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SUMMARY 

At the 1974 Conference on Coastal Engineering (Copenhagen), the 
-writer proposed a new theory on the mechanism of generation of rip- 
current and cuspidal coast that the alongshore homogeneous structure 
of wave field and movable sedimental bottom (that is two-dimensional 
wave setup and bottom topography) is unstable to a small perturbation, 
the motive force of instability being the radiation stresses caused by 
incident wave. 

In this paper, based on the response concept and the mathematics 
already presented at the previous conference some improvements in 
solving the fundamental equations are attempted, since the direct 
solution of the full system of basic equations did not necessarily re- 
sult in the sufficient conclusion. 

The response of water-wave system to an infinitesimal perturbation 
in bottom boundary is quick enough compared with that of sediment system 
to a change occurring in water-wave system.  Consequently, the water 
system is treated as quasi-stationary.  By solving the equation of mass 
conservation of sediment transport under the prescribed boundary condi- 
tions, the preferred wavelength of rip-current as well as the profiles 
of velocity distribution and the bottom perturbation have been deter- 
mined as an eigenvalue  problem. 

INTRODUCTION 

Recently, various theories have been proposed on the mechanism of 
rip-current generation. These theories may be grouped into three 
categories; The forced formation theory, the variational principle of 
the energy dissipation and the instability or eigenvalue theory. 

Bowen and Inman's theory published in 1969 is based on the forced 
mechanism caused by standing edge waves which induce the spatially 
periodic distribution of radiation stress. 

On the other hand, the writer (Hino 1972) has proposed a hydrody- 
namic instability mechanism. The writer does not necessarily deny the 
mechanism proposed by Bowen & Inman. However, there may be a possibility 
of another mechanism for generation of rip-current system. 
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In 1971, the writer was staying about a month at the Louisiana 
State University where the writer and Dr. Sonu who is now at Tetra 
Tech, frequently discussed on this problem.  Dr. Sonu considered 
that the bottom material would change to sinusoidal forms by the 
action of alongshore current, as if sandbars on river bed are formed 
by the unidirectional flow.  While, the writer asserted on the insta- 
bility of uniform wave setup. 

ESSENCE OF THE PRESENT THEORY 

The basic idea of the writer's theory is as follows; 

(a) If waves are incident on a straight coast, and if the water 
depth is uniform along the shore, the uniform wave setup along it 
should be formed, caused by the radiation stress of incident waves. 

Such a uniformly long wave setup may be unstable to an infinitesi- 
mal disturbance, as if a slender elastic cylinder compressed axially 
becomes buckled when a critical compressive stress is exceeded.  This 
is the buckling analogy. 

In other words, the wave system itself on a rigid plane bottom 
may be unstable to form the periodic rip-current. However, in real 
situations, the rip current is accompanied by the corresponding peri- 
odic perturbations in the bottom topography. 

As has been indicated in the previous paper, the direct solution 
of the full system of equations yields the two types of instability; 
one with the high increase rate and the rapid translation velocity 
along the shore is called the "fluid mode",  while the other with the 
slow rate of increase and the low convection velocity is terminated 
the "bottom mode".     Except for the normal wave incidence or the 
standing wave case caused by positive and negative progressive waves, 
the fluid mode could not manifest itself because of the too rapid 
alongshore translation for the perturbation to grow into appreciable 
intensity. 

(b) In solving for bottom mode the basic equations, a physical in- 
terpretation of the phenomenon concerned will be introduced.  One impor- 
tant way of analysis of the modern fluid dynamics is to attack com- 
plicated problems not necessarily purely mathematically but to solve 
them after the simplification of original equations through the phys- 
ical interpretation of the basic equations.  This attitude has been 
established by L. Prandtl when he proposed the concept of boundary 
layer in 1904. 

Turning to our problem, the response of water-wave system is 
quick enough to the deformation of bottom boundary, while the bottom 
materials respond very much slowly to the change in the water-wave 
system. Terefore, the state of fluid system may be considered to 
be quasi-stationary. This is the concept of response time  (Hino 
1974).  This idea has already been presented and applied in the writ- 
er's first paper (Hino and Hayashi 1972). 
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(c) Consequently, the flow field for an arbitrary bottom profile is 
solved from the continuity and momentum equations which include the 
radiation stress terms introduced by Longuet-Higgins and Stewart (1964). 
The resulting solutions of velocity components and the water surface 
elevation still contain the undetermined parameters which describe the 
bottom profile. 

(d) Finally, the above solutions are substituted into the balance 
equation of bottom material transport. The problem is thus reduced to 
the eigenvalue problem.    The rate of increase in the bottom perturbation 
is determined by the real part of eigenvalues dependent on the alongshore 
wavenumber of perturbation.  On the other hand, the imaginary part of the 
eigenvalue predicts the propagation velocity of bottom perturbation, that 
is sand bars. 

The components of an eigen-vector determine the unknown coefficients 
to describe the resulting perturbation in bed profile and thus velocity 
distribution. 

In this way, we can determine not only the predominant spacing of 
rip-current but also the resulting bottom shape, the velocity field and 
the water surface elevation. 

The idea of the response concept and a simplified mathematical 
treatment have already been presented at the previous Copenhagen confer- 
ence . 

THEORY 

(a) Basic Equations 
The basic equations are the same as the previous paper ; 

[Equations of motion] 

.NT./I. ,._•>..!   -,r„/U„\..2i   5r^(,x^„„l   3s    3S„„ 

U          '           3x                          3y 3x           3y 

= -Pg«Hfl)f£ - p2u 

3[pd+n)v]  . 3[p(/i+n)uv]     3[p(/i+n)v2] 
3*                               3x                             3y 

3S           3S 
+    xy -i    yy 

3x           3y 

= -Pg(k+n)g -  pCv 

(1) 

(2) 

[Continuity equation] 

3(fe+n)  . 3[u(fe+n)]     3[v(fe+n)] _ n ,,, 
U 3x 3y (3) 
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[Radiation stress  relationship] 

s       =f_  ^(SM)2 
xx        2. c 

Syy = |+Ec2(s±ne)2 (4) 

S  = Ec cos6(^i^) 
xy c 

E = (pgy2/8)(M)2 (5) 

c = {g(^i+n)}V2 (6) 

where y=l inside of breaker zone and zero outside of it. 
iBalance equation of bottom material transport] 

afe    3<csu)    d<csv) 

W       3x  +  3y (7> 

In the above equations, the coordinate system in chosen as shown 
in Fig. 1 ; u, v mean the velocity components in the x-and y-direction, 
respectively ; n and h  are the mean water-level elevation above still 
water surface and the depth of bottom, respectively ; Sxx Sxy and 
Sy„ represent the radiation stress tensor components ; c is the wave 
velocity, E the wave energy per unit area, C and Cs are the coefficients 
of bottom friction and bottom material transport, respectively. 

(b) Perturbation Equations 
Variables are expressed as sum of equilibrium states 

(0» V0, n0, and h0)   and small perturbations (u, v, n and h) 

u(x, y, t) •*• u(x, y, t) 

v(x, y, t)  + VQ(X) + v(x, y, t) 

n(x, y, t)  + n0(x) + n(x, y, t) 

<i(x, y, t) + fc0(x) + hu,  y, t) 

(8) 
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Furthermore,  variables  are nondimensionalized by Lb   (the distance  from 
shore to breaker)  and /gL^, 

u//gLb + u,  v/i/gLb" -»- v,  Vp/i/gLb" * VQ 

x/Lb      + x,  y/L,,      + y,  feD/Lb      * /tQ (9) 

^g/Lfc ->• t,   c/v^gLb" + c,  Cs/Lb      + Cg 

Substituting eq.(8)   into eqs.(l)   through   (7)  and linearizing,  a set 
of  the  linear partial equations  are derived, 

3w-- ,3u  .   .     , N3u 
3-t 
i+Ail(x)f+A12(x)^+ai(x)u 

+ Bii«l^+Bi2«l7 + bi(x)v 

+ ciiW|i+ci2«l7+ci(x)T1 

+ Dil«S+Di2«S+di(x)fe =° (10) 

(i-1,2 and 3) 

„,   3C u  3C u an s  ,  s 
M" 3x + ~ dD 

where wi=u, W2=v and W3-11, and Vo and drio/dx which are given as the 
zero-th order approximation of the perturbation mean the alongshore 
current velocity and the gradient of wave-setup, respectively ; 

Vo(x) = - l6^(cos6-slneb-^ob + TW 

# h0 + n0 d(/tc + ri0) 

' ^ob + lob   dx (12) 

£H° _ _ f3Y%    cos
28        d/lo 

dx     l 8 ;
[1+(3Y

2
/8)COS

2
8] ' dx (13) 

Coefficients Aij, Bjj etc. are generally functions of x (For details, 
reference should be made to a paper (Hino 1975).). 
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(c) Quasi-steady Solution of Water System to Bottom Perturbation 
The perturbation in depth profile fo(x,y) Is expressed by the 

orthogonal Hermite functions as eq.(14), 

fc(x,y) - &  2 u /(/(n-l)t) 
n   n 

-x2/4 ifey 
vr (14) 

where 6 expresses a parameter of amplitude, Kyi  is the Hermite function of 
n-th order and the expansion coefficients Vn  are unknown arbitrary constants 
to be determined later as a result of the eigenvalue problem. 

The solution of fluid system (the velocity components u and v, and the 
mean surface elevation n.) is assumed to be expanded also by the Hermite 
series as 

a. 
u(x,y;£) = I '2n' 

/(2w'-l)f 
H, 
2n'-l (x) e 

•x2/4 ifey 

v(x,y;£) = Z 

n(x,y;i) = Z 

/(n-l)! n l 

/(n-1)l n L 

(15) 

where the boundary condition that u equals zero at x=0 is considered by 
using only the odd-order Hermite functions ; and the boundary conditions 
that at infinite x variables approach zero by the property of Hermite 

-x2/4 
functions (%(x)e    -*- 0, when x -»• «>). 

Substitution of eqs.(14) and (15) into eqs.(10), and applying the Galerkin 
method,i.e. integrating them between (0,») after multiplification of both hand 

side by Hm'-l(x)e x  //(m'-l)! and putting the residue equal to zero, a 
set of simultaneous equations for coefficients vector X = [02, cm.,   •••, 
Si. 62, •••, Yi, Y2. •••]" is obtained as a function of fl(x,y) or coef- 
ficients ]lft, 

x = -6(A"xB)u 

= 6Du (16) 

x- [a2> a4> —f %,&u  S2; -.._ BN; ylf  Y2> Y r 

((N'+2N)+1 matrix) 
(17) 

l(D j(D K(D 

I<« J(2) K(2) 

!<3) j(3) K(3) 

((N'+2N) 

x(N'+2N) matrix) (18) 
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(1) 

(2) 

(3) 

(19) 

(20) 

^'-[\\"\\] 

1 2 

'""W        ,    T 
V (21) 

W"   [yl,  P2,   •",  V C22) 

The elements of submatlces I  , J  , K  and L   are given In 
terms of coefficients Ai j, B-j-j, •••, at, b^ and so on (Hino 1975). 

Matrix D ((N'+2N)xN matrix) which can be decomposed into raw vectors 
represents the contribution rate of bottom perturbation component 

-xz/4 
Hw_i(x)e     to velocity and mean surface elevation, u, v and ri. 
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(c) Stability of Bottom Perturbation ( Eigenvalue Problem of Bottom 
Mode Instability ) 

From the response concept, the amplitude factor &  of eq.(14) is assumed 
now a slowly varing function of time.  Substitution of equations of 
u, v, n and h where the unknowns are the coefficient vector y and the 
amplitude factor 6 into eq.(11) yields 

nl  /(n-1)! nl 

•wc.[Li«-iW-!viWJ 

+ (ife) ?=1 bnVHK_1(J0]e-
x2/4 eifey (23) 

Again applying the Galerkin technique, the following equation is obtained, 

Tu = py (24) 

where p is the exponential growth rate 

p = (dfi/dt)/(Cs6) (25) 

and matrix T is composed of coefficients in matrix D (eqs.(43) through 
(47) in Hino, 1975). 

Eq.(24) poses an eigenvalue problem for matrix T, the unknowns p 
and ]i  being eigenvalues and eigenvectors, respectively. These are 
solved numerically by a digital computer HITAC 8700/8400 of Computer 
Center, Tokyo Institute of Technology. 

Two non-dimensional parameters, x and lji, are defined from factors 
affecting the phenomenon, 

X = s(sin 6/c)2 

=   (feb/Lb)   •   (sin 9b//ftb/Lb)2 

= sin26b (26) 

4)  = s2(sin 6b/c) 

=   (feb/Lb)3/2  sin 6b   . (27) 
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RESULTS 

(a) Instability diagram: 
Fig. 2 shows some examples from the Instability diagrams.  The 

exponential growth rates (the maximum values of the real part of 
eigenvalues), (Pr)max , are plotted against the alongshore wavenumber 
k  of perturbation for a selected combination of bottom slope h\, =  sLD 
(Lj> : distance to breaker zone).  In these graphs, the parameter 8 
expresses the incident angle of waves. 

It is shown that the perturbation in bottom configuration and conse- 
quently in wave field is most unstable to a certain wave number fe* of 
alongshore periodicity.  Except for the normal incidence, 9=0 , the 
amplification rates become maximum at the nondimensional alongshore 
wave number of about fe=1.5 or at the wave length of about 4 times the 
distance from shore to breaker. 

Fig. 3 shows the relation between the most preferred alongshore 
wavenumber (nondimensional) feft , the angle of incidence 0 and the slope 
of the initial bottom &.    As the bottom slope becomes steep, the pre- 
ferred nondimensional spacing of rip current ( £r = 2ir/fe* ) increases. 
However, since the distance of breaker from shore also reduces, the 
real spacing of rip current ( Lr ) 

Lr = ( 2-rr/fe* ) Lb 

= 2irhb/sk* (28) 

(where k^  is the breaker depth) is estimated generally to become short- 
ened. 

(b) Propagation celerity of sandbars: 
Moreover, it should be added that the present theory gives the ce- 

lerity of alongshore translation of bottom perturbation as 

C* = pl Cs/k (29) 

where p.  represents an imaginary part of the eigenvalue.  Fig. 4 is a 
plot of the propagation velocity of sand bars. 

(c) Rip-current and rip-channel: 
By substituting the eigenvectors u which determine the coefficients 

of perturbed bottom profile in eq. (24), into the series expression 
(eqs.(14) and (10))of variables u, v, C and h,  we are able to obtain 
the profiles of sand bars and the velocity fields. 

Fig. 5 is the cross-sectional profile of a sand bar at various posi- 
tion along the shore.  From this graph, a conclusion Is derived that 
sand bars seem to progress onshore when observed at a cross-section 
perpendicular to the shore, although in reality they are propagated 
alongshore. 
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In Fig 6, the upper solid line gives the velocity of offshore current 
u, that is the rudimentary rip-current.  The strength of velocity is the 
highest at the breaker zone.  The lower thin solid curve is the change 
of bottom profile.  This is the so-called rip-channel.  The bottom is 
eroded inside and near the breaker zone, while sand materials are de- 
posited offshore. 

These results of theoretical analysis (Figs. 5 and 6) agree well 
with observed facts. 

(d) Effect of initial bottom shape: 
The initial bottom profiles are assumed to be represented by 

fe0(x,y) o= xn (30) 

The upward convex bottom and the upward concave bottom are represented 
by tt>l and 0<tt<l, respectively.  Fig. 7 shows the instability diagrams 
for both cases, indicating that the upward convex shallow bottom is 
apt to change into rip current system. 

(e) Relative importance of wave-setup, alongshore current and 
bottom friction: 

The writer is interested in the relative importance of various in- 
trinsic factors, such as those, 

(i) the wave setup which is caused by the radiation stress, 
(ii) the intensity of alongshore current which is also driven by 

the radiation stress, 
(iii) the friction factor which influences the intensity of along- 

shore current. 

Since these factors are closely inter-connected each other, it is 
difficult separated them experimentally. However, in the theoretical 
analysis, it is possible to change artificially, for instance, the 
intensity of alongshore current alone, keeping the radiation stress or 
wave setup unchanged. 

Fig. 8 (b) is the instability diagram when the radiation stress 
parameter y is varied, keeping the alongshore current (Ise)  unchanged. 
As the intensity of radiation stress is decreased the amplification 
rate of perturbation decreases.  In reality, as the intensity of 
radiation stress is decreased, the alongshore current is also reduced. 
The left hand side figure (Fig. 8 (a)) shows the theoretical result 
for this case (lsa=real). 

Fig. 8 (c) gives the instability diagram for a hypothetical case 
of no alongshore current (lso=0)   even if there is the wave setup, when 
waves are incident obliquely.  In this hypothetical case, the infi- 
nitesimal perturbation is also unstable ; however there exist no pre- 
dominant preferred wave number. The tendency is similar to the case 
of normal wave insidence (6=0). 
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Fig. 9 (a) and (b) summarizes the results on the relationship between the 
radiation stress intensity and the preferred wavenumber of rip-current 
spacing (y ~ fe*) and the exponential growth rate (y ~ ps), respectively. 

One the other hand, Fig.10 examines the effects of the bottom 
friction, keeping the wave setup unchanged ; i.e. • Y"l. 

Fig. 10 (a) is the result for real case, Fig. 10 (b) and (c) being the 
results for hypothetical cases of unchanged and no-alongshore current, 
respectively. 

Fig. 11 (a) and (b) summarizes these results. 

From these analytical computation, the following conclusion may be 
deduced ; 

(i) The main trigger of rip-current generation is the wave-setup 
caused by the radiation stress, rather than the alongshore 
current. 

(ii) The spacing of rip-current is dependent on the strength of 
alongshore current.  If there were no alongshore current, 
there occurrs no predominate wavenumber. As the intensity 
of alongshore current is increased, or the bottom friction 
is decreased, the preferred wavenumber of rip-current de- 
creases.  In other words, the spacing of rip-current becomes 
longer. 

(iii) When there is no wave-setup, the rip-current would not be 
formed, even if there were the alongshore current (c.f. es- 
pecially, Fig. 8 (b) where the intensity of the alongshore 
current is as strong as for the case of real case caused by 
the radiation stress). 
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Fig. 1 ; Coordinate system, x:offshore direction, y:alongshore 
direction, 9:incidence angle of wave. 
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Fig. 2 ; Longshore wave number and the maximum exponential 
growth rate. 
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30- 6 (degree) 

Fig. 3 ; Relationship between the most prefered longshore 
wave number feft , the angle of wave incidence 8 
and the bottom slope i. 

Fig. 4 ; Longshore wave number and translation celerity 
of sand-bar. 
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»-0.»£    i 2 3 

Fig. 5 ; Cross-sectional profiles of sand-bar at various 
position of y, 

breaker 

breaker 

h 

Fig. 6 ; Velocity distribution of offshore current at 
the rudimentary rip-current u(x,y  ) and the 
depth variation of bottom ( the so-called 
rip-channel) h(X,y  ). 
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Fig. 7 ; Effects of the initial bottom shape ( h  (X)* xn  ) on 
the relationship fe and (Pr)   , (a) for a concave 
bottom of n=0.5 and (b) formi convex bottom of n=2. 
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Fig. 8 ; Effect of the radiation stress intensity (Y) on the 
exponential growth rate (Pr) and longshore wave- 
number fe. max 
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Fig. 9 ; Effect of the intensity of radiation stress y  on the most 
prefered longshore wave-number feA and the corresponding 
exponential growth rate pA. 
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(a) /        (b) (c) 

Fig.10 ; Effect of the bottom friction on the instability diagram. 
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Fig.11 ; Effect of the bottom friction on the most prefered longshore 
wave number feA and the exponential growth rate p^. 


