
CHAPTER 193 

TIDAL STREAM, FLOW SOLVED BY GALERKIN TECHNIQUE 

By L. H. Smith & R. T. Cheng 

Water Resources Division 
U.S. Geological Survey 

The Problem 
The total discharges in a tidally influenced stream reach are 

known to be related to the stages (water levels) at the ends of the 
reach. The discharge-stage relationships can be derived from the 
conservation principles of mass and momentum under a few simplifying 
assumptions.  Solutions of the governing equations with appropriate 
boundary and initial conditions give spatial and temporal variations 
of the flow in the reach. Practically, the most needed information 
are the instantaneous discharges, which, in many instances, provide 
guidance for water resources management decision making.  Unfortunately, 
measuring the instantaneous discharge in a tidal reach is often 
difficult, tedious and costly.  However, measuring the stages of 
a tidal reach is relatively simple, inexpensive and is done 
routinely. To determine discharges from measured water levels has 
been the subject of the present study. 

The governing conservation equations of momentum and mass when 
written for unidirectional, constant density, transient flow are, 
respectively, 

L^u.Z) " |r + H| + &H + G| u| u + (q/A)u = 0, (1) 

L2(u,Z) = -§ + uf + (A/B)-^ + (S0 + -|/B)u - (q/B) = 0,       (2) 

where 

A = channel cross-sectional area 
B = width of channel cross-section at water surface 
g = gravitational acceleration, 

2     2 4/3 
G = gn /(1.49 R  ), n being Manning's coefficient, 
q = lateral inflow per unit length of channel, 
R = hydraulic radius of a cross-section, 
S = slope of the channel bottom, 
o    r 

t = time, 
u = average water velocity for cross-sectional area A, 
x = direction of flow, 
Z = elevation of water surface, 

as indicated in Figure 1. 
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Figure 1.  Schematic Diagram of a Tidal Reach 

Figure 2.  Plane View of Three-mile Slough, California 
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These equations assume that the flow is relatively uniform in any 
cross-section of the reach so that an average velocity u can be used 
to characterize the total discharge by Au.  Though the cross-sectional 
area is treated as a variable, we further assume that A can be 
schematized by stacked trapezoids and that a linear representation 
of variation of A along the stream is sufficient.  Stoker (1957), 
Chow (1959), Dronkers (1964) and Baltzer and Lai (1968) provide 
derivations and further discussion of these equations.  The governing 
equations are coupled, nonlinear partial differential equations of 
hyperbolic type, which with specified water stages as the boundary 
conditions at ends of a channel segment, and initial conditions 
specified within the channel segment, form an initial-boundary value 
problem without known analytical solution. 

Resorting to numerical techniques, Baltzer and Lai (1968) have 
considered the power series method, the implicit finite-difference 
method, and the method of characteristics to construct solutions of 
the discharges. Of these methods, the method of characteristics 
appears to produce the most accurate solutions.  Recently, many 
classical variational techniques have attracted attention of 
researchers in relation to finite element methods, and use of the 
finite element methods in solid mechanics has been very fruitful. 

Applications of the finite element techniques to hyperbolic 
equations are not yet numerous. Wang, e_t al. (1972) considered the 
one-dimensional primitive shallow water equation using cubic Hermite 
basis functions.  Smith (1975) demonstrated that a Galerkin-finite 
element solution using linear basis functions compared favorably with 
those obtained by Baltzer and Lai (1968).  Following a similar 
approach, a finite element solution of the Saint-Venant equation 
using linear basis functions was presented by Cooley and Moin (1976). 
They found that a stage boundary condition at each end of a channel 
segment must be implemented with the aid of the characteristic 
equations. 

In this study we illustrate the use of cubic Hermite polynomials 
as basis functions in formulating a Galerkin-finite element solution 
to Eqs. (1) and (2).  We explore the use of explicit and implicit 
time-differencing schemes.  For a field case we compare measured 
discharges with discharges computed by the solution algorithm using 
measured stages as boundary values. 

II.  Galerkin-Finite Element Method 

A.  Galerkin Procedure 
A general way to construct a finite element solution to a set of 

partial differential equations (such as (1) and (2)) is to employ the 
method of weighted residual£ (Finlayson, 1972) .  For an M-th order 
approximate solution u and Z for the dependent variables u and Z, we 
write 

u(x,t) = |j a.(t)i|/.(x), and (3> 

Z(x,t) = |=1 bi(t)fi(x), (4) 
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where \|i., i=l,2,..., M are a carefully selected family of linearly 
independent functions called basis functions.  If residual functions 
R1 and R are defined as 

R (x,t) = I^Cu.Z), and 

R2(x,t) = L2(u,Z), 

the method of weighted residuals obtains u and Z by making integrals of 
the residuals R1 and R vanish over the entire domain of interest with 
respect to certain weighting functions W., i=l,2,..., M.  In other words, 

$ 

fL R (x,t)W.(x)dx = o, and (5) 

R
2(x,t)Wi(x)dx = o, (6) 

for i=l,2,...M, where L is the length of the entire channel segment of 
interest. When the weighting functions are defined and the integrals are 
evaluated, Eqs. (5) and (6) become a system of 2M simultaneous, ordinary 
differential equations of a.'s and b^'s, i=l,2,...,M.  The Galerkin procedure 
assumes that W. ='t|r., and the classical Galerkin procedure is equivalent 
to the scheme of eigenfunction expansion for solution of boundary value 
problems.  In finite element applications the basis functions i|t. are 
neither complete nor orthogonal, so that the Galerkin procedure only 
implies that the weighted-averaged residuals are zero over the domain with 
respect to the basis functions. 

Following the Galerkin procedure, and using Eqs. (1) - (4), 
Eqs. (5) and (6) can be written in matrix form as 

[l']^ + [P(a)]{a} + g [s]{b}-+    [Q(G|u|   +  q/A)]{a>  - 0, (7) 

[r]|^+   p(a)]{b}+[P(A/B)]{a}   +fQ(So+||/B)-| {a}_   [i] tyij.. 0, (8) 

where 

{  }= a column vector of dimension M, 

' LT> So *t*jdJt' (9) 

DO- St *iHj dx- and (10) 

M 

B<«3-1Z1 
fkvijk <12> 
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in which 

"ijk " '£ *1*&  VX' (13) 

V   = \    • • .•, dx. and (14) 
ijk Oo  Tiyjvk 

for a given function f(x) we write 

f(x) « | -fk*kW <15> 

Calculations for f are straightforward and clear when defined in 
terms of i|r. (x). Appendix I gives expressions for the above integrals 
in which \jt (x) are cubic Hermite polynomials.  In terms of local 

. coordinates, the integrals defining the coefficient matrices have been 
evaluated explicitly. Appendix II contains specific entries for these 
matrices. 

Application of the Galerkin-finite element procedure to the 
conservation equations produces the 2M - coupled, nonlinear, ordinary 
differential equations, Eqs. (7) and (8).  In this study both the 
explicit and implicit finite-difference schemes have been used in the 
temporal space. 

B. Explicit Time-differencing 
Of the explicit time-differencing schemes, predictor-corrector 

schemes are well-suited for solving Eqs. (7) and (8). A fourth order 
Haming's modified predictor-corrector formula (Ralston and Wilf, 1960) 
has been employed in this study for which stages and discharges and 
their time-derivatives at three consecutive, equally-spaced times are 
used to predict their values at a fourth time. The time derivatives of 
the stages and discharges at the fourth time can thus be evaluated 
by Eqs. (7) and (8), and the processes repeated. A Runge-Kutta 
formula must be used up to the fourth time step to start the fourth order 
predictor-corrector. This integration scheme is explicit and requires 
relatively small time steps to maintain numerical stability. Because of 
its explicit nature, specification of stages at end boundaries must 
be implemented with the aid of characteristic equations (Cooley and 
Moin, 1976). 

C. Implicit Time-differencing 
Alternatively, in many applications an implicit Crank-Nicholson 

time differencing scheme which is numerically stable is preferred. 
Before applying a Crank-Nicholson scheme, we employ the quasi- 
linearization procedure to the governing equations, Eqs. (1) and (2). 

1. Method of Quasi-linearization 
As shown above the Galerkin procedure is general. When 

applied to nonlinear partial differential equations it only 
results in a system of nonlinear ordinary differential equations. 
The question of nonlinearity is dealt with by first linearizing the 
governing equations and introducing an iteration upon them. The 
Galerkin procedure is then applied to the linearized system to construct 
numerical solutions for each step of the iteration.  This is plausible, 
and the following nonlinear terms are approximated by 
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„ 3u„ ,(n) 3u(n + "   (n+ 1) 3u(n)   (n) 3u(n) 
U3^"U TZ +u     "53E  "u  "52 

(16) 

„ 3Z c (n) 3Z
(n + 1} ,  (n + 1) 3Z(n)  (n) 3Z(n) 

u-3x-u-^     +u      IE  " u   Ix" 
(17) 

where the superscript indicates the order of the iteration. When the 
(n + l)-th order solutions are sought, the n-th order solutions are 
known functions. Thus, Eqs. (16) and (17) are linear with respect 
to the (n + l)-th order solutions. Normally, the previous time 
solutions of u and Z are taken as the zeroth order solutions.  It can 
be demonstrated that the quasi-linearization is but the extension 
of Newton's method to functional space.  If convergence can be 
reached, the iteration converges at a quadratic rate (Bellman and 
Kalaba, 1965). Some nonlinearities in Eqs. (1) and (2) are weak and 
may be treated by a time delayed approximation.  Thus Eqs. (1) and 
(2) become 

» 
I-! (u,Z) 

\  (u,Z) 

- is + u(n) *L+ u ^ 
3t       3x    3x 

.u<n)|u(n)+(q/A)u.0j 

+ *|§ +G|u
(°)|u 

3Z   (n) 3Z ,   3Z (n) AI (o> 3U 
"Sx" 

(18) 

(19) 

[SO + £B]«.-[«/B).O. 

where L and L are linear operators in which the superscript 
(n + 1) is dropped for clarity, and terms with superscript (o) are 
treated with the time-delayed approximation. 

By applying the Galerkin procedure, Eqs. (18) and (19) become, 
in matrix form, 

K3 $*+   [P(a<n))]{a}+ [P(a)]{a}(n) + E [s]<b) 

+ [Q [G|U| + «/A] (o)]{a} - [p (a(n)]j {a(n)} - 0, 

[r]^>+ [F (a(n)J]{b}+ [p (J {b(n)} +|~p JA(o)/Bjj{a) 

+ lQ (so+ •£'»] (°5a> - DO <^> -o. 

(20) 

(21) 
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in which the matrices [T] , [s], |P] , and [<f] are defined previously in 
Eqs. (9)-(12).  Eqs. (20) and (21) are coupled, linear ordinary 
differential equations.. At a particular time iterative solutions are 
obtained until |{a} -{a(-nJ}| and | {b} - {brn) I are less than a specified 
tolerance before further increment of time. Experience suggests that 
this criterion can usually be met within one or two quasi-linear 
iterations. 

2.  Crank-Nicholson Time-differencing Scheme 
The Crank-Nicholson scheme is now applied to integrate Eqs. 

(20) and (21). 

Since    [J?(a)J{b} - £p*(b)] {a} (22) 

where   [P*(b] . |   „  bj 

Eqs. (20) and (21) can be assembled such that they appear as 

[c] £^> +M {C}  - {F} (23) 
where the vector{£} has dimension 2M and £„. ,=a and £ .=b.. 

2i-l I     2i l 

Using a finite-difference expression for ~rr{E,}  , we write 
Eq. (23) in the form " 

[l?]+l>]/2) (<?>+ " «>") - <F> -rD]«>"/2 (24) 

where {?MC (t )} and{U+={5 (t +At) }. o x o 

The difference of the present and past{£;} , i.e.{5} -{C}" , 
is actually solved to minimize possible round-off errors that could have 
been incurred in the computations. Because of the properties of the 
functions i|i.(x), the coefficient matrix ( [C] + [p] /2) is banded and 
diagonally dominant.  An extended Cholesky algorithm (Tewarson, 1973) 
satisfactorily solves Eq. (24). 

In summary, using an implicit time-difference scheme, we have 
(1) quasi-linearized the nonlinear partial differential equations, 
(2) applied the Galerkin procedure in the space domain, (3) integrated 
the resultant ordinary differential equations with respect to time by the 
Crank-Nicholson finite difference scheme. 

III.  A.Case Study 
Three-mile Slough, which is located about 40 miles northeast of 

San Francisco in the delta region of California's central valley, 
provides an interesting example of tide-induced, unsteady, open-channel 
flow. The slough is actually a channel approximately three miles in 
length connecting the Sacramento and San Joaquin Rivers, Fig. 2. 
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The long-period tidal waves propagate inland through Golden Gate, 
San Francisco Bay, San Pablo Bay, Carquinez Strait, Suisan Bay, and on. 
At the confluence of the San Joaquin River with the Sacramento River near 
the city of Pittsburgh, the waves divide and continue to propagate 
upstream in the separate river channels.  Because of lesser distance 
above the confluence and because of greater channel depth, a translatory 
wave crest passes the Sacramento River end of Three-mile Slough from 
30 to 45 minutes before the corresponding wave crest reaches the slough's 
San Joaquin River end. As a result, Three-mile Slough exhibits contin- 
uously and rapidly varying flow through each tidal cycle.  Moreover, the 
direction of flow alternates with the passage of each successive wave. 
Because of the high degree of unsteadiness and alternating direction of 
the flow, this tidal reach was deemed desirable for trial evaluation 
of the discharge computation process. 

In 1959, Water Resources Division of the U.S.G.S. conducted an 
extensive field investigation in this tidal reach.  Two tidal gages 
were installed at the San Joaquin and at the Sacramento River ends to 
record water levels at 15-minute intervals.  A field survey was also 
conducted to help establish its cross-sectional properties. During the 
months of July and August, 1959, gates blocked all the diversionary 
channels, and several sets of discharge measurements were made using 
current meters. These data were used to evaluate the computational 
schemes suggested in the present study. 

Using the measured stage records at the ends of the Three-mile 
Slough (See Fig. 2) as inputs, the computations have been carried out 
by both the predictor-corrector and Crank-Nicholson schemes 
for several values of Manning coefficient. Figure 3 is a plot of measured 
and computed discharges obtained by the predictor-corrector scheme for 
three different Manning values.  A Manning value of 0.038 gives a best 
over-all fit for this scheme.  Since the discharge ranges between 
+35,000 cfs (ft3 /sec) to -35,000 cfs, it is quite likely that the 
Manning n value should have been treated as a function of the discharge. 
We have not included this feature in the present study, although 
implementation of a variable n in the model is plausible.  For a 
Manning coefficient of 0.038, Figure 4 compares the computed discharges 
for the predictor-corrector and quasi-linearization schemes to those 
computed by the predictor-corrector scheme with linear basis functions. 
The predictor-corrector schemes both were run with a 1-minute time- 
step, and the Crank-Nicholson (quasi-linearization) scheme with a 
5-minute time-step.  The deviation of the quasi-linearization scheme 
is attributable to the different manner in which it handles the 
friction term.  For a reach with channel geometry as regular and 
length as short as Three-mile Slough, there is little difference in the 
discharges computed using the Hermite and linear basis functions. 
All of the schemes compute discharges within 5 percent of the measured 
values. 

IV.  Discussion 
In this study numerical solutions to the governing equation of a 

tidal reach have been constructed using a Galerkin-finite element 
approximation in space and finite-difference approximation in time. 
The computer algorithms have been successfully tested in a case study 
at Three-mile Slough, California, where a complete reversal of flow takes 
place in every semi-diurnal tidal cycle.  The predictor-corrector 
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solution computes accurate discharges but requires use of the 
characteristic equations to implement the boundary conditions, and small 
time-steps to maintain numerical stability. The implicit Crank- 
Nicholson and quasi-linearization scheme has neither of these requirements. 
Although it requires longer computer time per time step, it permits 
the use of larger time steps.  The total computer time requirements for 
the implicit and explicit methods are comparable.  Good agreement 
between the measured and computed discharges suggests further 
applications of the present model to realistic field problems. 
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Appendix I.  Spatial Integration with Hermite Basis Functions 

To facilitate easy application of the Galerkin procedure, we first 
partition the domain (b, LJ into N elements, i.e., 

where the i-th element spans fx. ,,x.l .  The local coordinates 

L and L are introduced such 

j_x7, x J can be expressed as 

L and L are introduced such that any point x on the line element 

where 

x = L^x) Xl + L2(x) x2 C1"1) 

x - x x - x 

The functions L and L  known as the natural or local coordinates, are 

simply ratios of length when measured from x and x1 respectively, and 

satisfy 

Ll + L2 = U (1-2) 

Utilization of the properties of local coordinates significantly 
simplifies evaluation of integrals over the elements.  General 
quadratures in terms of the local coordinates can be derived easily 
(Eisenberg and Malvern, 1973).  For one-dimensional problems, we 
redefine, for the i-th element, 

x. - x x - x 
L. , (x) = _i  ,  L. , (x) =  -ili , a.3) 1,1      x. - x.   '   j.,2      x - x (.1 J; 

li-l i l-l 

then 

$ 

a'-   p! L. 
L." , L?   dx = T—, - ,3"i-.T > where L.  = x - X. .. 
i,l 1,2      (a + p + 1)!        i    i   i-1 

l-l 



TIDAL STREAM FLOW 3371 

The cubic Hermit polynomials can be defined in natural coordinates 
as 

3        .   -  -2 
if   X <   X   <      X 

1-i —     —     i 

+2i-lW  - 

t21(x) 

-2  L. +  3  h.   n 
1,2 i,2 

2  Li+1,2      "  3 Li+1;2      +   '•   if xi i   x  <    x 

1,2     1,1     l 

Li+l,l    Li,2 Li+1' 

i+1 

otherwise  , 

if x.       <    x  <    x 
l-l  —        —      i 

if x     <    x  <    x 
i+1 

(1-4) 

(1-5) 

otherwise. 

The functions     i.     (x)   and \|/     (x)   are  sketched  in Fig.   5  for  the 

sub-regions Qc.   .,   x. ] and px.,   x.,, 1 ,   or the  i-th and   (i+l)-th elements. 

Not e  that        t^.!   (x.) =  1   , *2i   (Xi}= °' 
d*„- "V2i-1  (x.}- 0  , and Z£i   (*±)-  1. 

(1-6) 

These  imply  in Eqs.   (3)   and   (4)   of section II A that 

a,.   .   (0  = u  (x.,t)   , a      (t)  =    !" 
2i-l                         l 2i                  jx JX = x. 

b,.   .   (t)   - Z   (x.,t)   , b„.   (t)   =    11 
2l-l                                   1 2l                         gx      X   =   X. 

(1-7) 

Thus u and Z are interpolation expressions for the functions u and Z 
in terms of their values and spatial gradients at the x..  The 
interpolating functions ijj. constitute a basis for the set of C 
elements in one-dimensional problems (Strang and Fix, 1973).  The 
numerical solutions are the discrete solutions of velocity and stage at 
each node, u.and Z, and their spatial gradients, du. and dZ.. 

li — i    —i 
(I) dx     dx 

Therefore, C  elements provide continuous approximate u, z, du and dZ 
dx    dx 

but piecewise continuous second order derivatives. 
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*2i„.,(x)and*2i(x) 

A 

Figure 5.  The Cubic Hermite Polynomial Shape 
Functions for i-th and (i+l)-th Elements 
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Integrals defining the coefficient matrices, Eqs. (9)-(14), can 
now be examined.  For example, 

[TJ - S^ t± tj dx - j, J^ •. *. 

(1-8) 

dx. 

Note that unless i, j - 2k - 1, 2k, 2k + 1, or 2k + 2, 

i  *1 *J dx = 0. 

Therefore the elemental contribution to [T[ from^x, , ,x1 can be 

given as 

M(k) -.Jk 
420 

156 

22 

22    # 

\ 

\ 

13 

54   13   156 

-13 

-22 

-13 ^ -22 \ 

(1-9) 

where the first through the fourth column and row represent rows and 
columns from (2k-l) to (2k+2) in the global (over-all) matrix.  This 
recurrence formula constitutes the basic algorithm of the finite element 
method.  The global matrix [Tj is formed by adding the elemental 
contributions to the proper rows and columns. Likewise, elemental 

contributions of fs] (    , |~U. .  1,, t~V. .l 1 , have been calculated and 

their values are given in Appendix II. 
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Appendix II.    Elemental Contributions of Coefficient Matrices. 

?k 

H (k) 
•i 

dill. 
_Li 
dx 

dx 
_1_ 
60 

VI 

-30      -6 \      "30        6 \ 

T   2 
6 U       0 -6 

30 

-6 L, 

\    \ 

V 30        -6 L 

Kfi'^H dx,   then 

VI 

when  «.= 2k -  1 

[< U (k)~ 
ij    JJ. 

1 
840 

-280 100 1^      280 

2 
50  L, -50  1^      5i; 50  Lk       -111^ 

-140 -16 1^    140 

68 \ 
2 

-11  T 

-16 L, 

*\ 3 he      "34\      5^ 

when 4 = 2 K : -50 Lk ^ 50 L 
k 

-UI> 

ij «, 
1 

840 
-34 L 

k 

0 
2 

10 IT 
k 

34 \ "3^ 

«"£ ^ •a 4 
3 
k 

when £ = 2 K + 1 -140 "16\ 140 -16 t 
k 

(k) 
U.. 

. 4 

1 
840 

-34 L, 
k 

-280 -68!* 

34 1^ 

280 

"3^ 

100 \ 

50 \ 11 l£ -50 1^ ->i_ 
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1=    2 k +  2 

j   (k) 
ij 

34  L 
k ^ "34\ 

2 
5\ 

*Z i? 
k •"( i 

50 \ 
11 i -50  1^ -^ 

10 i -^ 
10 i 0 

7 (k) 
ij 

\ 

'x   VJ   *«, 

\-l 

when J, =    2 k -  1   : 

/.(k) 

2520 

774 97  \ 162 -43 1^ 

97  \ 16 He 35  \ -^ 

162 35  He 162 -35  Lfc 

-43 1^ ^ -35   1^ ^ 

h =    2 k  : 97  \ 
16 i 35 \ -*i 

v <k>~ =    A. 
16 i ^ K -^ 

ij 2520 
35   1^ *t 43  ^ -^ 

"^ ->< 
2 -9i ^ 
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when i= 2 k +  1 : 

V (k) 
ij  . 2520 

162 

35   L, 
k 

162 

-35 1^ 

35  L 
k 

„  ,2 

43 L 

"^ 

162 

43 1^ 

774 

-97 \ 

-35  L, 

-9 Lf 

-97  L, 

16 i 

when 2 k + 2   : 

,   <k) 

-43 Lk -K -35\ W 
\ -9 "^ -K ^ 

2520 

-35\ "^ ~97\ 16 L2 

k 

2 
8Lk ^ 16 l£ -3^ 


