Normal fits are good from the lower region ,to high levels of — 
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the probability. The Exponential function behaves well in the upper region, but shows a — 
sharp systematic deviation in the lower tail. The number of stations included in this group 
is small, but the inspection of the two remaining groups will clarify the behaviour of both 
functions. In Figs. 34, 36, 37, 38, the "low swell" and "moderate swell" groups are plotted. 
The fits show characteristics which are intermediate between those seen in the former gro- 
ups. As a rule the Log-Normal behaves better in the lower part of the central region, but 
in the upper zone shows a quick, systematic deviation. At Penrod 36, Owers L., Varne and - 
Smith's Knoll, the deviations start at probabilities from 0,8 to 0,9, which means a total 
exceedance time of 73 to 36 days (their observation period is 1 year). This is certainly - 
excessive, since a good number of exceedances are included in that time for those levels - 
of H . Even if only the upper part of the central region is fitted, neglecting the lower - 
part (discontinuous lines in the figures), the Log-Normal still deviates systematically in 
its upper tail. Therefore this function should be rejected for extrapolations. The Exponen 
tial law shows for this two groups a systematic deviation at its lower tail. This deviation 
starts at low values of H for low levels of swell, and at higher points for high levels - 
of swell. At the upper half of the distributions, the Exponential function behaves uniform 
ly well for both groups and hence for all the 4 groups. Therefore this function appears - 
to be in principle acceptable for extrapolations and, thus, for extremal analysis, although 
its lower tail can not be used when swell has any relative importance. 

x-A _ (x-A) 
EXPONENTIAL - WEIBULL.- Exponential: F(x)=l-e~  B  ; Weibull: F(x)=l-e   B 

The difference between both expressions is only the exponent C^ which appears in the Weibull 
function. The aim of this comparison is thus to investigate whether the inclusion of that 
third parameter in the Exponential function leads to better fits. The individual fits of - 
the 20 stations are not shown here because of space limitations (they can be seen in (1)), 
but in the following table the values obtained for A and C  in the fits are listed. Its — 
three parameters give to the Weibull function a higher flexibility, but also a higher de— 
gree of indetermination for estimating the values of the parameters themselves. This is — 
specially true for observations of not long-duration, whose central region of. good estima- 
te is short. As an example, in Fig. 39 the fit correspondieng to Osborne Head is shown: — 
When parameter A is increased in 0,2 feet (- 6 cms.), parameter C   (which is a certain mea- 
sure of the slope of the line) changes from 0,97 to 0,87. Should the data of this station 
belong to a short observation period, there would be no clear way to make a choice between 

both fits. Due to its high sensitivity to small changes in A 
(parameter which arranges the points for the fit), the parti 
cular values obtained for C^ must be understood with some  am 
plitude. In the evaluation of the table, the really meaning- 
ful values are those corresponding to the stations with rela 
tively long observation periods (Osborne Head, Chausey Sud , 
Nice, Bilbao, Camp Pendleton, Western Head, Dunkerque, Roberts 
Bank). Their central region of good estimate is the longest, 
and thus the influence of the upper and lower sample peculia 
rities in the fit is reduced. In all these stations the C^ va 
lues are very close to 1. According to what was indicated — 
above about the accuracy of C  estimates, it can be assumed - 
C=l for all, in practice. Therefore it has not been found j_us 
tified to include this third parameter and the choice is — 
still the 2-parameters Exponential function. In the table, - 
the cases in which C  takes on values not close to 1 belong to 
samples with the shortest durations (1 year), where it can be 
supposed that the peculiar flexibility of the Weibull function 
leads the one who performs the fit to follow to some extent - 
the deviations of the tails since the central region of good 
estimate is too short for an unequivocal choice of A. The Wei 
bull function has, in Exponential paper, a curvature  concave 
upwards for C<1 and concave downwards for C>1, but not always 
that flexibility allows  it to fit the deviations of both ta- 
ils simultaneously in short samples: In Figs. 49, 50, 51 three 
cases are shown where the fit of the lower tail leads to an ill behaviour of the rest of - 
the distribution (compare with Figs. 39, 40, 41, where the lower tail was not fitted. In - 
these kind of fits, the values given to A makes the lower points "disappear" from the pro- 
bability paper, giving an outward look of perfect fit throughout). 

Other 3-parameter functions do also have a high flexibility. For instance, in Figs. 
42, 43 the group of stations "very low swell" has been fitted with Asymptote-III functions. 
The Log-Normal function may include a third parameter too (change H =H'-A): see in Figs.44, 
45, how in this way the fits obtained in Figs. 29, 30 with two parameters are improved with 3.; 

(m.) 
c 

Canp Pend. 0,27 0,98 
Bilbao 0,60 1,02 
Cattlew. 1,52 1,24 
Sevens. 0,61 1,20 

Osborne H. 0,46 0,97 
Western H. 0,52 0,93 
Penrod 36 0,50 1,05 
Owers L. 0,12 1,41 
Varne 0,15 1,11 
Smith's K. 0,06 1,31 
St.John D. 0,37 0,73 
Cheb.Bay 0,15 0,99 

Dunker. 0 0,97 
Chausey S. 0 0,96 
Nice 0 1,02 
Rob. Bay 0 1,09 
Benghazi 0 0,81 
Morec.Bay 0 1,05 
Mers. Bar 0 1,02 
Toronto 0 1,03 
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Even more flexibility would be attained with 4 parameters (Log-Normal with the change H  = 
Hs-A 
"IT'TTT) > anu so on. But, as it has been shown, the proper use of functions with a high number 
D—nS 
parameters would only be feasible had we a better knowledge of the statistical properties - 
of geophysical variates, than is available today. Otherwise their flexibility is more of  a 
trouble than an adventage. More detailed statistical studies including large numbers of sam 
pies are needed. In the mean time we have to be content with the usual simple functions which, 
if proved well-behaved (like the Exponential herein), are able to give reasonable approxima 
tions. 

EXPONENTIAL - DOUBLE EXPONENTIAL.- Both functions converge quite quickly for large 

probabilities:      ^^ (F(x)-l)  _ e" ~ 

Exponential: F(x)=l-e  B  Convergence: F(x) —y~r~~?->  e        =e        (Double Exponen- 
tial). UJ 

The speed of the convergence can be visually appreciated by comparing both probabi- 
lity papers. The difference between their probability scales is that, for the lower probabi- 
lities, the Double Exponential scale is "stretched" with respect to the other. However this 
feature is not able to improve, in general, the fits in the lower part of the distributions 
(which were found to be unsatisfactory with the Exponential). Some of the fits can be seen 
in Figs. 46, 47 (the rest can be seen in (1)) showing a systematic deviation, this time up_ 
wards instead of downwards: The "stretching" of the scale was excessive. Therefore the use 
of this function is not advisable. 

CONCLUSIONS.- None of the 4 functions tried is adequate for the whole extent of the 
distributions in all the stations studied. The Exponential function has been found to beha 
ve satisfactorily in the upper part of the distributions, and thus apt for extrapolations. 
In the lower part its fits are good when swell is negligible, but as the importance of sw- 
ell reaches higher levels of H so grows a lower region with a systematic deviation. Log- 
Normal function behaves reciprocally: its fits are good in the lower region, reaching hig- 
her levels of H as the importance of swell also reaches higher H values. In the upper re 
gion,, the fits show a systematic deviation. This result suggests that the statistical hete 
rogeneity found in each station corresponds with different physical properties of swell — 
and sea, each of which is predominant within a certain range of H values (with a region 
of overlapping). The Exponential function could then describe statistically the growth of 
the sea caused by wind fields reaching the observation site, originated by differential pre 
ssure centers (typically low pressure centers). The highest waves are almost everywhere — 
formed in this way; thus the adequacy of the Exponential law for extrapolations. On the o^. 
her hand, the Log-Normal law seems to fit correctly the region where waves are a mixture, 
in space and time, of a good proportion of swell, low waves formed by the local microclima 
te, and sea that is being generated by larger wind fields. It is curious to notice that — 
the Log-Normal distribution is theoretically correct for natural variates formed by a high 
number of random factors which join their individual effects in a multiplicative way (V. - 
Chow, 1955). In (1) further speculations along the same line are indicated to reason this 
hypothesis, which is able to explain why the deviation of the observed points in the lower 
tail of the Exponential fits takes place In the form of a quite sudden drop. Summing up, at 
every single station a discrimination between different wave "climates" can be made, accoj: 
ding to the different relative importance of swell along the H levels. This discrimination 
has proved effective in selecting distribution functions with general applicability. 

EXTREMAL DISTRIBUTION *(H ) 
s 

From the results obtained before for n(H ) and F(H ), the following expression is 
reached for 0(H ): „ , 

Convergence: $<H) = (F(H ))  s  —• > e" ^-^V^V ;   F(H ) - 1-e   kT~  ; 

n(H ) = k,(H -k.) ;  *(H ) 
S     3  S  4 s 

F(H )VL 
(H -C)e -m 

It is a 3-parameters distribution function. Should n(H ) have an exponential form, 
the expression for $(H ) would be the double exponential or Asymptote-I. With a linear gro_ 
wth for n(H ), $(H ) has a quicker growth than the Asymptote-I has. In Figs. 52, 53, 54, - 
55, the extremal distributions computed for the 14 wave observation stations listed in Ta- 
ble 1 have been plotted in Asymptote-I paper. From the curvature of the distributions it - 
turns out that the use of Asymptote-I for fitting extremal samples of H consistently ove- 
restimates the real values in the extrapolations. However the overestimations are small, - 
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and acceptable for most applications, within the range of return periods usual in practice. 

Instead, the Asymptote-II would cause large (unacceptable) overestimates. 

The good performance showed by the linear and exponential functions with the sets 
of data analyzed in the two previous sections makes one confident that this simple laws will 
yield sufficiently accurate results for the extremal analysis of H . In some meaningful ca 
ses, a good correspondence between both functions has been noticed. In station Bilbao, for 
instance, where exceptionally rough winters took place within the observation period,  the 
sharp deviation of the sample points above the exponential fit for F(H ) (Fig. 33) starts 
almost exactly at the same point where the (also sharp) deviation appears above the linear 
fit for n(H ) (Fig. 15). This kind of correspondence is to be expected only in case of ve- 
ry exceptional winter seasons (abnormally rough or mild), since not only the durations but 
also the number of exceedances play a role in F(H ). 

Some aspects of the use of the extremal equation for significant wave height pre— 
dictions will be commented in the following sections. 

5.- STATISTICAL INDEPENDENCE 

One of the basic hypothesis on which the extremal model that is being used here was 
built, is the independence between "statistical trials". This means randomness in the pre- 
sentation of exceedances. The practial adequacy of this hypothesis must be inquired. 

When the crest of an exceedance is long, it usually follows a sinuous pattern ra— 
ther than a smooth courve (Fig. 56,case B). These secondary peaks are obviously inter-de- 
pendent. Should this feature be dominant along the entire range of values of the variate, 
the use of the model would become rather difficult. Fortunately the crests of the exceedari 
ces which reach high levels of the variate are typically pointed, leaving little room for 
secondary oscillations. In order to check in a real case the quantitative influence of this 
effect, one year of H observations in Bilbao (April 1976-April 1977) has been used to com 
pute 3 different estimates of n(H ): a) using the entire H -courve unmodified (analyzed by 
computer); b) using the H -courve where secondary peaks have been supressed by a slight — 
smoothing (hand made) of the exceedances; c) deep smoothing of the exceedances. The result 
(Fig. 57) are three straight lines which run quite parallel. Thus the relative difference 
between the three estimates steadily diminishes with increasing levels of the variate. At 
H levels relevant for extremal predictions, the predictions calculated with any of these 
ntH ) estimates are practically identical. 

The distinction between these secondary peaks and proper exceedance courves is not 
always neat. Sometimes (Fig. 56, case A) crests with good sizes lie close to each other in 
a way that suggests some kind of inter-dependence. In this respect, it can be remembered - 
that P.Rijkoort and J. Hemelrijk (1957) found proof of statistical dependence between strrms 
in the North Sea. Again it can be argued that this dependence loses importance with increa_ 
sing levels oi the variate. At medium and long return periods the exceedances appear typi- 
i-.illv as isolated, well-spaced peaks. This seems to be the general behaviour of geophysical 
variates. In (1) some real records are shown which illustrate his statement, and two compa. 
risons between extremal predictions and extremal samples for the variates average wind speed 
and total rainfall in an interval show good agreement even for low return periods. It is - 
unfortunate that accurate (instrumental) extremal samples of H are not available with eno 
ugh length to make similar checks, but in principle there are no reasons to assume a too - 
different behaviour for this variate. 

6.- HYPERANNUAL CYCLICITY 

The extremal distribution has been stated here on a yearly basis (probability of - 
not-exceedance in the average year). The use of this probability in terms of return periods 
implies the assumption of randomness in the intensity of the variate in different years. - 
The adequacy of-this hypotesis should be questioned. 

Numerous authors have found significant evidences of some kind of periodicity (more 
properly called "pulsations") in several geophysical variates. These pulsations are genera 
lly thought of as being connected with the 11-years cycles found in the solar activity. Pul 
sations of about of 11(or 22) years in the maxima of the variate should not appreciably in 
fluence the practical use of predictions made on an average-year basis, since usual design 
return periods have an order of magnitude of hundreds of years. However, it can still be - 
questioned whether the estimates of n(x) and F(x) (with which the extremal prediction is - 
calculated) are random from year to year. Should they be subject to pulsations, a minimum 
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observation period of those II or 22 years would be needed for a proper characterization of the 
Long duration instrumental records are still missing, but the visual observations of wave height 
Ships (more than 20 years) will be used to get some information. In Fig. 63, the wave height co 
probability F(H )=0,5 in the distribution observed each year (October-October) are plotted for 
Ships. Clear grouping of higher and lower heights appears in most of them, with semi-periods cu 
to the 11 years above mentioned. Extremal distributions were computed for the six U.S. with eac 
mates of F(H ), n(H ) (1). In Figs. 64, 65, the points corresponding to T=100 years in each prediction are — 
plotted, showing that in some Ships there is no trace of grouping and where grouping may seem to be detected it 
does not keep in correspondence with the groupings observed in Fig. 63- Although the quantitative value of — 
these estimates does not seem to be high (next section), the qualitative pattern obtained suggests that cycli. 
city does not have a significant influence in the extremal predictions of H . 

7.- SUFFICIENT ESTIMATES OF n(H ) AND F(H ) 
s        s 

Even assuming that the hypothesis of annual randomness is reasonable in practice, still remains the 
problem of determining which is the minimum observation time necessary to obtain acceptably accurate estimates 
of the extremal distribution, i.e. how many years are enough to get a good estimate of n(Hs) . Recent works as_ 
sume that one single year of observation is enough to yield the average year in terms of F(.H). However this - 
hypothesis has never been sufficiently checked, and the main reason to keep it is probably the tight time li 
mits which are customary in actual proyects. In Figs. 58, 60, the observed distributions for each year in 0s- 
borne Head (5 years) and Bilbao (2 years) are compared with the distributions fitted to the complete sets of 
observations. In Figs. 59 and 61 the same comparison is carried out with the parameter n(H ). In Fig. 62 the 
extremal predictions computed from each 1-year estimates are plotted. For T=500 years (10% risk of exceedance 
in 50 years), the difference between the higher and lower predictions is 1,3 m. at Osborne Head (+ 5,7% of the 
intermediate value), and 3,7 m. at Bilbao (+ 13,6%). Although the number of years worked out is too small for 
stating general conclusions, the results might be indicative of two wave climates with different degrees of - 
homogeneity. Anyway the dispersion of results obtained for Bilbao represents a heavy influence on the design 
of maritime structures and shows the need for wider comparative studies of this kind in various ocean areas. 

The comparisons made for Bilbao and Osborne Head show reasonable agreement between the yearly estima 
tes of n(H ).. The differences obtained in the extremal predictions are almost exclusively due to the different 
yearly estimates of F(U ). Furthermore, it can be easify showed (1) that *(x) is far more sensitive to varia— 
tionsof F(x) than of n(x). 

Figs. 64, 65 show a large variability of the yearly estimates of <KH ), much in excess than what was 
observed in Fig. 62. Moreover the yearly estimates of n(H ) (showed in (1)) also show a high dispersion, in - 
contrast with the behaviour of Figs. 59, 61. This suggests a defficiency in the visual observations of wave - 
heigth. It seems that a higher number of n(H ) values than a year includes is necessary to get an acceptable 
approximation of n(H ), and that a higher number of observations of H is needed than what is usually perfor- 
med in a year, in order to get an acceptable estimate of F(H ), in that! year (aside from the variability of — 
both parameters from year to year). It can be concluded that 1-year of visual observations do not suffice to 
obtain useful extremal predictions of wave height. 

With the aim of reducing as much as possible the time of observation, some published works use only 
a "winter season" (often the roughest 6 months of the year) of measurements in order to estimate the upper ta 
il of F(H ). In Figs. 66, 67, 69, estimates of F(H ) and n(H ) in the "winter season" (October-March) and "sum 
mer season" (April-September) during one year in Owers Lightvessel and 2 years in Bilbao, are compared with - 
the estimates obtained with complete years. Both stations were selected for the completeness of their observa 
tions. The resulting extremal predictions are compared in Fig. 70: The "winterly" predictions are higher (for 
T=500-*-l,8 m. at Bilbao and 0,5 m, at Owers L.). This is a natural consequence of having used the same distribu 
tion (Exponential) for the "winterly" and "yearly" estimates: since not all the H values of the "winter sea- 
son" are higher than the values of the "summer season", the slope of the exponential line for the winterly es^ 
timate is steeper than for the whole year estimate. "Winterly" predictions are bound to stay systematically - 
higher than yearly ones, unless distribution functions are used which can be made to converge in their upper 
tails (different functions, or maybe variable-parameters functions). This possibility is above our present kno_ 
wledge of the behaviour of geophysical variates. It must be indicated that the use of more flexible functions 
may worsen the situation: when the Weibull distribution was used instead of the Exponential, the difference be 
tween predictions was 2,0 m.   for Owers Lightvessel. 

The different n(H ) estimates did not appreciably account for the variability in extremal predictions. 
However, the "winterly" points form a peculiar double arch above (higher durations) the complete-year line.The 
same pattern can be seen in Fig. 68 corresponding to 6 "winterly seasons" recorded by rescue ship "Famita" 
(North Sea). These points do not show the linear trend which was clear in the complete-year estimates. 
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