
CHAPTER 132 

NUMERICAL CALCULATION OF WAVE FORCES ON STRUCTURES* 

B. D. Nichols and C. W. Hirt** 

I. INTRODUCTION 

A finite-difference technique for solving the Navier-Stokes equa- 
tions for an incompressible fluid is used to calculate transient wave 
forces experienced by fixed and moving bodies.  The numerical technique 
is based on the Marker-and-Cell (MAC) method developed by Harlow and 
Welch (1965).  This new technique uses an especially simple solution al- 
gorithm that is designed for persons with little or no experience in nu- 
merical fluid dynamics.  Originally conceived as an instructional tool, 
it has proven to be an extremely useful and versatile calculational 
method. Many useful calculations are possible with the publicly avail- 
able code, SOLA-SURF, which is briefly described in Sec. II; however, the 
outstanding feature of this numerical scheme is the ease with which it 
can be modified to handle more complex problems.  Reported here, in Sec. 
Ill, are examples to illustrate the utility of this new calculational 
tool for investigating the dynamic interactions between ocean waves and 
coastal structures. 

II. THE NUMERICAL TECHNIQUE 

The solution algorithm contained in SOLA-SURF solves the Navier- 
Stokes equations for an incompressible fluid. A stationary network of 
rectangular cells is used to divide the calculational region into a 
finite number of elements with which the fluid variables are associated. 
The primary field variables are the velocity components and the pressure. 
Each of the velocity components is specified at the center of the cell 
face to which it is normal and the pressure is specified at the cell 
center. 

*This work was performed jointly under the auspices of the United States 
Energy Research and Development Administration and the Office of Naval 
Research, ONR Task #NR 062-455. 

**The authors are members of the Fluid Dynamics Group (T-3), Theoretical 
Division, Los Alamos Scientific Laboratory, Los Alamos, NM 87545. 
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The fluid motion is numerically determined by advancing the fluid 
configuration through a series of small time increments.  During each 
time step the solution to the momentum equation is obtained in two 
phases. First, the velocities and pressures from the previous time 
step are used to determine the fluid velocities in each cell, with the 
initial conditions used for the first time step.  This explicit calcula- 
tion does not necessarily ensure incompressibility; therefore, in the 
second phase the tentative velocity field is adjusted through changes 
in the pressure field.  The pressure in each mesh cell is adjusted to 
drive to zero the velocity divergence in that cell.  The pressure and 
velocity distributions must be obtained by iteratively adjusting these 
velocities in each cell in the mesh.  This solution algorithm and other 
features of the technique are described in detail in a report by Hirt 
et al. (1975). 

Free or curved rigid surfaces are permitted across the top and bot- 
tom of the computational mesh. The surfaces are defined by single valued 
functions of the height above the bottom of the computational mesh and 
are specified at the center of each vertical column of cells.  The change 
in the free surface elevation is determined kinematically by the local 
fluid velocities, i.e., by the vertical component of the fluid motion 
plus the horizontal convection of the surface elevation from adjacent 
cell columns. 

The free surface boundary conditions require that the normal and 
tangential velocities immediately outside the surface be chosen to en- 
sure a zero transfer of momentum through the surface. A good approxima- 
tion to these conditions is to set the velocities normal to the surface 
to satisfy the incompressibility condition in the cells in which the 
free surface is located and to set the tangential velocities in the cells 
immediately outside the fluid equal to the adjacent interior velocities. 
The pressure in surface cells is determined by a linear interpolation 
or extrapolation between the pressure in the fluid cell immediately be- 
low the surface cell and a specified pressure at the surface. 

The pressure in each cell in which a rigid surface is located is 
derived under the constraint that the velocity normal to the surface be 
zero.  This requires a variation in the Newton-Raphson type solution 
method used to obtain pressures for interior fluid cells.  The velocity 
boundary conditions for these rigid boundaries are free-slip, i.e., the 
normal velocity and tangential velocity gradient are zero at the bound- 
ary, which makes them identical to the free surface boundary conditions. 
In addition, these rigid surface boundary conditions can be easily in- 
serted in SOLA-SURF to create rigid, curved bodies at any location in 
the computational mesh.  A special boundary condition section has been 
designated in the code to facilitate these types of modifications. 
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A copy of the SOLA-SURF code is available from the Argonne Code 
Center. The address is Argonne Code Center, Argonne National Laboratory, 
9700 South Cass Avenue, Argonne, Illinois 60439. 

III.  THE CALCULATION OF WAVE FORCES ON STRUCTURES 

We present four brief studies to illustrate the areas in which the 
ocean engineer may find SOLA-SURF to be a useful tool. The first two cal- 
culations, i.e., solitary wave run-up on a vertical wall and on a sloped 
beach, are good examples of what can be done with the relatively simple 
SOLA-SURF code without modification. The remaining calculations require 
the addition of special boundary conditions to create stationary or 
moving interior structures. 

1. Reflection of a Solitary Wave 

In this first example, a solitary wave travels over a fluid of 
constant depth, runs up a vertical wall, and reflects from the wall. 
The calculational region was resolved by 75 horizontal by 10 vertical 
cells, with cell dimensions of 0.5 horizontally and 0.2 vertically, and 
a time step of 0.1 was used.  (The units in this calculation were non- 
dimensional.) All the wall boundaries were specified to be rigid, free- 
slip boundaries and the fluid is nearly inviscid.  Laitone's second 
order approximation was used to initially define the free surface pro- 
file and velocity field of the solitary wave, as presented by Weigel 
(1964). The pressure field was initially set to hydrostatic pressure. 
Figure 1 shows the free surface profile and the velocity field, repre- 
sented by velocity vectors drawn from cell centers, at times 13, 18, 
20, and 26. The integrity of the wave profile and the velocity field 
remains excellent as the wave propagates down the channel and reflects 
from the wall. 

To compare with the experiment of Camfield and Street (1967), the 
numerical calculation was repeated several times with initial wave heights 
ranging from 0.1 to 0.6, and with an undisturbed fluid depth of 1.0. 
A comparison of the computed maximum wave run-up with the experimental 
results is shown in Fig. 2. The abscissa is the ratio of the initial 
wave height, HQ, to the undisturbed fluid depth, d, and the ordinate is 
the ratio of the maximum wave run-up on the vertical wall, R, to d. As 
the plot shows, the SOLA-SURF calculated data are in excellent agreement 
with these experimental data for a wide range of initial wave heights. 

2. Solitary Wave on a Sloping Beach 

Solitary waves are often used as the initial wave shape to simulate 
shoaling, breaking, and run-up of large, long waves on a beach.  SOLA- 
SURF cannot handle breaking waves because of the restriction that the 
free surface slope be less than the mesh cell diagonal. This restriction 
can be removed by using the more complicated surface marker particle 
treatment as described, for example, by Nichols and Hirt (1971). How- 
ever, we have calculated the solitary wave running up a sloped beach and 
measured the variation in maximum amplitude with depth.  The rigid bot- 
tom slope was 1/20, with the ratio of wave height to fluid depth of 0.1. 
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Fig. 1.  Free surface profiles and velocity vector plots of 
solitary wave run-up on a vertical wall at times 13, 
18, 20, and 26. 



2258 COASTAL ENGINEERING-1976 

1.8 

1.6 

1.4 

1.2 

-a 

0.8 

0.6 

0.4 

0.2 

0.0 

SOLA-Surf 
Experiments 

(Cornfield a Street, 
1967) 

0.0      0.1        0.2      0.3       0.4      0.5      0.6      0.7       0.8 

Ho/d 

Fig. 2. A comparison of the computed maximum wave run-up, R, 
with experimental values for many initial wave heights, 
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Again, Laitone's second order approximation was used to initially define 
the solitary wave. Free-slip boundary conditions were specified for all 
rigid boundaries. A mesh of 90 horizontal by 18 vertical cells was used 
with cell dimensions of 0.5 horizontally and 0.1 vertically. The mesh 
length was chosen to accommodate the solitary wave totally over the 
horizontal section of the mesh bottom. SOLA-SURF does not have pro- 
visions to treat the intersection of the variable top and bottom bound- 
aries in a cell. To allow the solitary wave to run farther up the beach 
without reflecting from the vertical wall, a shelf two and one-half cells 
beneath the undisturbed fluid surface was incorporated into the bottom 
boundary configuration. This is shown in Fig. 3, along with the free 
surface profile and the velocity field at times 0, 9, 22, and 28. At 
the later times, steepening of the wave front and growth of the wave 
height is obvious. Indeed, the calculated variation in maximum amplitude 
with depth compares very well with previous calculations, as shown in 
Fig. 4. In this plot, we compare the computed variation in maximum wave 
amplitude at different fluid depths with the theories of Peregrine (1967) 
and Madsen and Mei (1969). The numerical calculation of Chan and Street 
(1970) are virtually the same as the SOLA-SURF results.  Peregrine de- 
rived equations of motion for long waves in water of varying depth that 
are extensions of the Boussinesq equations and that include nonlinear 
terms and a term to account for the effects of the vertical acceleration 
of the water on pressure. These equations were solved numerically for 
a solitary wave on a beach of uniform slope. Madsen and Mei treated the 
same problem with slightly different, but equivalent, equations.  One 
difference, however, between the calculations is that Peregrine located 
the crest of the solitary wave immediately above the toe of the slope. 
The effect of this is seen in the comparison plot. Peregrine's calcula- 
tion starts with H/H0 =» 1.0 at d/do = 1.0, where H is the wave amplitude, 
1^, is the initial wave amplitude, d is the undisturbed fluid depth at 
the horizontal location corresponding to the wave crest, and dQ is the 
undisturbed fluid depth over the horizontal section of the bottom surface. 
The Madsen and Mei and SOLA-SURF calculations, which start with the 
wave initially over the flat bottom, show the ratio of the wave height 
at the toe of the slope to the initial wave height is greater than 1.0. 
The SOLA-SURF calculations are in good agreement with the other calcula- 
tions. The effect of the shelf in our calculation is evident. The wave 
height does not continue to grow as the wave front reaches the shelf and, 
consequently, the value of H/Hg falls slightly below values calculated 
without the shelf at low values of d/dQ. 

3. Forces on Submerged Structure 

The determination of forces on submerged structures in the presence 
of gravity waves is of practical engineering importance.  The SOLA-SURF 
code was used to calculate the horizontal and vertical forces on a sub- 
merged, rectangular structure resulting from a train of regular surface 
waves.  This rectangular structure was created midway between the free 
surface and the mesh bottom by setting to zero the velocities on all 
faces of cells that make up the structure. These are set in the special 
boundary condition section of the code. The horizontal and vertical 
forces on the structure were determined by integrating the pressures 
acting on the surfaces of the structure. The dimensions of the submerged 
structure were chosen to compare with the experimental data of Brater 
et al. (1958). 
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Fig. 3. Free surface profiles and velocity vector plots of 
solitary wave run-up on a 1/20 sloped beach at times 
0, 9, 22, and 28. 
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Fig. 4. A comparison of the computed variation in maximum 
wave amplitude, H, at different fluid depths, d, 
with other calculations. 

The surface wave train was generated at the boundary of the compu- 
tational mesh by setting the time dependent wave height and velocity 
components in the fictitious column of cells at the left side of the 
mesh.  The mesh was 120 horizontal by 16 vertical cells, and the obstacle 
was 2 by 5 cells. Figure 5 shows the computer generated free surface 
profile, velocity field, and obstacle at times 0, 1.50, 3.25, and 4.25. 
The wave form is not perfectly sinusoidal; however, this is expected be- 
cause an approximate shallow water expression was used to generate the 
wave form and, of course, the leading wave is distorted as it travels 
into still water. The exact form of the waves used in the experiment 
is not known. 

Our computed data are compared with the experimental data in Fig. 
6. The wave forces, normalized by wave height, are plotted as the verti- 
cal coordinate and the location of the center of the structure (Yj, + d0) , 
normalized by d0, is plotted as the horizontal coordinate, where Y^ is 
zero at the free surface and d0 is the undisturbed fluid depth.  The 
computed horizontal forces are in very good agreement with the experi- 
mentally determined forces of Erater et al. (1958). However, the 
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Fig. 5.  Free surface profiles and velocity vector plots 
resulting from the propagation of a sinusoidal 
wave over a submerged structure at times 0, 1.50, 
3.25, and 4.25. 
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vertical forces calculated are about 20% larger than the experimental 
data. The accuracy of the numerical calculation was tested by increasing 
the temporal and spatial resolution and tightening the pressure iteration 
convergence criterion. These tests confirmed the originally calculated 
results, indicating that numerical accuracy is not the source of dis- 
agreement.  Since the vertical force is very sensitive to the wave form, 
we may not be correctly modeling the experimental waves. 

4. Forces on Floating Bodies 

Hydrodynamic forces exerted on partially submerged, floating bodies 
are of interest to naval architects and ocean engineers. Different types 
of fluid motion may be generated to study these forces. Here we report 
on calculations for bodies undergoing forced harmonic oscillations in 
an otherwise quiescent fluid.  In particular, we have studied heave 
forces on two-dimensional cylinders with rectangular and triangular cross 
sections and sway forces on a triangular or wedge shaped cylinder. 

Pure heaving motions produce only vertical forces, which, for low 
amplitude motions, may be described by their amplitude and phase relative 
to the forced harmonic motion. These forces are due to buoyancy, irier- 
tial (added mass), and energy dissipation (wave generation) effects. 
In this study added mass and damping coefficients are computed and com- 
pared with the experimental work of Vugts (1968).. 

These calculations used mesh sizes that varied from 100 to 250 cells 
in the horizontal direction, depending on the period of motion, and 20 to 
30 cells in the vertical direction. Typical calculation times on the 
CDC-7600 were 0.20 ms/cycle/cell. For the rectangular body, the mesh 
cell size was 0.1 horizontally and 0.2 vertically. Five cells were 
used to resolve the half-width of the body, which was located at a plane 
of symmetry at the left mesh boundary.  Figure 7 shows the location of 
the rectangular body and the velocity field after approximately 2.5 
periods of oscillation. To model the harmonic motion of the rectangular 
cylinder, special boundary conditions had to be added to the SOLA-SURF 
code. At the rigid bottom boundary of the rectangular body, the cell 
pressure is derived under the constraint that the normal fluid velocity 
be equal to that of the body.  Because the SOLA-SUKF boundary conditions 
restrict the surface slope to be less than that of a cell diagonal, we 
had to eliminate this restraint at the vertical side of the cylinder by 
aligning the side with a cell boundary line. Then boundary conditions 
were added to set zero velocities normal to the side of the cylinder. 

The added mass coefficient, p, and the damping coefficient, X, are 
given by 

to a 
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 v/it 

Fig. 7. Velocity vector plot of the fluid in which 
a rectangular cylinder is in forced heave 
at the left mesh boundary after 2.5 periods. 

and 

X = Y sin g 
coa 

where a is the amplitude of motion, w is the frequency of motion, and 
Y is the amplitude of the assumed harmonic pressure force on the body. 
The phase shift g was obtained by comparing plots of the body displace- 
ment and pressure force acting on the rectangular body as functions of 
time and measuring the shift in phase. A detailed description of the 
determination of these coefficients is given by Nichols and Hirt (1975). 
These calculated added mass and damping coefficients are compared with 
experimental data in Fig. 8. The coefficients are normalized by pA and 
vS/2g, where p is the fluid density, A is the mean submerged area, B 
is the rectangular body beam, and g is the acceleration of gravity. 
The calculations were for B/T = 2.0, where T is the rectangular body 
draft at its mean location. The amplitudes of motion, normalized by B, 
were 0.025 and 0.05. Vugts' experiments were conducted in fluid depths, 
normalized by B, varying from 4.50 to 5.625. The normalized depth was 
4.0 for the calculated results. The calculated data generally agrees 
very well with the experimental data. The discrepancy in the calculated 
damping coefficient at the normalized frequency of 1.25 is probably due 
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ficients from a rectangular cylinder in forced heave 
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to inaccuracies in determining the phase shift 3, since it is very small 
at this beam width and frequency. To check this, another calculation 
was made, which is not plotted in Fig. 8, for B/T = 8 and <W§72g = 1.25. 
In this case the phase shift is much larger, and the added mass coeffi- 
cient agrees closely with the experimental data. The calculated damping 
coefficient in this case is very close to the experimental data, lying 
between the linear theory and the experimental data. 

There is a discrepancy between the experimental data and linear 
theory for the added mass coefficient at normalized frequencies below 
0.5. Vugts explains this as being caused by experimental inaccuracies. 
With a normalized fluid depth of 4.0, the calculated coefficient at a 
frequency of 0.25 is slightly higher than that of the experiments. 
(This is the middle point marked (2) in Fig. 8 at this frequency.) 
However, calculations with a fluid depth of 2.0, marked (1), and a fluid 
depth of 8.0, marked (3), show clearly that the finite depth is the 
cause of the disagreement with the linear theory. The added mass coef- 
ficient for the shallower fluid depth is slightly less than the experi- 
mental data, but with the normalized depth of 8.0 the calculated coef- 
ficient agrees with the linear theory, which assumes an infinite depth. 

We next extended this capability to calculate the added mass and 
damping coefficients of a 60° wedge in sway. The coefficients, normal- 
ized as described above, were calculated for normalized frequencies 
ranging from 0.5 to 1.25 and with B/T = 1.155. An amplitude of motion, 
normalized by B, of 0.05773 was used. As shown in Fig. 9, the numerical 
data is in very good agreement with linear theory, but agrees less well 
with the experimental data. Expecting closer agreement with experimental 
data, we were concerned about possible numerical inaccuracies and tested 
for these in various ways. We tightened up the convergence criterion, 
increased by a factor of two the spatial and temporal resolution, used 
a new second order differencing scheme, and made various tests on the 
wedge interface boundary conditions. In addition, the calculations were 
performed in a moving reference frame attached to the body, as well as 
in the laboratory frame.  However, all calculations were consistent to 
within a few per cent, thus, we believe the calculations are accurate. 

Nonlinear effects were expected to have a greater influence. For 
example, secondary flow formed at the wedge tip is expected to increase 
the damping coefficient somewhat. This secondary vortex is shown in 
Fig. 10, which shows the velocity field and free surface configurations 
at times 0.50, 2.25, and 4.50. It should be noted that Vugts concluded 
that the generated eddy hardly disturbs the pressure distribution over 
the wedge surface. He explained the disagreement of his results with 
the linear theory as "a small systematic error at the higher frequencies 
of motion, where high demands are imposed on the structural set-up." 
We have shown that Vugts' tentative conclusions were correct and that 
linear theory does accurately predict the added mass and damping coef- 
ficients for the wedge in sway at this amplitude.  Of course, at higher 
amplitudes for the forced sway, nonlinear effects must eventually enter. 
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Fig. 9. A comparison of numerically computed and experimental 
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Fig. 10. Free surface profiles and velocity vector plots resulting 
from a 60° wedge in forced sway at times 0.50, 2.25. and 
4.50. 
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