
CHAPTER 51 

PHYSICS AND MATHEMATICS OF WAVES IN COASTAL ZONES 

H. Lundgren* 

ABSTRACT 

This paper presents a discussion of four methods available for the 
computation of small amplitude periodic waves in coastal zones of arbi- 
trary topography.  With no reflections (or reflection from a single 
structure) the methods that proceed in space (Refraction and Propaga- 
tion) or time (TJLmestep) seem the natural ones from a physical point 
of view. With repeated reflections, recourse must he taken to the so- 
lution of an Elliptic "boundary value problem.  - It is suggested that 
a P-method based on (energy) flux lines and energy fronts be developed 
for cases where the R-methods give crossing orthogonals. 

1. WAVE EQUATIOM 

In 19^9 Lowell (Ref. 9) derived, for shallow water waves, the wave 
equation 

(c2nx)x + (c2ny)y = ntt (1) 

where c = v^gh is the local phase velocity, n(x,y;t) the surface eleva- 
tion, and h(x,y) the local depth, while indices x,y,t denote differen- 
tiation.  For shorter waves c is a function not only of h but also of 
the period T, and the (reduced) wave equation must be confined to a 
fixed T, for which n+t = -w

2ri, where <m = 2it/T.  In 1951 Pierson (Ref. 
11) asked whether (1; could be derived for an arbitrary period. Indeed, 
this was easily done from simplified considerations of continuity and 
equilibrium (Ref. 10). 

In 1952 Biesel (Ref. k)  published the potential theory solution for 
the two-dimensional case correct to terms of order hx (slope of bed). 
On this basis, Svendsen (Ref. ^h)  in 1967 derived a two-dimensional 
form of the wave equation that later (Ref. 8) was shown to agree with 
the three-dimensional form 

c c 
(c cgnx)x + (c cgny)y + -f- to2 n = v • (c cg Vn) + -&• co2 n = 0    (2) 

where V = (3/3x, 3/3y).  In 1972 Berkhoff (Ref. 2) derived (2) using a 
surface potential cp0 instead of n (and Schonfeld had obtained it in a 
different form).  cg is the group velocity. 

With the local wave number k = 2w/L = to/c it is easily seen that the 
classical shoaling formula for a progressive wave 
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xo 
satisfies the mild-slope  equation  (2),  including terms of the order cx 

and (c„)x, both corresponding to the order hx, hut  excluding terms  of 
the order  (hx)2 and h^.      As suming    that   (3)  holds good also for 
steeper and curved slopes 

V • (c ogVn)  + [>/c^ V • (c V/cp  + -j£ uz]r\ = 0 (h) 

(which includes terms  (hx)2 and hxx)  should he slightly better than (2). 
However, Eq.  It  (or the correct formula!) would have to he derived from 
potential theory and, the improvement is of limited value for most 
waves, which are not  sinusoidal in small depths. 

The important conclusion of (2)  and (3)  is that a mild slope does 
not reflect  any energy of the order hx but,  at most,  of the order hx 
(and hardly of the order hxx).     It  should be noted that  derivatives  of 
n are normally an order of magnitude larger than derivatives  of c. 

2. R-METHODS     (REFRACTION METHODS) 

The development of R-methods can be said to have been completed with 
the establishment of fast, inexpensive computer programs that plot not 
only the orthogonals but also the wave heights along the orthogonals, 
taking account of bottom friction (Refs. 12-13). The R-methods will 
continue to be useful tools in most applications where it is not justi- 
fied to mobilize better and more expensive methods.  In principle, 
R-methods may be applied to an arbitrary directional spectrum. 

The main deficiencies of the R-methods are due to converging and, 
particularly, crossing orthogonals, in which cases the solutions are 
unreliable or unusable. 

3. E-METHODS     (ELLIPTIC METHODS) 

An elliptic equation pertains to a problem the solution of which is 
defined when the boundary conditions along a closed curve are given. 
(2) is an elliptic equation in (x,y), corresponding to the fact that 
wave energy might enter the region bounded by a closed curve from all 
sides. Particularly, if there are many successive reflections, such 
as inside harbours, E-methods are the natural tool. 

The most common elliptic problem is Laplace equation for which vari- 
ous computational methods are available.  The wave equation, however, 
is distinctly different from Laplace equation because of the last term 
in (2), giving rise to solutions with wavelengths that are small com- 
pared to the region considered. This circumstance eliminates several 
computational methods. 

Finite elements were used by Berkhoff (Ref. 2-3) for the wave mo- 
tions around an island, over a shoal, and in a harbour basin.  Chen 
and Mei (Ref. 6) also used finite elements, correcting Berkhoffs func- 
tional. According to Ref. 3, 5 and 10 elements per wavelength give er- 
rors of 10$ and k%,  respectively. 

In their very nature, E-methods are confined to regions outside the 
breaker zone. 
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l+. T-METHODS  (TIMESTEP METHODS) 

By a T-method is understood a method by which the development of the 
water surface and velocity field is followed over the entire coastal 
zone, one timestep after the other.  Because of the large number of grid 
points and timesteps, the requirements to storage and machine time are 
heavy. Despite these difficulties a T-method is, in principle, the only 
one that - probably in a rather distant future - would be able to handle 
the general situation of irregular waves in a coastal zone, including 
breaking, surf and wave-induced currents. 

Ito and Tanimoto (Ref. 7) presented examples of T-method calcula- 
tions, applying an approximate version of the wave equation. 

5. P-METHODS  (PROPAGATION METHODS) 

According to the conclusion in Sec. 1, the reflection from a gently 
sloping bottom of waves approaching the coast is definitely negligible. 
(Some swell-exposed beaches are so steep though that they reflect an 
essential part of the energy.) 

In the case of shoals the R- 
methods give orthogonals that 
meet at a point (focus) or are 
tangential to certain curves 
(caustics), cf. Fig. 1.  No re- 
flection can be expected from 
foci or caustics because, by 
means of diffraction theory, 
it has been shown that the rays 
from a lens pass through the 
focus without reflection. 

It is thus concluded that 
waves from the sea normally 
propagate without essential re- 
flection onto the beach where 
their energy is dissipated. 
Hence, for periodic waves the 
elliptic character of the wave 
equation is rather a mathemati- 
cal than an important physical 
property and, therefore, it is 
highly natural to look for meth- 
ods where the propagation is 
followed from deep water into 
shallower areas, without con- 
sideration of the 'future' of 
the wave motion nearer the 
beach. 

, *2                     *3                    Bl                      BJ                     93 
1                        1                        1/11/ 

13 - 

ie - 

"/ 
10- 

9 - 

B- 

:::fc/K$x 

l_————i—U    1   BT     \ 
 ' 1                  1      W^Ar——"""T* 

^  
 r 

6- 

5 - 

3 - 

2- 

o- 

3- 

8 - 

6 — 

t= 

  "r-5) 

Z^XtS 

-~~JL— 
  1—-A 

IO- 

12- 

IJ — 

  — 
 1 

1                    1          \\      1                   B, 
—r     I   \ 1 \ ~~—_ 

' • 
1              1              1         \\   1       \ 

Fig. 1 
Refraction orthogonals (thin lines) 
and actual fronts (heavy lines) for 
waves passing over a clock glass 
(from Ref. 11) 

For small waves P-methods 
should also be applicable if 
there is a single reflecting structure such as a breakwater 
peated reflections inside a harbour they are not fit. 

With re- 
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The R-methods represent the simplest type of P-methods.    A proper 
P-method should he able to account  for the  conditions around foci, 
caustics and crossing orthogonals   (Fig.   1). 

In principle, the deformation of waves over a gently sloping bottom 
may also he treated as a P-problem. Hence, in the future computations 
by P-methods might be continued through breaker and surf zones, though 
the  interaction with wave-induced currents would require iteration. 

6. HUYGENS' PRINCIPLE 

Historically, Huygens' principle was the first P-method proposed, 
dealing with the progressive construction of wave fronts.  However, be- 
cause of the smoothing of the wave fronts, it could never produce the 
crossing orthogonals known to occur in nature (Ref. 11).  An attempt 
at computing refraction with 'moderate diffraction' was made in Ref. 5, 
with the result that the interference behind the shoal was expressed by 
wavy orthogonals rather than crossing ones. 

Mathematically, any solution to (2) may be written n(x,y;t) = 
A(x,y) exp iuit, where A is the complex amplitude satisfying 

(c cgAx)x + (c cgAy)y + (cg/c) u
2A = 0 (5) 

For constant depth (5) simplifies to Axx + Ayy + k
2 A = 0, valid for 

all waves in a homogeneous medium.  For this special case it has been 
derived from Green's formula, in 3 dimensions by Helmholtz and in 2 di- 
mensions by Weber (Ref. 1), that A at a point Q2 inside a closed sur- 
face (or curve), S, can be expressed as an integral over S. Weber's 
formula is 

A(Q2) = -jj- JJY0(kr) SA/anj - A(Qj) 8Y0/
3ni] ds (6) 

where Y0 is the Bessel function of the second kind, 3/3nx denotes dif- 
ferentiation along the inward normal at the point Qj on S, and r is the 
distance Q2Qj, cf. Fig. 2, where line 1 is only a part of S. 

Though (6) has been called the 'mathematical theory of Huygens' Prin- 
ciple' in commemoration of this genius (who advocated the wave nature of 
light in opposition to Newton), it hardly represents what has been on 
his mind physically, for the following reason:  (6) gives the solution 
A inside S in the general case where wave energy passes S both inwards 
and outwards.  Since the elliptic wave equation is of the second order, 
the complete solution A inside S is defined if the values A(QX) are 
given along S.  In (6) it seems that SA/Snj must also be known on S; 
however, in principle, these derivatives can be found by solving a large 
number of equations established by applying (6) to points inside of and 
close to S. Thus (6) is the mathematical solution to an elliptic 
problem with one boundary condition at each point of the closed 
curve S. In contrast to this, Huygens' physical intuition said that 
the field of progressive waves would be defined if, along one open 
curve (a wave front) two boundary conditions were given, viz. eleva- 
tion + phase (i.e. A) and phase velocity (i.e. aA/Sn^. 

7. APPLICATIONS OF HUYGENS' PRINCIPLE 

Since the author felt that the physical possibilities of Huygens' 
principle had not been fully explored, he made - in cooperation with 
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Dr.  Uri Kroszynski - an attempt at calculating the wave motion at Q, 
(Fig.  2)  from a knowledge of the wave conditions along line  1. 

It was found that the basic  formula should "be 

A(Q2)  =\ jJY„(k2r)   3A/3ni  - k2 A(Qj )  Y, (k2r)  cos q^ ]  dSl (7) 

is the wave number at Q, and Yj 
The factor 1/2 in (?) indicates that, for constant depth, the integral 
along the infinite line 1 contributes one half to A(Q2) in (6), while 
the other half originates from the integral over an infinitely large 
semicircle. 

It is assumed that the computa- 
tion of the propagating wave has 
reached line 1, which is straight 
or curved.  Normally, lines 1 and 
2 will not be wave fronts but be 
chosen in a convenient manner in 
relation to the topography of the 
sea bed.  According to (7), all 
points along line 1 have an influ- _ T „      ^ . 

.,        j. •   j. Fig- 2 Influence at Q, of ence on the wave motion at any °          . .   ? . . . „    ., •       n wave motion at Q, point Q2 on line 2. ^* 

The influence coefficients, Y0 and k2Yj = - dY„/dr, appearing in (7) 
correspond to the effects at Qj of a wave that spreads from Q2 uniformly 
in all directions. These Bessel functions define the diverging wave 
exactly only when the depth is constant. When r is large, an essential 
depth variation may be expected between Q2 and Qx, introducing an error 
by the application of the Bessel functions.  The error is reduced, how- 
ever, partly by the oscillatory character of these functions (corre- 
sponding to the varying phase difference from Q: to Q2) partly because 
the influence from Qt diminishes as 1//r"when r approaches infinity. 
Still, the assumption underlying (7) is that the distance between lines 
1 and 2 is not too large. 

Eg.. 7 has been applied to the case of simple shoaling over a plane 
slope with a depth reduction of 10$ in one wavelength.  For a distance 
of L/8 from line 1 to line 2, A(Q2) was found to deviate 0.5$ from the 
correct value, while the error was 2%  for a distance of LA. 

Thus there is hope that Huygens' principle will eventually material- 
ize in a numerical method applicable to general situations with a rea- 
sonably large space propagation step. With the accumulation of errors 
in a purely explicit method, it is believed that (7) should be somewhat 
modified.  Because of the step size, asymptotic expressions requiring 
little computation may be used for the Bessel functions Y0, Yj and Y2, 
of which Y2 occurs in the expression for the derivative 9A/3n2 (Fig. 2). 

It is probable that (7) can also be applied to the combined diffrac- 
tion and refraction around a breakwater, including reflection from it. 

8. FLUX LINE METHOD 

In analogy to the R-methods it seems possible to construct diagrams 
of energy flux lines, transcribing (5) into orthogonal, curvilinear co- 
ordinates consisting of flux lines and energy fronts.  The computation 
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progresses simultaneously along all flux lines.  The crucial point of 
the method is, in analogy to (3), to utilize the energy velocity ce for 
direct integration along the flux lines, thus reducing the difficulty 
of the spatial phase variation, which requires much machine time for 
E- and T-methods. 

The variation of A along the energy fronts influences ce, as can "be 
seen from the interference of two similar wave trains propagating at 
right angles to each other.  The phase velocity is then c/2~ with maxi- 
mum flux along the lines where the 'double crests' propagate. 
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