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Abstract.  A two-dimensional numerical simulation model of storm surges 
based on the vertically integrated hydrodynamic equations of continuity 
and m.onmentum is adopted.  The model embodies the inundation over the low- 
lying land surface with moving water-land interfaces.  Kind stress coeffi- 
cient is considered not only function of wind speed but also dependent on 
the temperature differential between air and water.  Bottom stress is 
treated by an evaluation of convolution integrals over the surface slope 
pressure depression and wind shear.  The contribution of momentum by river 
inflows is taken into account.  Particular attention is directed to the 
treatment of nonlinear terms in the governing equations to insure the 
improvement of numerical stability and accuracy.  The model is applied to 
the New Jersey Coastal area and reproduces the historical storm surges 
quite well both at Atlanta City and Sandy Hcok. 
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INTRODUCTION 

Reliable estimates of water-level changes under storm conditions are 
essential for the planning and design of coastal engineering works. 
Determination of design water elevations during storms is a complex 
problem involving interaction among the bathymetry and geometry of the 
water body, the forces of the wind field and atmospheric depression, the 
resistance of the bottom, the momentum generated in the water body, and 
the effects caused by other mechanisms unrelated to the storms, such as 
astronomical tides, earth rotation, etc. 

The development of numerical models'for predicting storm surges has been 
advanced rapidly during the past decade, from simple one-dimensional 
bathystropic theory (Bretschneider and Collins, 1963) to more complex 
two- dimensional simulation of arbitrary water bodies (Reid and Bodine, 
1968; Pearce, 1972; Tsai and Chang, 1974; Pearce and Pagenkopf, 1975; 
Wanstrath, 1975; Damsgaard and Dinsmore, 1975). Most of the models are 
found to be useful only for specific localities to where one must approxi- 
mate its underlying assumptions.  In view of the various deficiencies in 
the existing storm surge models, additional considerations to improve 
the accuracy of the results and the generalization of the applications 
are listed as follows: 

1. Inundation boundary conditions over the low-lying land surface 
are incorporated automatically with the rationale of both 
mathematical and physical justification rather than based on 
the empirical or a weir-type formula. 

2. Bottom stress is time varying and may be obtained by an evalua- 
tion of convolution integrals over the surface slope, pressure 
depression, and wind stress.  Only with this wind dependent 
bottom stress, it seems possible to facilitate the computational 
scheme over the low-lying land surface. 

3. Wind stress coefficient is not a unique function of wind speed 
but also a function of temperature differential between the 
air and water. This inclusion of temperature effects is 
highly significant for the estimation of wind stress coefficients 
in the Northern United States, and should greatly enhance the 
predictability of storm surges in the Great Lake of Northern 
America where the temperature has significant change during 
storms. 

4. The surge elevations at the lateral open boundaries perpendi- 
cular to the coastline are obtained by assuming zero gradient 
of total water depth. This would allow the selection of the 
locations of lateral boundaries with less restriction. 
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5. The stream inflows in estuarine areas are included in the 
momentum equations. Conventional assumption by neglecting the 
stream momentum but adding only the stream mass flux into the 
continuity equation is not totally true for many estuarine 
conditions. 

6. All nonlinear terms such as advections are not linearized in 
order to account for the bathyraetries involving irregular 
coastlines and bay complexes. 

The numerical techniques used for computing long wave equations generally 
fall into one of the three schemes:  (i) Explicit Finite Difference 
Method, (Reid and Bodine, 1968; Pearce, 1972; Wanstrath, 1975), (ii) 
Implicit Finite Difference Method (Leandertse, 1967; Tsai and Chang, 
1974), and (iii) Finite Element Method (Pearce and Pagenkopf, 1975: 
Gallagher, etc., 1973; Gallagher and Chan, 1973). Engineering practice 
has indicated that the explicit scheme having to satisfy the Courant 
stability condition is too strenuous. Although the finite element 
method offers smooth treatment on irregular boundaries, it has serious 
drawback in the requirements of computing tine and computer storages. 
Furthermore, the lack of provability on the stability of the method 
often leads to obscure trial and error. The alternate direction (ADI) 
implicit scheme has gained the popularity.  It is unconditionally stable 
to the long wave equations without nonlinear advection terms (Leendertse, 
1967). The authors have been unable to make practical use of this 
advantage for the cases when the nonlinear terms are included in the 
long wave equations.  It is surmised that this may be due to the way 
these nonlinear terras are approximated as part implicit and part explicit. 
A modified ADI scheme, which considers all terms implicit, is therefore 
adopted. 

MODEL FORMULATION 

Basic Equations and Assumptions 

The mathematical equations describing storm driven surges can be obtained 
by integrating vertically the Navier-Stokes equations for fluid motions. 
In this development, it is assumed that density over the depth is constant, 
pressure variation with the vertical coordinate is hydrostatic, and the 
variation of momentum transport with vertical coordinate dominates those 
with horizontal coordinates. The vertically integrated forms of the 
conservation equations in a Catesian Coordinate system with x and y on 
the horizontal plan can be written as 

3« j. iH j. 3V   „ (1) 
3t" + fc +  3? = qR W 
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f*i<S!'^<!?>-«-» = -f#^«t-|?i). 

X    X 
(2) 

J + <L^)  +f <£ - 2,v + fu = - !*!&_!_!!., "t   ox H     3y H 2 oy    6 vdy   pg 3y ' 

(3) 

The symbols used in Equations (1), (2), and (3) are defined as follows: 

H    = total water depth 
h    = undisturbed water depth 
U,V  = flux density in x- and y-directions, respectively 
g    = gravitational acceleration 
f    = coriolis coefficient 
TS.TV = wind stress components in x- and y-directions, respectively 
Tx' r = b°ttom stress components in x- and y-directions, respectively 
P    = atmospheric pressure 
x,y  = horizontal orthogonal coordinates 
t    = time 
p    = water density 

The terms included in the momentum equations are from the left to the 
right representing inertia term; nonlinear longitudinal and lateral 
advection momentum terms; the momentum attributed to the artificial 
discharges or river inflows and outflows; coriolis acceleration; nonlinear 
gravity terms; forces due to bottom slope and atmospheric pressure 
gradient; and wind and bottom stresses.  It is interesting to note that 
the atmospheric depression column and the water depth column are equivalent. 
Therefore, the accurate reading of the undisturbed water depth is more 
important than the consideration of atmospheric pressure depression. 

Variables in Equations (10, (2), and (3) are H, U, V, h, q, ps, x", T", TX, 
and tb. Among these variables, ps, T

W
, and T" are the forcing functions 
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depending on the atmospheric pressure and wind field distributions of the 
storms; h and q are given functions of x and y.  Thus, if bottom stress 
components, T^ and xk, are related to H, U and V, Equations (1), (2) and 
(3) will constitute three simultaneous partial differential equations for 
three unknowns, H, U, and V. 

Wind and Bottom and Stresses 

The most important and sensitive parameter in storm surge modeling is 
the wind shear stress since it is the primary driving force. In general, 
the. wind shear stress is related to'the wind speed, w, through the 
following expression 

-W - P K"2 
a 

T  = P KW (4) 

where pa is the density of air and K is the wind stress coefficient. 
The values of K should be a function of other parameters involving wind 
speed, surface roughness, and stability and turbulence of the atmosphere. 
A model treating K as function of wind speed has been presented elsewhere 
(Van Horn, 1953; Reid and Bodine, 1968), 

K = K for   W ? W (5a) 1 c 

K - Kx + K2(l - W(j/W)
2 for   W > Wc (5b) 

in which the constants, K]_, K2 and the critical wind speed have been 
taken as 

Kl K2 Wc 

Van Dora  (1953) 1.2 10-6 1.8 10~6        6.7 tn/sec 

Reid & Bodine (1968)    1.1 10~6    2.5 10~6   7.2 m/sec 

A slightly different formula for describing K has been proposed (Tsai 
and Chang, 1974) as follows: 

1.25 10 for w * W 
1 

K = 1.25 10~6 + 1.75 Iff6 sln/^-JLj    for ^ < w < „    (6) 

3-0 10~ for W » w. 
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in which W-^ = 5.1 m/sec  ind W2 = 15.A m/sec.    Most of the investigators 
has not included  the atmospheric stability in the formulation of K. 
However,  it has been demonstrated that  the temperature differential 
between the water and air has a significant effect on the value of K 
(Gillies and Punhani,  1971).     It is,  therefore, proposed  in this paper 
that K be given by the following equation: 

K,  + K,AT for       W « W 
13 c 

(7) 

Kl + K2(1~W /W)2 + K3AT f°r  W > Wc 

The values of K]_, K2 and K3 will have to be determined from further 
numerical experiments on storm surges. 

The relationships describing the bottom stress have been taken for 
granted by many authors (Eeid and Bodine, 1968; Dansgaard and Dinsmore, 
1975) as simply given by the following formula: 

b  pS \l U2 + V2 U (8a) 

cV 

and 

:4V2 

cV 
(8b) 

where C is the Chezy coefficient. Bottom stress formulation based on 
this line of approach may sometimes yield large error, since there are 
possible flows in which the transport is small but there still may be a 
significant bottom shear layer.  This problem can be avoided by calculating 
the drag from the flow profile calculations based on linear theory of 
long wave equations, as done by Jelesnianski (1970) and Forristall 
(1974). Accordingly, the bottom stress is given by 

H  V H  0      x 
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-*b 
in which v is the eddy viscosity, n = H - h, and Kp, "0, Vp_, Vn, x , and 

denote 
CO 

K^ •» X  (-l)n(n + l/2)ir F,xp{-o(n + 1/2)2-rr2t/i;
2 - (if - 2q)t}   (10a) 

n=0 

K = J Exp{-v>(n + l/2)\?"t/H2 - (if - 2q)t} (10b) 

n=0 

3ps 
S5T + i- 

3P 
ay ox   dy '       x    JJ (10c) 

respectively.  The adoption of Equation (9) is more physically appealing 
and consistent with the overall method than Equation (8).  The derivation of 
Equation (8) involves more assumptions than that of Equation (9). 

Finite Difference Equations 

A spece-staggered scheme is used to approximate the differential equations 
with finite difference equations (Leendertse, 1967).  The scheme describes 
the flux density, total water depth, and undisturbed water depth at 
different grid points as shown in Figure 1. 

j+1 nr L      ji.      i .... 

1 

1 
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0 1 H t'J 
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[ 7 
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« Undisturbed V.'ater Depth,  h 

Figure 1 
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To simplify the discussion on the formulation of finite difference 
equations, Equations (1), (2), and (3) can be written as 

sl + iE + ?! 
3t  3x  3y ~ (11) 

where 

H-, 

V 

_                      V 

2           2 

H           2 
;       3- UV 

H 

UV 
H 

2           2 

H           2 

(12) 

and 

1- 

qH 

w 
1 3Ps Tx 

gH(— - — r-5-) + fV + 2qU + — 

3P„ 

,3h 

1 3p<* Tv  Tv ,3h _ 
ay " pg 3y 

(13) 

Let 

*(n+l) 

H(iAx, jAy, (n-'rl)At 

U(iAx, jAy, pAt 

V(iAx, jAy, qAt 

where p and q will be replaced by (n+1) or (n) as demanded by the ADI 
algorithm, then the finite difference approximation of Equation (11) is 

*(n+l)  v(n) 

At 2Ax ff1+l.J-
Fi-l.j> + a-°)<Pl+l,J-

ri- -1.J'] 

0(At, AX ) (14) 
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where 6 is a weighting factor ranging from 0 to 1, and F   Is given by 
-^»J 

-•      ->•-*• 

F   . _i±U ^J 2dLl (15) 

Expansion of Equation (14) in Taylor series, it becomes, 

l| + |l + A|V9)4+
( -••   =0 (16) 

at  ax  4   ax3 , 

2 
The third term which has the magnitude of the order of Ax is the numerical 
filter term to screen the short wave number. For complete implicit 
scheme, 6=1, and therefore, no filter term is encountered. This would 
probably explain the frustration experienced by many model practioners 
when Equation (14) with 6 = 1 is applied to the solution of circulation 
problems. Under such circumstances, the noise caused by the short wave 
would amplify very fast and blow out the computations.  Instead of 
?(n\   if f(n'   is used in Equation (14), similar problems will also arise 
since no filter term is involved to dampen the short wave noise. 

Since F, G and I are nonlinear functions of H, U, and V, Equation (14) 
is a system of nonlinear algebraic equations. These equations can be 
solved directly by iterative method. However, iterative solution to a 
large number of simultaneous equations at each time step is not only 
time consuming but also causes convergent problems in many areas. 
Hence, linearization techniques must be used to render these equations 
to a system of linear algebraic equations that direct solution can be 
obtained.  In general, Taylor series expansion is adopted, i.e., 

?(n+l) „ ?(n) + ||(H(n+l) _ H(n)) + |(u<n+l) _ u(n)) +  . . . 

For example,   the  term U    in the second  component of F in Equation  (12) 
can be expanded as 

n2(n+l)  _ jjCiD^Cn+l) + D(iri-1)  _ u(n)) +     .     .    . (18) 

Most of the numerical modeless would linearize this term by treating it 
as part explicit and part implicit (Leendertse, 1967; Tsai and Chang, 
1974), i.e., 

u2(n+ x~>  = u(tl)u(n+1) <19> 
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It is seen from Equations (18) and (19) that the former will render the 
latter as its special case if u(n+1) •* V^nK    The implicit scheme, 
Equation (14), has been proved unconditionally stable when it is applied 
to linear partial differential equations (Leendertse, 1967).  However, 
frustrations have been experienced more than often when it is applied to 
nonlinear equations in along with Equation (19), unless the time step is 
smaller than that given by Courant stability criteria.  This fact may be 
explained by comparing Equations (8) and (19).  The comparison indicates 
that the time step has to be small for the two to agree. 

Boundary Conditions 

There are two types of boundaries in the numerical simulation of storm 
surges.  One is the water-land interface while the other is the fictitious 
open boundaries which are artificial termination of the flow field. 
During a storm, the wind generated surge close to shoreline is most 
prominent. For locations further seaward, the magnitude of the wind 
setup (or setdown) becomes progressively insignificant for several 
reasons.  The first effect occurs due to decreased hindrance of the 
boundary.  The increase in water depth accounts for the second reason as 
the water mass would be more difficult to set in motion at a location of 
greater depth by the water surface shear forces. 

For locations beyond the Continental Shelf, the water elevation due to 
wind shear would be insignificant. Thus, at seaward boundary the setup 
(setdown) could be reasonably assumed equal to the barometric and astro- 
nomical tides.  The treatment of lateral open boundaries is still very 
controversial.  Reid and Bodine (1968) proposed radiative boundary 
conditions.  Pearse and Pagenkopf (1975) assumed zero onshore transport. 
Zero gradient of water surface slope has been used with the requirements 
that the lateral boundaries be chosen roughly perpendicular to the 
bottom contours lines (Stone & Webster, 1976).  In this paper, this 
requirement will be removed by specifying the gradient of total water 
depth equal to zero at lateral boundaries. 

Most of the existing storm surge models does not consider the moving 
boundaries at the water-land interfaces. General practice is to assume 
vertical wall interface that the normal flow is zero (Pearce and Pagenkopf, 
1975). A few investigatiors model the inundation of low-lying land with 
weir type approach (Reid and Bodine, 1968; Dansgaard and Dinsmore, 
1975).  In the present model, the moving boundaries are accomplished by 
progressively advancing (retreating) the land-water interface as surges 
increase (decrease). Both continuity and momentum equations are actually 
utilized in tallying these moving inundation boundary grids. 
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MODEL APPLICATION 

The storra surge model is applied to the New Jersey coastal area for 
1944, hurricane, whose track parallels the east coast and lies well 
within the confines of the Continental Shelf. The track of the pressure 
center in the storm is taken from the report by Graham and Hudson (1960). 
The hurricane characteristics were given both near Hattears, North 
Carolina, and Point Judith, Rhode Island (Graham and Hudson) as follows. 

Hattears^JTC       Point Judith, RI 

Radiative of maximum winds, R     49 N. Mi 36 N. Mi 

Center pressure index, p 27.88 in. 28.31 in. 
o 

Peripheral pressure, p 30.66 in. 29.39 in. 

Maximum gradient wind, Vg        113 mph 71 mph 

Based on these hurricane parameters and the track, wind and pressure fields 
are constructed using the method suggested by Graham and Nunn (1959). 

The New Jersey coastal area is constructed on a rectangular grid of 22 by 
31 with grid size of 33,333 ft.  It included the Continental Shelf to a 
depth of approximately 600 ft and is extended far north and south of the 
area of interest that the lateral boundary conditions are applicable. 

Surge histories for 1944 hurricane are available at both Atlanta and 
Sandy Hook tidal gage stations in the southern and northern New Jersey 
coast, respectively (Harris, 1963).  Both recorded and computed surges 
with the model at Atlanta City are shown in Figure 2. Figure 3 shows 
comparisons between the tidal gage measurements and the simulated results 
at Sandy Hook. The agreements at both Atlanta City and Sandy Hook are 
considered favorably. The peak surge as computed at Sandy Hook is higher 
than the measured. 
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