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Finite Element Model for Estuaries with Inter-Tidal Flats 

Bruno Herrling 

Abstract 

This paper deals with finite element formulations for the nu- 
merical computation of two-dimensional incompressible long- 
period shallow water waves. The described mathematical model 
is used to reproduce the dynamic situation occuring at the 
tidal propagation in estuaries. Areas which fall dry and wet 
again within a tidal cycle - so called inter-tidal flats - 
are taken into account. 

Introduction 

Since more than ten years the finite element method has been 
applied with considerable success in structural mechanics. In 
the last years the method was also used in fluid mechanics. 
Investigators like Grotkop [1], Connor, Wang [2], Davis, 
Taylor [3] and other made use of it to compute shallow water 
waves. But up to now inter-tidal flats - that are areas which 
fall dry and wet again within a tidal cycle - were not con- 
sidered in these models. Only some investigators like for 
example Ramming [4] and Apelt, Gout, Szewczyk [5] took these 
areas into account using the finite difference method. 

In the south eastern part of the North Sea in Europe many 
inter-tidal flats extend in front of the coast line. Without 
considering a natural phenomenon like that the hydrodynamic 
situation near these areas could be predicted only incomplete- 
ly by a mathematical model. 
Therefore calculation algorithms for inter-tidal flat elements 
and for normal ones were developed, which are coupled in one 
mathematical model. The coupling is useful for saving compu- 
ting time because only for elements of the first type much 
effort has to be made to include the permanent changing geo- 
metry of the area. 

Basic Differential Equations 

For the present problem two vertically averaged, horizontal 
velocities v^ (i=0,1) defined in a Cartesian coordinate system 
and the height of water level h (see Fig.1) are introduced as 
unknown parameters. The differential equations for this two- 
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water surface 

h water level 
a bottom depth 

H = a»h   water depth bottom 

Fig.1   Definition Sketch Described in a Vertical Section 

dimensional problem are obtained from the three-dimensional 
form of the continuity equation and the equations of motion 
by integrating over the depth (see e.g. Dronkers [6]). 
The vertically integrated equations received in this way are 
the continuity equation 

h't + 
= 0 (1) 

and the equations of motion 

v.  +v.v. ,+gh,. + J- 

(2) 

a+h 
1 

2e. • v. +-p„ • 
Vi„ /W-i WV 

- v      ^—lw. = 0 a+h    i 

with i,j =0,1  to be summed. In the continuity equation the 
flux per length q^  will be replaced by the relation 

= (a + h) v. (3) 

later, q  is the inflow in the area of computation and will be 
specified afterwards. 
In the equations of motion there are special terms for bottom 
friction, Coriolis force, atmospheric pressure and wind force 
as usual - g signifies the acceleration due to the gravity, A 
a dimensionless friction parameter, SI  the Coriolis parameter, 
which is a function of the latitude, E^J an alternating tensor, 
p the density of the water, p0 the atmospheric pressure, uw a 
dimensionless wind friction parameter and Wi are components 
of the wind velocity. 
In the equations ( ),± and ( ),t mean partial differentiations 
with respect to the coordinates x. and to the time t. 
Besides the friction term there are two further non-linear 
terms in the basic equations. For these the following linea- 
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rizations  are  realized: 

q±  =   (a + h) v.   +   (h-h)   v. (4) 

v. v.    .   = v. v.    .   + v. v.    .   -  v. v.    . (5) 
3     i/D ]     1,3 3     L] 3     ±>3 

h and v^ are e.g. in time extrapolated values or values from 
the last step of iteration, when an iteration within each time 
step is used, or initial values of the time step when no better 
values are available. 
Boundary conditions are the hydrographs of the water level or of 
the flux across the boundaries (see Fig.2): 

h - h = 0   on S^ (6) 
h 

q.n.+q = OonS (7) 
i  i q 

h signifies a prescribed water level and q a flux normal to 
the boundaries; q is positive when the water flows in the area 
of computation. On closed boundaries q is equal to zero. 

q = 0 

Fig.2  Designation of Boundaries 

Finite Element Analysis 

Because there exists no functional approach for the problem 
the method of weighted residuals is used and is the basic for 
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the application of the finite element method (see e.g. Zien- 
kiewicz [7]). 
The domain of computation is subdivided into finite elements. 
For the integration of the weighted differential equations 
elements in space and time are chosen with linear shape func- 
tions G  and x  as described in Fig.3. In time the differential 

E T 

Finite Element in Space and Time 

r 
At 

L 

T=0 

K T=1 

E=2    level with unknown 
nocial parameters 

level with known 
nodal parameters 
hE,'   VIE, 
(initial condition) 

with Linear Shape Functions 
h = rT eE hET 

*.  =   TT   °E   ViET. 

in Space: 

e„ 

in Time: 

S, 

Fig.3  Discretization and Shape Functions 

equations are solved in a stepwise manner as usual. 
The weighting functions 

and 

Sh      =   T0 0E ShEO 

6v. = T  0„ 6v.„„ 
. i     0  E   iEO 

are functions of space and time; 6hE0 and 6viEo are arbitrary 
values. In the present model the functions in space 0E are 
identical with the shape functions (Galerkin method) though 
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in conformity with a new publication from Gartner [8] better 
ones could be used. In time special weighting functions T 
(see Fig.4) are chosen to reduce the numerical damping. With 

At 

J=0       * 

T=1 
1-tf 

with 0.5 « tf « 1 

Fig.4  Weighting Function in Time 

^=0.5 the Crank-Nicolson time integrating factors are re- 
ceived and with •#" = 1 the method of Galerkin is again employed. 
The best value is near 0.5. 
The continuity equation (1) is weighted with respect to 6h 

J7«h(h,+q. . ) dt dA- // 6h q dt dA - J 6h„ Q„ dt = O .        (8) 
t   1 #1 K     is. 

At ' At t 

Instead of q an areal distributed mass inflow q and a point 
source of mass inflow QK at node K of the system are intro- 
duced. After integrating by parts and insertion of the boun- 
dary conditions (7) on S  equation (8) gets the form (9) 

JJfihh, dt dA- ! !  6h,. q . dt dA = // 6h q dt ds + ;/ 6h'q dt dA+/6hKQKdt 
At At   1     x s„t At t 

and finally after substitution of q and linearization accor- 
ding to (4) . 

;/[6hh,   - 6h, . ([a+h]v. +[h-h]v. )] dtdA=JJ 6h q dt ds+J/6h q dt dA 
At x 1 1 sqt At 

+ J cSh^dt . (10) 
t 

The equations of motion (2) are weighted with respect to 6v. 
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i Z^vTvT 

+ - p„  , -    w       J   J W, ] dt dA  =  O  . (11) 
p ro,i a+h       i 
1 

After the linearization (5) these equations receive the shape 

_        _      A/ v-ivV 
J/6v.[v.  + v.v. ,+v.v. . -v,v. . +gh,.+ •,lgJ v. - Re . . v . ^J.  i  i.t.  j i,j   j i,D   j 1,3  y 'i    a+h  I    i] ] 

•TTPn •- WIilP J W. ]dtdA = 0 .  (12) p co,i   a+h   i 

The integration of the weighted equations (10) and (12) is 
carried out in time t over a time interval At because of the 
stepwise solution algorithm and in space strictly speaking 
over the whole area A of the computation. As the finite ele- 
ment technique is used the integration in space can be re- 
duced to an element area Ae. This leads to matrix equations 
of an element exsisting of nine equations with nine unknown 
parameters. As the integration have to be performed over the 
whole area A the matrix equations of all elements are added. 
So the big set of equations is .received which have to be cal- 
culated in each time step. 
The boundary condition (6) is inserted in the whole set of 
equations by erasing of lines and columns as usual in the 
finite element technique. 

Area of Inter-Tidal Flats 

Two basic problems appear when computing areas of inter-tidal 
flats in a mathematical model: First the difficulty to describe 
the physical situation near the changing water-land boundary 
(water boundary) and second the organizing problem when the 
boundaries of the mathematical model start to wander because 
some areas fall dry. 
The author proposes the following procedure in principle for 
the solution of these problems: 
• The discretization in space remains constant. 
• Elements with at least one dry node in the end of a time 
step are approximately removed from the area of computation. 

• In the partly flooded elements only the remaining volume of 
water is considered and is fixed as a function of the water 
level in the flooded nodes. 

By these simplifications the dynamic is not exactly represen- 
ted in the direct reach of the water boundary but the conti- 
nuity is guaranteed. As this area is very small in compari- 
son- with the remaining model and the water depth mostly low 
the defect will be unimportant. On the other hand thus the 
whole organization of the program seems to be mastered in a 
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reasonable time. 
To perform the proposed solution some postulated conditions 
have to be fulfilled: 

• The boundaries of the flooded area are described by boundary 
integrals. 

• In special nodes of the system an exactly defined mass in- 
flow or outflow of water can be realized. 

•An iteration is practicable within each time step to correct 
the actual boundary of computation and to improve the 
assumed volume, of water in the partly flooded elements. 

• A relaxation can be used to accelerate the iteration. 

• For a better starting-point of the iteration the height of 
water level is extrapolated in the time direction with 
application of the least squares method. 

In the following the procedure will be explained in detail. 
For the computation of a new time step there exist defined 
initial conditions of all parameters from the last time step. 
By an extrapolation in time with consideration of several 
known time levels the water level can be roughly predicted 
in all nodes. 
Thus elements can be found which have three dry nodes at the 
end of a time step; these are dry elements (Fig.5). Further 

mmm.   constant outward 
boundary 

    actual water boundary 

S)IS!,   actual  boundary 
of computation 

d     dry element 

p     partly flooded element 
f     flooded element 

Fig.5  Various Boundaries in the Area of Inter-Tidal Flats 

there are elements with one or two dry nodes, the so called 
partly flooded elements. All the Other ones are flooded ele- 
ments and these constitute the remaining mathematical model. 
The boundary between the flooded and the partly flooded ele- 
ments - the actual boundary of computation - is described by 
boundary integrals. The actual water boundary is found by a 
horizontal extrapolation of the water level in adjacent 
flooded elements and is used to compute the remaining water 
volume (Fig.6). The difference of the water volume between 
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actual water boundary 
actual water boundary 

Fig.6  Partly Flooded Elements 

the initial and the new state in the partly flooded and dry 
elements is given as a point source of mass inflow or outflow 
in or out of the remaining dynamic model in the same time 
step. By this the partly flooded elements effect the dynamic 
behaviour and correct the continuity in the flooded area. 
After computing the element matrices of the flooded elements 
and solving the set of equations the new water levels and 
velocities are received. These differ from the extrapolated 
values in general. By an iteration within the same time step 
the water levels are improved and by this the actual boundary 
of computation and the assumed volume of water in the partly 
flooded elements. The iteration is accelerated by a relaxa- 
tion. 

Numerical Computation 

The program system MECCA (Modular Element Concept for Conti- 
nuum Analysis) is used for the numerical computation. The 
modular constructed system (Fig.7) performs the always re- 
current operations as being found in the finite element tech- 
nique for boundary value problems or like in this case for 
initial and boundary value problems. MECCA manages organiza- 
tion problems such as input and output, data storage on disk 
packs, assembling and solving the set of equations and a 
graphic representation of the results. The input and partly 
the control over the sequence of program modules is managed 
by a problem oriented language (Fig.8). A special data orga- 
nization (Fig.9) is prepared for the storage of the big and 
complex data sets. 

The differential equations describing a physical process and 
the characteristics of an element are specified in a separate 
element program (Fig.7,8) which is linked to special modules 
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User 

/[/O-Devices/ 

-Resident - Dynamic Field for Modules and  Data 

Operating 
System 

Root   [  Program Modules 
Program? 

with a Selection 
of  Subroutines 

Data Array 

for Modules 

i Element 
| Program 
'with 
| Complemented 
I Subroutines 

Data Array 

for Modules and 
Element Programs 

Permanent Program Files 

on Disk Packs 
Temporary Project Data 

on External Storage 

Fig.7 Allocation of the Computer by the Program System MECCA 

User 

Problem Oriented 
Input 

Echo Print and Optional 
Output of Results 

Problem Oriented Language 

«—System   Programmer—N*—Element Programmer- 

Data Interpretation 
Program  Control 
Supply of  Data 

Assembler Assembler / FORTRAN 

Fig.8  Schematic Organization of the Program System MECCA 
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of MECCA. Thus the possibility exists to couple different 
types of elements - in this case inter-tidal flat elements 
and normal ones - using common parameters in the connection 
nodes. 
A first publication of MECCA happened by Beyer [9] and 
Herrling, Pfeiffer [10]. 
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LINE 3 

LINE 4 
LINE 5 

Fig.9   Set-up of a Data File 

Numerical Results 

The usefulness of the presented method is demonstrated by two 
examples: First a test of continuity is carried out in a 
basin falling dry partly,and in a second test the program is 
employed to the tide situation in the exterior Jade. 
For the test of continuity a sloping basin has been chosen 
with a finite element- network and a distribution of depth as 
shown in Fig.10. Three boundaries of the basin are closed and 
the other one is open. On this boundary the time dependent 
flux q is described (see Fig.11). The discharge is so propor- 
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Cross- Section 

2.0m 

q*0 

0 2 4 km 

actual water boundary 

Fig.10  FE Network and Distribution of Depth 

tioned that the water volume goes down for 1m in the whole 
basin. 

025m2/s 

-0.25 m2/s- 

8h 12h 

16h 20h 24h 

influx 

—!-*• 
28h t 

discharge 

Fig.11   Prescribed Flux across the Boundary 

In Fig.12 to 15 the numerical results are shown at different 
times. The time step At amounts to 30 minutes and 0.003 is 
the value of the friction coefficient. 
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As a second example the time dependent! distribution of water 
levels and velocities in the exterior Jade (Fig.16) has been 
computed. The Jade is a German estuary in the south eastern 
part of the North Sea. 

Fig.16  Topology of the Exterior Jade 

Fig.17 shows the very coarse network of elements and Fig.18 
the distribution of depth in the model. In this mathematical 
model two different types of elements are used (Fig.19). 
Boundary conditions are prescribed water levels at the open 
ends of the model (Fig.20). 
The friction coefficient has the value 0.003 and the time step 
amounts to 10 minutes. 
Fig.21 and 22 demonstrate the distribution of velocities and 
the areas of dry and partly flooded elements. 
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Fig.17  Network of Elements 

Fig.18  Distribution of Depth in the Model 
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Types of   Elements 

flllllli    'nter " l'^a' f'al  element 

f . j    regular element 

Fig.19  Used Types of Elements 

|h[m]        Prescribed  Water Level at Boundary Sh, and Sh 

Fig.20  Boundary Conditions 
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Fig.21     State  at  3h    50 min 
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Conclusion 

The numerical results have shown that the new method is qua- 
lified to analyze the dynamic of estuaries with inter-tidal 
flats. In the mathematical model the dynamic behaviour is 
correct and the continuity of the water masses is guaranteed. 
The author hopes that he has provided a further contribution 
for a wide future application of the in hydrodynamics more 
and more advanced method of finite elements by the new oppor- 
tunity to consider areas of inter-tidal flats in a mathema- 
tical model. 
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