
CHAPTER 41 

CURRENT  DEPTH  REFRACTION  USING  FINITE  ELEMENTS 

Ove Skovgaard1   and    Ivar G.  Jonsson 

ABSTRACT 

A computational model is presented for the steady state prediction 
of currents, waves, and sea surface elevations in a coastal region out- 
side the surf zone.  Irrotational flow of surface gravity waves on 
large-scale steady currents over a gently sloping sea bed is considered. 
A second order Stokian approach is used, and all dynamic quantities are 
integrated over depth and averaged over time, in that order. The flow 
equations and the boundary conditions are presented.  A method is devel- 
oped for the solution of the non-linear steady model by introducing a 
sequence of two-level calculations, viz. a 'wave level' and a 'current 
level'. The variables are split on the two levels.  The wave field is 
found, using that the flux of wave action is constant between adjacent 
wave rays. The current field and the mean sea surface elevation are de- 
termined using a Galerkin finite element method. The current field is 
approximated by triangular elements with linear interpolation functions, 
and the mean sea surface elevation is approximated by a triangular ele- 
ment with quadratic (parabolic) interpolation functions.  A quasi-two- 
dimensional test solution is tabulated. 

1.  INTRODUCTION 

The purpose of the present computational model is to make a steady 
state prediction of currents, waves, and elevations of the mean sea 
surface in a coastal or offshore region outside the surf zone, when 
the topography of the gently sloping sea bed is given, see Fig. 1. 

The computation of depth refraction of regular surface gravity waves 
presents no fundamental difficulties, see e.g.Skovgaard et al. (1975, 
1976) and Skovgaard and Petersen (1976). When the wave height H is 
small, the combined effect of diffraction and depth refraction can also 
be calculated in the shallow water region, see Berkhoff (1973,1975), 
Chen and Mei (1974,1976), and Zienkiewicz and Bettess (1975,1976).  On 
greater water depths, where the intermediate depth wave theory must be 
applied, combined diffraction and refraction has only been determined 
for a very simple geometry of the sea bed, see Jonsson et al. (1976b). 
In the presence of a current the problem becomes much more complex on 
account of current-wave interaction and anisotropy. Therefore we ex- 
clude reflection and diffraction and consider only combined current 
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Fig. 1 
Horizontal sketch of a coastal region 

depth refraction, i.e. the 
approach is within the frame- 
work of geometrical optics. 

Subcritical, irrotational 
flow of large-scale, horizon- 
tally non-uniform and verti- 
cally uniform, steady cur- 
rents over an arbitrary gen- 
tly sloping sea bed is con- 
sidered.  This means that 
variations in current veloc- 
ity and depth are slow, in 
the sense that changes are 
appreciable only over many 
wave lengths.  Surface and 
bottom shear are disregarded, 
and so is dissipation.  The 
waves are periodic and pro- 
gressive with the constant 
absolute wave period Ta 
(= 2ir/(joa) , (o being the abso- 
lute angular frequency.  Stokes' second order wave theory is used, and 
the wave fronts are long-crested.  Fluxes of mass, momentum,and energy 
are integrated over depth and averaged over Ta, in that order.  The 
two-dimensional flow region fi is simply connected with waves in the 
whole domain.  The fluid is incompressible and homogeneous with den- 
sity p.  The Coriolis force and the spherical form of our planet are 
neglected.  The non-linear steady model will be solved by a sequence 
of two-level calculations, viz. a 'wave level' and a 'current level'. 

Another model for current wave interaction in two horizontal dimen- 
sions, but with bed shear, is reported by Noda et al. (1974) and Noda 
(1976).  This model is like the present one solved by a sequence of 
two level iterations; however, the approaches on both calculation 
levels are completely different from our. 

The governing equations for irrotational current depth refraction 
were introduced by Jonsson (1971b), see also Jonsson and Wang (1976). 
These equations were solved in one horizontal dimension (no refraction) 
by Jonsson et al. (1971).  Plane flow with vorticity is being reported, 
see Brink-Kjar (1976), Jonsson et al. (1976a), and Jonsson (1977). 

The effect of a combined current wave field is in principle that, 
when the current has a positive component in the direction of wave 
propagation, the waves are 'lengthened' and so 'feel bottom' at a 
greater depth than without the current.  So in this case the bending 
of the wave orthogonal in the combined field is stronger than for pure 
waves.  Conversely, a negative current component will 'shorten' the 
waves, and the bending of the wave orthogonal is less than for no cur- 
rent (see later). 

2. THE GOVERNING EQUATIONS 

The arbitrary bottom topography is known (measured from a horizontal 
datum) in a fixed horizontal Cartesian coordinate system (x,y).  It was 
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D = h+Tf) 

proved by Jonsson et al. (1971) that for a periodic, irrotational free 
surface flow a constant horizontal level exists, which is inherently 
connected with the flow.  The level was called the mean energy level 
(MEL) . It is also denoted the mean irrotational stagnation level (MISL), 
see Jonsson (1977), since it stems from the time mean version of the 
Bernoulli equation.  The distance D between the sea bed and MISL is 
denoted the geometrical depth. The distance h between the sea bed and 
the time mean water surface (MWS) is for obvious reasons called the 
physical depth.  The distance n between MWS and MISL is the current 
wave set-down, see Fig. 2.  Notice that our definition of the set-down 
is opposite in sign to the conventional, see Bowen et al. (1968). 

The problem has 7 primary dependent 
variables, which are (see Figs. 2 and 3): 
(1) and (2) radian wave number vector k = 
(k cos A, k sin A) , or wave number k (= |k|) 
and wave orthogonal direction character- 
ized by the angle A from the x-axis to the 
wave orthogonal,  (3) wave energy density 
E (5 1/8 pgH2), where g is the accelera- 
tion of gravity,  (4) and (5) current vec- 
tor U = (u,v) = (U cos 6, U sin 5) , or cur- 
rent speed U (= | u| ) and direction charac- 
terized by the angle S  from the x-axis to 
U,  (6) physical water depth h, and (7) 
current wave set-down n.  Observe that U 
is an average-over-depth current speed, 
defined such that the mean volume flux q 
(per unit width) through a vertical sec- 
tion at right angles to U is hu, see Jons- 
son (1976).  The wave orthogonal  should not 
be confused with the wave  Toy,   see Fig. 3. 

MISL jHORIZONTAL) 

&r! 
e&o 

„J^ 
Fig. 2 
Vertical definition 
sketch.  Geometrical 
depth D, physical 
depth h, and current 
wave set-down n 

The 7 primary governing equations are:  (1) conservation of mass, 
(2) and (3) conservation of momentum, (4) conservation of wave action 
E/rar (cor being the intrinsic (i.e. relative) angular frequency, see 

Fig. 3 Horizontal definition sketch for angles and velocities 
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later), (5) conservation of zero vorticity, (6) conservation of wave 
crests, and (7) conservation of bottom topography. The conservation 
equations given by Jonsson (1971b) become in the above mentioned order 

•—(hu)   + f(hv)   = 0 (1) 
3x 3y 

JL (JL, 
3x [2 (G+ (1+G) cos2A)   +phu2|   -pgh-jp 

+ T— yd+G) cos A sin A +  p  h u v    =  0 (2) 

•2- fe(l+G) cos A sin A +  p  h u v)   -  p  g h I2- 
3x (2 ; dy 

3   fE,_ .        .   ,   ,   ^  „  ^     2 
+ f~ f(G+ (1+G) sin^A)   + p  h v^     =0 (3) 

£(t(U+C^COSA))   +^(t(V + VSlnA))   "  ° <4) 

3   f         EsinAl         3   f         ECOSA]        . ,,., 
37 [v " 7h^7J   _  3y"iu " Th^j  " ° .                   (5) 
c,  - c_+u cosA + v sinA      or      w_  = w„+k(u cosA+v sinA)    (6a,b) a     XT a.     i 

D = h + n (7) 

where we have introduced 5 new (sencondary) unknowns: The absolute 

phase speed (see Fig. 3) 

ca = L/Ta (= ua/k) (8) 

L being the wave length, the relative phase and group speeds 

cr = y2. tanh kh        (9) c„r = ^ cr(l+G)        (10) 

the relative angular frequency «r and the parameter G 

ior = crk (11) G = 2kh/sinh 2kh       (12) 

In the shallow water limit we have G = 1 and cr = c  = i^gh.  If we in- 
sert these limiting values in eqs. 1-7, we get the shallow water ver- 
sion of the conservation equations, see Skovgaard and Jonsson (1976b). 

As shown by Skovgaard and Jonsson (1976a) it is possible to replace 
any of the conservation equations with the differential equation for 

the wave orthogonal or with the algebraic equation for the set-down 
(see later), or to replace any two of the conservation equations with 

these two equations. 

The differential equation for the wave orthogonal reads, see e.g. 
Skovgaard and Jonsson (1976a) 

DA   1 f . . dca      „ dca] ,,,. 
-— = — sinA -r cos A -r— (13) 
Ds  ca [ 9x        3y j 

where s is a coordinate along the wave orthogonal (positive in the di- 
rection of the wave propagation).  Together with eq. 13 we have the two 
parametric differential equations 
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Dx/DS = cos A (14) Dy/Ds = sin A (15) 

The equation for the current wave set-down reads, see Jonsson (1971a, 
1976) 

n = ^-(u
2 + v2) 

2 g 
F IG 

+   - hr " (u cos A + v sin A) /c pgh[2 r 
(16) 

The direction of the wave ray is given by the direction of the absolute 
group velocity vector c„a (=U + c_r), and so is determined by 

tan u 
u + c  cos A 

(17) 

where p is the angle from the x-axis to c_a, see Fig. 3.  When eq. 17 is 
differentiated with respect to a coordinate r along the wave ray, the 
differential equation for the wave ray is obtained 

Dy     2 —— = cos u   , 
Dr        Dr i u + c 

v+ c  sin A' 

gr cos A 
(18) 

Together with the wave ray equation we have two parametric equations 

Dx/Dr = cosy (19) Dy/Dr = sin y (20) 

Remark that the wave ray equation presented by Jonsson (1971b), eq. 30, 
is not correct. 

3. BOUNDARY CONDITIONS 

The current vector U must be given everywhere on the boundary r 
which surrounds fl, see Fig. 4.  The boundary is divided in two parts, 

of Q,   see Fig. 4, and along it the wave field must be known. 
the wave field is determined by the calculations.) 

(Along T2 

Fig. 4 
Definition sketch 
of flow domain Q 
with the boundary 
r = r, +r2 

The wave field is in principle defined by Ta, A, E, L, and h; how- 
ever, in an irrotational model it is not necessary to prescribe h in 
more than one  point of Y1   for the following reason.  For given U, Ta, 
A, E, and h in one point of T1,  we can calculate n in that point by 
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iteration in eqs. 6, 8, 9, 12, and 16, and then D using eq. 7. Thereby 
the MISL is determined, which is horizontal in 0. Combining eqs. 6, 7, 
8, 9, 12, and 16 we then can calculate h for all other points of Vx. 

We shall later show that it is more convenient if the (incoming) 
waves are prescribed by the curvature of the ray front <e and by A (or 
y) in some selected points along Yt  rather than by the continuous vari- 
ation of A along rx. The angles A and y are connected by eq. 17 in any 
point where U and h are known, i.e. if A is given we can determine y, 
and vice versa. The curvature of the wave action front Ke is deter- 
mined by a pure geometrical consideration 

Ke 5 Dy/De = - sin u 3u/3x + cosy 3p/3y = (D(De)/Dr)/De      (21) 

where De is the infinitesimal distance between two rays, see Fig. 6. 
Since r is not constant along e-lines, and vice versa, lengths r and e 
do not form a set of curvilinear coordinates. This is the reason for 
using the formalism D/Dr instead of 3/3r, etc. 

In summary we have 

U = Ur      along Tj (22a) 

K. = K    r    E = Er    A = Ar   or  y = yr e   e,i j i j i j i j 

in some selected points of r, (22b) 

h = h;      in one point of Y (22c) 

U = Up      along T2 (22d) 

For the present irrotational steady state model we can make two inte- 
gral checks of volume fluxes and velocities. The normal component of 
<f (=hU) along T (= Tj + T2) is controlled by mass conservation 

lr5'nfidr = 0 (23) 

where n^ is a unit vector normal to the boundary of and going outward 
from fi, and we have assumed that U  is without sources or sinks.  As h 
is not known along V2   (i)  is a function also of the unknown wave field) 
we cannot check in advance that eq. 23 is exactly fulfilled.  However, 
we can calculate h along r corresponding to a pure current, and it is 
expected that for a 'realistic' problem the error introduced in eq. 23 
by neglecting the wave contribution to h is small, since it is a second 
order term. The wave field could also be estimated along r. before us- 
ing eq. 23.  One could formulate the above as:  Eq. 23 must be roughly 
fulfilled in advance for a realistic problem. 

The tangential component of the mean velocity is controlled by the 
condition of zero vorticity.  Introducing the Eulerian mean velocity 
vector 0t (= U - E/(p h cr) s) below wave trough level (s being a unit vec- 
tor in the direction of wave travel), Stokes' theorem gives 

f rot Ufc d« = [ Ut«tndr (24) 

where tp is a unit vector tangential to r going counterclockwise around 
SI.     Using eq. 5 we therefore get 

U -p— s] • t0dr = 0 (25) 
Jr.    .._-  .  u« 
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The wave contribution to the integrand in eq. 25 is a second order term 
which furthermore has not the same sign along r.  Thus is can be in- 
ferred that the advance neglect of the wave term in eq. 25 will corre- 
spond to a realistic problem.  Also here we can say:  Eq. 25 must be 
roughly fulfilled in advance for a realistic problem. 

4. THE TWO-LEVEL APPROACH 

The current depth refraction model is solved by a two-level iterative 
scheme.  In this way we so to speak 'split' the unknowns in two groups, 
and we do not have to solve all equations simultaneously.  The two lev- 
els will be named the wave level and the current level. 

In the wave level calculations 
the 'propagation medium^ is held 
fixed ('frozen'), i.e. U, h, and 
n are known in ft on this level, 
and 5c and E are the primary un- 
knowns, see Fig. 5. 

In the current level calcula- 
tions the wave field is frozen, 
i.e. k and E are known in ft on 
this level, and U, h, and n are 
the primary unknowns.  The gov- 
erning equations on this level 
are non-linear, which implies 
that we have to iterate during 
the calculations. 

The calculations are initiated 
on a wave level, where we assume 
5=0 and n = 0 in ft.  The two- 
level iteration scheme is contin- 
ued until the differences between 

two consecutive levels of the same type are lower that a chosen limit 
for both the wave and the current level, i.e. the number of iterations 
is determined by accuracy requirements. 

After the completion of the two-level iterations the paths of some 
wave orthogonals are calculated by numerical integration of the three 
ordinary differential equations 13-15, and the wave field is plotted 
with the wave heights and the current components written at discrete 
points along these orthogonals.  Also the phase field, i.e. the wave 
fronts is calculated and plotted after the completion of the two-level 
iterations.  Eqs. 13 - 15 cannot be used in the given form to calculate 
the phase field.  Time t must be used as independent variable in this 
case 

(13a) 

t 
WAVE CALCULATION  LEVEL: 

FOR 0 AND T) 'FROZEN1 CALCULATE.k AND  E 

t 
CURRENT CALCULATION LEVEL: 

FORk AND  E  'FROZEN1 CALCULATE U AND T) 

^^ACCURACV^N. 

\.        SATIFIEO'         JS' 

\ YES 

[      CALCULATION  AND   PLOTTING          A 

I      OF  WAVE   ORTHOGONALS ETC.           J 

Fig. The two-level splitting 
of the calculations 

5. 

dA/dt =  sin A  3ca/9x  - -   cos A 

dx/dt =  c    cos A (14a 

THE   WAVE    LEVEL 

3ca/3y 

dy/dt = c sin A (15a) 

The approach on this level is a generalization of the method which is 
used in depth refraction calculations, see e.g. Skovgaard et al. (1975). 
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The wave field is determined from one-point conditions (initial condi- 
tions) by integration along characteristic lines.  By a suitable plac- 
ing of the boundary points (initial points) along Fj, Q  is covered by 
a set of characteristic lines.  The method is attractive, because we 
only have to solve a set of four ordinary differential equations along 
each of the lines. 

In depth refraction the characteristic lines are the wave orthogo- 
nals, and in current depth refraction the characteristic lines are the 
wave rays which, of course, 
for U = 0 coincide with the 
wave orthogonals. The path 
of the wave ray is determined 
by eqs. 18-20.  Bretherton 
and Garrett (1968) have shown 
generally that there is no 
flux of wave action E/u 
across a wave ray, i.e. be- 
tween two rays we have a con- 
stant flux of wave action, 
see eq. 4.  For water waves, 
JonssOn (1971a,1976) found 
the same result, using quite 
a different approach.  For 
U = 0 the wave action is, of 
course, proportional with 
wave energy density, the flux 
of which is constant between 
two orthogonals. 

WAVE ACTION  FRONT 

WAVE ACTION  FRONT 

Fig. 6 Two adjacent wave rays and 
two 'wave action fronts' 

Munk and Arthur (1952) de- 
rived a differential equation 
for the wave orthogonal  separa- 
tion factor 8 for U = 0.  In almost the same manner it is possible to 
derive a differential equation for the wave Pay  separation factor Br 
with distance r along the ray as the independent variable.  The fac- 
tor f3  is defined by 

=  De/Dest > 0 (26) 

in which suffix 'st' denotes a value at the starting or initial point 
along Ylt   see Fig. 6.  The separation factor is found in the following 
way.  Introducing eq. 26 in eq. 21 we get 

Dp/De = e"1 D6r/Dr (27) 

Using the operators 

D        3.8 

D 
De 

we have 

"*H 3y 

sin p A + cos p A 

JL I5H. 
De (.Dr 

JL Bi 
Dr (De 

Dpi 2 + fDpl 
Dr DeJ 

(28) 

(29) 

(30) 
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(or DKr/De - DKe/Dr = K£ + K|, K    being the curvature of the wave ray) 
Inserting eq. 27 and using eqs. 28-29 once more, we get an ordinary 
second-order homogeneous differential equation for 6r 

+ qcS, = 0 (31) 
D'„r 

Dr* 

3y 
3yJ   3x 3y 

cos 2p 

2 

3x2  3y2J ' ~ 3x 3v. 
Vl+2^|il sin 2y (32) 

The coefficient q depends on some explicitly known quantities (u, v, h, 
and n, and their partial derivatives up to the second order) and on 
some implicitly known quantities (A and E, etc., and their partial de- 
rivatives up to second order).  The implicit quantities are calculated 
from some of the conservation equations and the wave orthogonal equa- 
tion 13. 

The condition of constant flux of wave action between two adjacent 
rays determines in principle E (and so the wave height) 

E . fH _^r_ 
cga,st (33) 

Pr ur,st  cga 

where we have used eq. 26, and c  (= |c„a|) is the absolute group speed. 

The associated one-point boundary conditions at r = rgt for the four 
ordinary differential equations 18 - 20 and 31 are 

V  = ust   x = xst  y = yst   Br = erjSt  -^p = Br/St 
K
e,st  

(34) 

where xgt and y t are chosen on ri# ust is calculated from eq. 17, 
3r st is arbitrarily chosen as 1, and Ke st is the curvature of the 
wave action front in the considered point of T,. When the differential 
equation for gr (eq. 31) is written as a system of two simultaneous 
first-order equations, eqs. 18-20 and 31 constitute a system of five 
simultaneous first-order ordinary differential equations, where the 
five requisite 'initial' conditions at r = rgt are given by eq. 34. 
The system is integrated step-by-step along one ray at a time.  A stand- 
ard variable order code with automatic local control of the error level 
and corresponding adjustable step length is used. 

The calculation along a wave ray stops when one of the following con- 
ditions is fulfilled:  (1) The boundary of the region of analysis is 
reached,  (2) the orthogonals converge too much, (3) the Stokes parame- 
ter is too high (thereby we in practice exclude wave breaking),  (4) the 
bottom slope is too high,  (5) the water depth is too small, or (6) the 
rays converge too much. 

The first five conditions equal those for depth refraction, see Skov- 
gaard et al. (1975).  Here condition (2) was formulated DS/Ds<- B/(1L), 
where 1 probably is about one.  However, since 6_1 D6/Ds = DA/Df = 
- sin A 9A/3x + cos A 3A/3y, we need not solve the differential equation 
for 3 to test condition (2), (Df is the infinitesimal distance between 
two orthogonals).  Nor do we have to determine the wave orthogonal 
paths.  Condition (6) is of the same type as condition (2).  Condition 
(3) reads HL2/h3 > 20 (say), thus excluding non-Stokian waves. 
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The solution (i.e. k, E etc. and the associate position (x,y) of the 
ray) is recorded in the computer at a set of prescribed values of dis- 
tance r along the path of the wave ray.  Note that the paths of the rays 
are new on each level, since the propagation properties of the medium 
changes on the current level. 

6. THE CURRENT LEVEL 

On this level the wave field (i.e. k and E) is frozen in fi, and U, h 
and n are the primary unknowns.  Using eq. 7, and remembering that D is 
also known in Q,  we immediately can eliminate h, which implies that we 
have only three scalar unknowns u, v and n on this level.  These three 
variables are determined by three conservation equations, viz. conser- 
vation of mass, eq. 1, and conservation of momentum in the two horizon- 
tal directions, eqs. 2-3. We solve the partial differential equations 
by a direct finite element method, the so-called Galerkin weighted re- 
sidual process_(i.e. a weak formulation).  The region Q  is approximated 
with a domain fi (with boundary r) consisting of a finite number N of 
triangular subdomains CD.  The only difference between Q  and Q  is along 
the boundary. The triangular subdomains are constructed by connecting 
the prescribed points along the wave rays with straight lines, see Fig. 
7. As the rays are new on each wave level, the triangular subdomains 
are also new on each current level. 

It is well known that we 
cannot freely select the pol- ^-— WAVE RAY 

ynomial order of the shape 
functions (interpolation 
functions), see e.g. Hood and 
Taylor (1974) and Olson and 
Tuann (1976).  We choose to 
apply the most simple shape 
functions, which for the pres- 
ent differential equations 
1-3 are a linear shape func- 
tion for u and v, and a quad- 
ratic shape function for n. 
Remark the simple connection    Fig. 7 Placing of triangular elements 
in eq. 16 between u, v and n. 
It should be explained why we choose to eliminate the physical depth h 
and not the set-down n.  If n was eliminated, and a shape function for 
h chosen, the indirectly assumed form of the MWS would be influenced by 
the local form of the sea bed (see eq. 7 and Fig. 2). 

We select the most simple placing of the nodal points, i.e. we use 
for the linear interpolation functions the three vertices as nodal 
points (see Fig. 8(a)), and for the quadratic interpolation functions 
the three vertices plus the three mid-side points as nodal points, see 
Fig. 8(b).  Implicit in the preceding discussion is the fact that the 
same triangular subdomains are used for set-down and velocity fields. 
Details of these standard elements can be found in e.g. Zienkiewicz 
(1971) , chapter 7.  With these two elements the u, v and n solutions 
become continuous but not differentiable along the sides of the trian- 
gular domains.  In a typical domain d) we have the following approxima- 
tions 
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u = \Jij (x,y) Uj v = i|jj (x,y) Vj n  =  <()1(x,y) nj (35a,b,c) 

where the bar indicates a nodal value, and if)j, j = 1,2,3, and ij>^, 1 = 
1,2,...,6 are the shape functions.  Here and henceforward the repeated 
nodal indices j, 1, etc. are summed over the range of the index. 

o NODAL POINT 

Fig. 8 Placing of nodal points in isoparametric triangular elements 
(a) linear three-node element, (b) quadratic six-node element 

For the conservation equation of mass (where h is eliminated) we 
form the residual re(x,y) at point (x,y) e u by inserting eqs. 35 a-c 
in the left hand side of eq. 1 

re(x,y) .3 3x-,„yj,   „1Uj j^i *3> -(D^) - nlUi 

3y + vj ^•(D",j) - nivj l^(*iV (36) 

The residual re is multiplied with weight functions which for this re- 
sidual are the shape functions for the set-down <|>  (m = 1,2,...,6). 
Support for the appropriate selection of the weight function is given 
by e.g. Chung and Chion (1976).  The functions (re <t>m) , m = 1,2,...,6 
are integrated over to, and each of the results is equated with zero. 
Oden and Wellford (1972) p. 1592 have given the reason for this approach, 
'We can guarantee that the residual vanishes in an average sense over 
the element by requiring that it be orthogonal with respect to the in- 
ner product <f ,g> = f  fgdco to the subspace spanned by the functions 
<f>m(x,y), m = 1,2,...,6. Then <re,<J>m> = I  re(j>mdu = 0, and we obtain the 
finite element model of the mass conservation equation.' 
Using f  re$mdio = 0, we get 

uj Vj " nluj Bmlj T "j^mj " "1 vj"mlj + v. C„ In V, Dm 1,2,...,6 (37) 

and AJJJJ , B^j , C^j, and Dm]_j denote the four local arrays 

-(Di))j) dm 

*m 37(D*j> 
dw 

Bmlj 

umlj 

-(<!>! ifjj) doo 

37(*l*j)^ 

(38) 

in the same manner we obtain the finite element model of the two mo- 
mentum conservation equations, the only difference being that the weight 
functions are i|/ , m = 1,2,3 for both equations.  For eq. 2 we get 
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Uj UpEmjp "  p  •1luj,,pFmljP  "  p  g  nlGml + P  9  1l1nHmln 

+ P^^pImjp-p  Wl"jVmljp' 

*•I-^T (f'(G+ d+G) COS
2

A) |   + •^r|S. (1+G) cos A sina| | dco        (39) rm(3x 12 ^ ' V1,v" v-"° "')   ' 3y [2 

m = 1,2,3; where Emjp, Fmljp, Gml, Hmln, Imjp, and Jmijp denote 6 local 
arrays, which are not presented.  Nor are the similar equations for 
eq. 3. 

Off-node function values and derivatives of u, v, h, and n, which 
are used in the wave level calculations, are not formed directly from 
the finite element method (FEM) solution, using the FEM interpolation 
functions etc. We follow, however, the guidance given by Carl de Borr 
(1974), see Roache (1975), p. 235, 'The acknowledged best procedure is 
to ignore the basis function and evaluate off-node function values and 
derivatives by standard interpolation formulas.' 

Eqs. 37 and 39, and the similar one for eq. 3 represent a set of 12 
(=6+3+3) non-linear algebraic equations in 12 unknowns, which are 
TVJI, 1 = 1,2,... ,6, UJ, j = 1,2,3, and VJ , j = 1,2,3.  Upon assembling 
the elements, the global stiffness matrix form is sparse, but the sys- 
tem of algebraic equations is non-linear.  Along the boundary T,   the 
specified current components u and v~ are inserted directly in the global 
matrix form.  Using these specified values of u" and v we can calculate 
rf along T from eq. 16 by iteration, using that E, A, cr, and G are 
known from the calculations on the wave level. These values of rf are 
then inserted directly into the global matrix form. 

The global non-linear system of algebraic equations is solved using 
the Newton Raphson iteration scheme, see e.g. Dahlquist and Bjorck 
(1974), p. 250.  The iteration is started by interpolation in the cur- 
rent level solution used on the preceding wave level.  The number of 
iterations is determined by accuracy requirements. 

Combined diffraction refraction FEM models for short waves are rather 
expensive in use, as the minimum number of elements is a function of the 
wave length. The present model for current depth refraction does not 
have this restriction. The number of elements in our model is a func- 
tion of the depth variations and the associated variations of the cur- 
rent field.  Only the variation of the wave height (amplitude envelope) 
is modelled.  In contrast a diffraction refraction FEM model describes 
simultaneous amplitudes, i.e. rapid oscillations in horizontal space. 

It should be explained why we choose to use both momentum equations, 
and do not substitute one of them with eq. 16.  If we had done this, 
our model would have been 'tailored' to irrotational flow only, and a 
later inclusion of bottom friction would be less straightforward. With 
the present approach we can instead use eq. 16 as a check equation in 
the nodal points. 

7. TEST SOLUTION 

For straight and parallel (but arbitrarily spaced) sea bed contours, 
with the current U everywhere parallel with these, a test solution is 
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calculated numerically (assuming 
plane incidence in deep water). 
With these constraints we have a 
quasi two-dimensional problem in 
that no phase-independent parame- 
ters vary with distance along- 
shore.  Therefore we can calcu- 
late the solution (except the ray 
and orthogonal paths) with D as 
the only independent variable, 
without integrating the differ- 
ential equations for the rays 
and the orthogonals.  In order 
to simplify the presentation we 
place the x-axis at right angles 
to the contours, U = (0,v), or 
U = v, and 6 = ± 90°. 

For the present problem we can 
directly integrate the conserva- 
tion equations (4 and 5) for wave 
action and zero vorticity 

E c 

E sin A 
P h c^ 

cos A = const. 

= const2 

(40) 

(41) 

When the y-component of the con- 
servation (3) for momentum is in- 
tegrated and combined with eqs. 
8, 10, 11, and 40 we get Snell's 
law (see Jonsson, 1971a,1976) 

c /sin A const. (42) 

Further we can easily derive alge- 
braic formulas for the ray and or- 
thogonal separation factors 0r and 
B <.=  Df/Dfst) 

Sr = cos y/cos ust 

= cos A/cos Ag-t; 

(43) 

(44) 

Note that by combining eqs. 40 and 
43 we get eq. 33. 

The solution, i.e. the 12 un- 
knowns (k, A, E, v, h, n, cr, ca, 
"ri Cgr, G, and u) as a function 
of D, is found by numerical iter- 
ation in 12 non-linear algebraic 
equations (Nos. 6, 7,8, 9, 10, 11, 
12, 16, 17, 40, 41, and 42) . After 
the completion of the iteration, 
8r and B are found from eqs. 43 
and 44.  The ray path is deter- 
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mined by simultaneous integration of the two parametric differential 
equations for the ray, eqs. 19 and 20 (independent variable r).  Simi- 
larly the orthogonal path is found by another simultaneous integration 
of eqs. 14 - 15 (independent variable s). 

The wave level part of the general program can be separately checked 
using the given test solution. 

For a plane sloping sea bed (slope 1:50), Ta = 8 sec, Hgt = 1 m, 
Ast = 60°, vjj+a, = ± 1 m/sec, i.e. vst = + 1.0046 m/sec, and vst = 
- .99497 m/sec (both values are rounded with 5 significant digits, 5S), 
and Dst = 20 m, the paths of the rays and the orthogonals, and the var- 
iation of the wave height are given in Fig. 9.  Note that in both cases 
shown, the rays turn with the current, in contrast to the orthogonals. 
This phenomenon is explained in the introduction.  The figure gives 
also the path of the orthogonal for v t = 0 (and Egt = 0, i.e. the cur- 
rent 0(H2) is also vanishing, so v = 0).  it can be shown that if we 
are in shallow water, the influence of the current on the orthogonal 
and on the wave height is exceedingly small in this case. 

In Table 1 one of the test solutions in Fig. 9 is tabulated for some 
points along the wave ray.  Integers in parentheses indicate powers of 
10 by which the following numbers are to be multiplied. 

8. CONCLUSION 

The irrotational flow equations and the boundary conditions for cur- 
rent depth refraction of surface gravity waves on large-scale steady 
currents are presented for second-order Stokes waves.  An iterative 
solution algorithm is formulated using a two-level splitting of the 
calculations, viz. a wave calculation level and a current calculation 
level.  On the wave level, the wave rays are determined in a 'frozen' 
medium, and wave heights are found using that the flux of wave action 
is constant between neighbouring rays.  On the current level, the 
waves are 'frozen', and the current field and elevation of the mean 
surface are determined from the conservation equations for mass and 
momentum using that the mean irrotational stagnation level (MISL) is 
horizontal.  These conservation equations are solved by a direct fi- 
nite element method, using triangular linear finite elements for the 
current and triangular quadratic finite elements for the elevation of 
the mean sea surface.  A test solution is presented, and tabulated for 
one set of the parameters.  The described model is currently being im- 
plemented in a general current depth refraction program. 
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APPENDIX A:  Programming 

The numerical methods described are programmed in the IBM OS 360/370 
implementation of PL/I.  All the floating point calculations are made 
with 14 hexadecimal digits, i.e. with about 15 decimal digits. The pre- 
sented results are calculated with about 10S, and the numbers in the 
test solution in Table 1 are rounded to 5S. 
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