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ACTION OF NON-LINEAR WAVES AT A SOLID WALL 
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ABSTRACT 

A one-dimensional finite difference model is developed to 
simulate the action of long non-linear shallow water waves at a 
solid barrier. A damping parameter is introduced to account for 
the centrifugal effects in the incident wave. A stability 
criterion for At/Ax is suggested.  The numerical predictions of 
reflection and run-up compare satisfactorily with experimental 
results. 

INTRODUCTION 

The phenomenon of run-up and reflection resulting from water 
waves impinging on breakwaters is an important problem in coastal 
engineering.  Breakwaters are designed to avoid excessive over- 
topping.  On the other hand, reflection causes local disturbances 
that persist for some distance outside of the breakwater. 

This paper presents a one-dimensional, finite difference 
model simulating wave motion in front of a vertical, solid break- 
water.  The discretization of the solution domain is constrained 
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Fig. 1.  Definition of Problem 
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by the characteristic directions to improve numerical convergence 
and stability.  The model predicts wave run-up and rush-down on the 
breakwater as well as the reflection coefficient.  Long, shallow, 
non-breaking waves are considered in the analysis, and the model 
is capable of treating both symmetric and asymmetric waves.  The 
model should aid in designing vertical solid breakwaters and is 
being modified to accommodate sloping sections. 

DEVELOPMENT OF MODEL 

Figure 1 defines some of the variables of the study.  Assum- 
ing long, shallow water waves, i.e. , approximately hydrostatic 
pressure distribution, it can be shown that the governing equations 
of motion and continuity are, respectively (1, 4): 

3u ,   3u ,   3n 
~+u:r-+g-r-i-= -gS_ (1) dt    3x    3x     f 

|a + u |i + Ch +n) |i = o (2) 
dt     ox     O    dx 

where u = horizontal velocity; r\  = perturbation height with 
respect to the still water level, h,-,; g = acceleration of gravity; 

Sf = friction slope = „ ,}——r- ; C„ = Che2y friction factor; the 
CfChQ+n) '     £ * 

bed is assumed horizontal. 

Eq. 1 describes fairly accurately the motion of long linear 
waves.  For non-linear, i.e., asymmetric waves, hydrodynamic 
pressure may become appreciable.  However, in this study, Eqs. 1 
and 2 are applied to asymmetric waves with an allowance for addi- 
tional damping due to centrifugal effects.  Assuming a sinusoidal 
wave (Fig. 2), the total head loss, h , between sections 1 and 2 
may be expressed as 

h = h_ + eh C3) 
t    E      C 
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Fig. 2.  Approximation of Centrifugal Effect 
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in which, h^ = f rictional head loss between sections 1 and 2; h = 
f c 

difference in centrifugal pressure head between the two sections; 
e = empirical constant. 

Applying Newton's second law to compute the approximate cen- 
trifugal pressure, it can be shown that h is given by (3) 

2h 
 o 

"c   gr 
h = —- v2 (4) 

where r = radius of curvature of water surface; 
v = mean velocity in the vertical. 

The frictional head loss, h , can be represented by 

4 = 1&5T (5) 
f o 

in which. L is the incident wave length. 

Also, the total head loss, h , may be assumed as 

t o 

where C  is the equivalent Chezy factor accounting for both fric- 

tional and centrifugal effects. 

Substituting Eqs. 4 through 6 into 3 and rearranging, gives 

/  gLrC2 

Ct = / gLr+4eh2C2 (7) 

From Fig. 2, the value of r may be approximated as follows: 

r = [(Hi/2)2 + CL/4)2]/H± (8) 
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Based on a correlation with laboratory experiments,  Eq.   7 takes 
the form 

Ct = 

gLrC^ 

gLr+1.2h2C^ of 
(9) 

Since r varies inversely with wave steepness, S, Eq. 9 indicates 
the energy dissipation due to centrifugal action increases with 
wave steepness. 

In order to proceed to the finite difference formulation, n 
is made dimensionally identical to u through the transformation 

c = /g Chp+ri) (10) 

which, represents a local wave celerity utilized as a measure of n. 

The equations of motion and continuity, in terms of c, along 
with the total differentials of u and c constitute the hyperbolic 
system of equations governing the phenomenon as given by the 
matrix form (1) : 

dt  dx 

dt 

2c 

2u 

dx 

9u 
3t 

3u 
3x 

3c. 
3t 

3c 
«.3x 

•gs, 

du 

dc 

Ul) 

The above system yields the following positive and negative 
characteristic directions: 
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Fig. 3.  Boundary Conditions and Discretization of the x-t Plane 
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a - § |   + = u +• c (12) 

dx 
dt 

Based on these directions, the condition, 

(13) 

ffslcu+c)-1 (14) 

is obtained and used, initially, to control the finite difference, 
x-t plane CFig. 31 for stability and convergence (5).  The equa- 
tions of motion and continuity, from Eq. 11, are discretized using 
central differences in space and forward differences in time, viz. 

u(i,j+l) = uCi,j) - ^ {u(i,j)[u(i+l,j)-u(i-l,j)] + 

2cCi,j)Ic(i+l,j)-c(i-l,j)] + gAxSf(i,j)}      (15) 

c(i,j+l) = c(i,j) - ~ (u(i,j) [c(i+l,j)-c(i-l,j)] + 

[cCi,j)/2Hu(i+l,j)-uti-l,j)]} C16) 

Eqs. 15 and 16 were used to advance the solution from ini- 
tially still water conditions, i.e-, u = o and c = vgh 

The boundary condition at the right end of the solution domain, 
is zero normal velocity at all times.  The incident wave is 
originated in the model at one wave length away from the break- 
water; this is the minimum distance required to ensure the genera- 
tion of at least one loop and one node in the standing wave pattern. 
The boundary condition simulates the vertical displacement of the 
incident wave which is represented by a composite as shown in 
Fig. 4.  The amplitudes, A and A , and the periods, T and T , 

are proportioned so that volume continuity is satisfied which. 
leads to 
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Fig. 4.  Composite Input Wave 
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VA2 " VT1 (17) 

In order to calculate the unknown dependent variable at each 
boundary, the value of the dependent variable specified by the 
boundary condition at time Cj+1) was included in the calculation. 
This was- achieved by combining the equations of motion and contin- 
uity, and discretizing the augmented equation by forward differ- 
ences in space and time. Assuming that the boundary is located at 
the ith. column, the unknown celerity at the breakwater is cal- 
culated by the o-characteristic difference equation, 

c(i,j+l) = cCi,j) + 2 H {c(i.,j)u(i-l,j)/2 

cCi,jlIcti,j)-c(i-l,j)]} (18) 

Likewise, a 8-characteristic difference equation is used to find 
the unknown velocity at the left boundary, i.e., 

uCi,j+D = u(i,j) + 2IcCl,j+l)-c.(i,j)] + 

^ {2[uCi,j)-cU,j)] IcCi+l,j)-c(i,j)] 

- IuCi,jl-c(i,j)J IuCi+l,j)-uCi,j)] 

- AxgSf Ci,j)u(i,j)/2} U9) 

Throughout the solution, the values of velocity, celerity and the 
non-linear friction term were improved, within each time incre- 
ment, by an iterative procedure. 

VERIFICATION OF MODEL 

A laboratory investigation was conducted to evaluate the 
proposed mathematical model.  The Test flume was 45.8 cm wide 
and 11 m long with plexiglass walls and aluminum bed.  The 
slider-crank, wave machine used has adjustable stroke and speed 
that were selected to produce shallow water waves.  The breakwater 
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was simulated by a vertical plexiglass barrier, located at 9.2 m 
away from the intermediate position of the wave paddle.  Wave 
experiments were performed within the following range of variables: 

h. Ccm) 
o 

22 - 38 

H. (cm) 
1 

4-24 

Wave Period, T (sec) 2 - 5.; 

In the experimental procedure, the stroke and speed were set 
so as to minimize surface disturbances and secondary waves.  The 
incident wave celerity, c, was determined, prior to the inter- 
ference of reflection, using a stop watch to time the movement of 
a wave peak over different distances.  The wave period, T, was 
taken as the average of the rotation time of a point marked on the 
flywheel of the wave machine.  The product of the values of c and 
T yielded the wave length., L.  After a few wave traverses, an 
asymmetric standing wave pattern was observed to develop and 
stabilize with, nodes and loops forming, alternately, at almost 
every quarter wave length.  The measured loop height, h , and node 

height, h. , were used to find the "apparent" incident wave height, 

E. , and the "apparent" reflected wave height, H , according to the 

linear wave theory, i.e., 

Hi = \ % + V (20) 

Hr = 1  ChP - V 
t21) 

The "apparent" reflection coefficient, C , was defined as: 

CR = VHi (22) 

The maximum limits of run-up, R , and rush.-down, R , bounding the 

impact wave height, H , at the breakwater were recorded.  The 

experimental measurements.are estimated to have been within an 
accuracy of about + 2 cm. 
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When the mathematical model was operated, using the equality 
condition in Eq. 14 with, u - c - J'gli , the procedure was numeri- 

cally unstable.  This instability is thought to originate from the 
boundary- conditions, especially the incident wave boundary condi- 
tion.  The development of Eq. 14 does not consider this type of 
boundary condition.  In order to obtain stability, it was neces- 
sary to reduce the time step to between 1/5 and 1/10 of limiting 
value in Eq. 14. 

The stable model was run for the equivalent of 5 wave 
periods and the third, fourth and fifth periods were used to 
obtain average values for h , h , R , R and H .  The apparent 

values of H. and H were calculated from Eqs. 20 and 21, I     r i - 

respectively.  It is noted that the non-linear values of C are 
much less than for linear waves. 

An attempt to make a third order Stokes correction to both 
experimental and numerical reflection coefficients was unsuccess- 
ful because most of the waves had high H./h and low h /L. 

I o        o 
Similarly, second or third order Stokes waves were not suitable 
to describe the observed incident waves.  Fifth or higher order 
Stokes waves or cnoidal waves can be used with the model but more 
computation time would be required.  The crests and troughs of the 
composite incident waves can be established using information 
presented by Bretschneider (2). 

In Fig. 5 some experimental values of R , H and C are 

compared with those predicted by the model. 

CONCLUSIONS 

The simplified numerical model gives representation values 
for wave reflection and run-up at a solid barrier under attack by 
long non-linear shallow water waves.  Numerical stability was 
achieved by reducing the method of characteristic time step to 
about 1/10 of its limiting value.  An empirical damping parameter 
is introduced to account for centrifugal effects in the non-linear 
waves. 
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