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1.  INTRODUCTION

The sight and sound of breaking waves and surf is so familiar and enjoyable that
we tend to forget how little we really understand about them. Why is it, that
compared to other branches of wave studies our knowledge of breaking waves is so
empirical and inexact?

The reason must lie partly in the difficulty of finding a precise mathematical
description of a fluid flow that is in general nonlinear and time-dependent. The
fluid accelerations can no longer be assumed to be small compared to gravity, as in
Stokes's theory for periodic waves and the theory of cnoidal waves in shallow water,
nor is the particle velocity any longer small compared to the phase velocity.

The aim of this paper is to bring together some recent contributions to the
calculation both of steep symmetric waves and of time-dependent surface waves, These
have a bearing on the behaviour of whitecaps in deep water and of surf in the breaker
zone,

Since spilling breakers in gently shoaling water closely resemble solitary waves,
we begin with the description of solitary waves of limiting amplitude, then discuss
steep waves of arbitrary height. The observed intermittency of whitecaps is
discussed in terms of the energy maximum, as a function of wave steepness, In
Sections 6 and 7 a simpler description of steady symmetric waves is proposed, using
an asymptotic expression for the flow near the wave crest. Finally we describe a
new numerical technique (MEL, or mixed Eulerian-Lagrangian) with which it has been
found possible to follow the development of periodic waves past the point when over-
turning takes place.

2., THE LIMITING SOLTTARY WAVE

A simple and very accurate approximation to the limiting solitary wave has
recently been given by Longuet-Higgins (1974). If x and y are horizontal and vertical
coordinates and h the undisturbed depth of water, then the surface profile on one side
(x >0) is approximated by

v/h = e~ AX/B g -ux/h (2.1)
The constants A, B and A y W are determined by the conditions, first, that the
particle at the crest moves with the phase-speed ¢ = Fafgh., So from Bernoulli's
equation,
y/h = §r* (x = 0), (2.2)

Secondly, the angle of inclination at the surface is -30°, so

dy/dx = -1/4"3 (x = 0), (2.3)
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442 COASTAL ENGINEERING-1976

We know thirdly (see Lamb, 1932 5 252), that in Egsxouter fringes of the wave

(x> 00 ) the profile behaves asymptotically like e s, where
tan A = F? (2.4)

exactly. This is satisfied by (2.0) if 0 (A< p. Fourthly we have Starr's exact
relation

/g = (F* - 1) M (2.5)
where V is the potential energy and M the mass: v
g
v/g = f yfax, M= f y dx;

oo oo
and lastly an exact relation

j\[(1 + y/n)(1 - 2P 2y/n)E(1 4+ ay/ax?)? - 1] dx = 0 (2.6)

proved by Longuet-Higgins (1974). PBquations (2.2) to (2.6) are five relations to
determine the constants 4, B, A , p and ¥, giving

A
B

1.5389, A = 1.0495
-.7093, B o= 1.4630 (2.7)

F* = 1.6592.

now

The resulting profile, plotted in Figure 1, agrees numerically with that given by
Yamada (1957) to within 1% everywhere, and generally to within 0.2%.
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. The profile of the highest solitary wave
solid line) compared with the numerical
) (circles) and Lenau (1966) (crosses),

Figure 1. (from Longuet-Higgins, 197
as glven by equation (2.1)
calculations of Yamada (19
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3. SOLITARY WAVES OF ARBITRARY HEIGHT

The properties of solitary waves of arbitrary awplitude a in water of undisturbed
depth h have been studied in two recent papers by Longuet-Higgins and Fenton (197&)
and by Byatt-Smith and Longuet-Higgins (1976) using quite different methods,

It is convenient to define a parameter &) for the family of solitary waves by
the equation

W =1 -q°/gh

where q is the particle-speed at the wave crest, in a frame of reference moving along
with the phase-speed. For waves of small amplltude, q = M gh so () is small, whereas
for limiting waves q vanishes, so &) 1. In general

o< w1 (3.1)
and the complete range of &0 is precisely known.

Figure 2 shows a succession of wave profiles, computed precisely for moderate
values of ¢ . The height of the waves increases monotonically with & . This is in
qualitative agreement with the approximate Rayleigh-Boussinesq theory, in which

y/h & %—NZ sech? (Jux)

2 1 2
FPol + 2
3

and so

tw =1 - (F? - 2a/n) & ;—tx“ = a/h (3.2)
and &) increases almost linearly with a/h, As the wave height increases, so the
horizontal width of the profile decreases, like 1/x or {a/h)~ % This implies that
successive profiles must intersect each other, and from Flgure 2 it is clear that as
the amplitude increases, so the point of intersection gradually moves in towards the
wave crest,

PROFILES OF SOLITARY WAVES
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Figure 2. (from Byatt-Smith and Longuet~Higgins, 1976). Profiles of solitary waves
at moderate values of the parameter ¢ .
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At finite values of the wave steepness the acceleration near the crest becomes
comparable with g and the approximate Rayleigh-Boussinesq theory is no longer valid,
An exact theory was however calculated by two methods., In Longuet-Higgins and Fenton
(1971@5 the Rayleigh-Boussinesq theory was treated as the first term in an infinite
series in powers of () , which was carried to high order and then summed by rational
approximants (Padé sums). All integral properties converged, up to and including
& = 1, and from these it was possible to calculate also the dimensionless phase-
speed F.

Figure 3 shows the dimensionless phase-speed calculated by means of padé sums ,
and plotted as a function of the wave steepness a/h, After increasing steadily with
a/h, F reaches a maximum and then actually decreases at higher values of a/h. The
maximum speed F = 1,294 occurs when a/h = 0.790, whereas the speed of the highest
wave is only F = 1,286,

The presence of a maXimum in the phase-speed is at first sight surprising, since
it implies that over a certain range of steepnesses there can exist two distinct soli-
tary waves in the same depth of water, having the same phase-speed, The reason becomes
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Figure 3. The dimensionless phase-speed F = ¢/ gh for solitary waves, as a function
of the relative crest height a/h.
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CRESTS OF
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Figure k4. (from Byatt-Smith and Longuet-Higgins, 1976). The form of steep solitary

waves close to the wave crest.

10

PROFILES OF
=090 STEEP SOLITARY WAVES

05

y/h

-
0-0 1 1 1 i ! i
00 2 4 -6 -8 1-0 1-2 1-4
x/h
Figure 5.

Comparison of the profiles of two steep solitary waves (&) = 0,90 and 0.96).
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apparent from Figure 4. This shows some accurately calculated profiles near the wave

crest, from & = 0,90 to @ = 0,96, Evidently the trend begun at the lower wave
amplitudes in Figure 2 continues, and as increases the point of intersection
moves up close to the wave crest., The situation is shown more clearly in Figure 5,
from which it will be seen that the higher of the two waves, corresponding to

> = 0.96 actually lies below the lower wave ( ¢J = 0,90) over most of the wave
profile, This implies that the average elevation of the higher wave is actually less

than that of the lower wave.
Now Starr's exact relation (2.5) can be written in the form
(F* - 1) = 39/m (3.3)

where y is the average surface elevation, defined by

oo 80
?:_L yzdx/J_’wy dx (3.4)

So if ¥ decreases as () increases, so also must F decrease, by equation (3.2).

Although the completeness of the Rayleigh series was questioned by Witting (1975),
nevertheless the existence of the maximum speed has been confirmed by a quite different
method of calculation based on the integral equation of Byatt-Smith (1970) for soli-
tary waves. In his first paper, Byatt-Smith took the phase-speed F as an independent
parameter in the integral equation, and from it calculated the wave height and profile.
He was unable to obtain solutions with F greater than about 1.294, and in this
neighbourhood convergence was slow. The explanation is apparently that in this
neighbourhood a small change in F corresponds to a large change in the profile., But
in a second paper {Byatt-Smith and Longuet-Higgins, 1976) 0¢J was taken as
independent parameter, and the wave speed F as dependent variable. The solutions
converged rapidly and the maximum in F was verified (see Figure 6).
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Figure 6. (from Byatt-Smith and Longuet-Higgins, 1976), The dimensionless phase~
speed F at high values of @ , calculated by two different methods,
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L., WAVES ENTERING SHALLOW WATER

In addition to the maximum in the phase-speed, Longuet-Higgins and Fenton (1974)
also found maxima in the mass, momentum and energy of solitary waves, as a function of
a/h or of o (see Figure 7). This has implications for waves entering gradually
shoaling water, For, in the absence of appreciable dissipation, the energy E. of a
solitary wave might be expected to remain a constant, As the mean depth h diminished,
the dimensionless energy E = E /(a gh? would be expected to increase, at first. So,
provided the wave remained symmetrical it would be represented by a point travelling
up the curve in Figure 7, with both E and a/h increasing.

Before the maximum value of E is reached, however, the wave must leave the emnergy
curve, which it generally does by becoming unsymmetrical and then spilling or plunging
forwards (see Section 8). If it plunges heavily, it becomes radically altered. But
if it spills gently, it may thereby dissipate enough energy to travel on down the curve
more or less as a symmetric wave damped by a whitecap on the forward face. This

I T T T T T 1 T

1 1 1 L { 1 | 1
Q A 2 -3 4 .5 4 .7 8
Figure 7. (from Longuet-Higgins and Fenton, 197h). The normalised mass M, momentum I

and energy £ of a solitary wave, as a function of the relative height a/h,
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presumably is a spilling breaker, for which a theory has recently been given by
Longuet~Higgins and Turner (1974). In their model, the whitecap was represented as a
gravity~current, of density P’ less than unity, riding down the forward face of an
irrotational wave and exchanging mass and momentum by entrainment across the inter-
face. Calculations showed that the flow could exist provided that / was of
order 0.7 (similar to the ratio observed in hydraulic jumps) and that the surface
slope exceeded an angle of about 20°,

In this model, however, and also according to observation, the length of the
whitecap tends to increase continually*, so producing a disproportionate damping of
the wave. What havvens when the point in Figure 7 reaches the right-hand edge of the
graph, representing the steepest symmetric wave? Longuet-Higgins and Fenton (1974)
suggested that it may Jjump back to a point lower down the curve, representing a wave
with almost the same mass and momentum, but with a slightly lower energy. This wave
would have a rounded crest and a lower value of a/h., The process might then be
repeated,

Some support for this suggestion comes from an analysis of the film of shoaling
solitary waves made by Kjeldsen and Olsen (1971). Measurements of the length £ of
the whitecap as a function of the time t (see Figure 8) show that it increases not
continuously but in a series of jumps. At each jump, the crest becomes rounded and a
part of the whitecap is lost by being left behind the travelling crest. The remnant
appears on the near face of the wave as a patch of aerated water, which quickly
subsides, .
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Figure 8, (f‘rom Longuet-Higgins and Turner, 197[;). Measurements of the length £ of
the whitecap on shoaling solitary wavés as a function of the time, showing
intermittency. .

*No allowance was made in this model for loss of buoyancy by air bubbles rising
through the upper surface.
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5. PERIODIC WAVES

For progressive waves in deep water, it has been shown by Schwartz (1974) that
the well-known Stokes expansion in powers of the first harmonic a_ , which is satis-
factory at low wave amplitudes, fails to converge at larger wave amplitudes, short of
the highest. This is because the waves become markedly non-sinusoidal, developing
narrow crests and broad troughs, and the amplitude a., of the first harmonic in fact
reaches a maximum and then diminishes before the highest wave is reached, So for
steepnesses greater than about 0.1 even the higher-order Stokes expansions are
divergent and misleading.

Schwartz (197h) overcame this difficulty by using as expansion parameter the wave
steepness H/L itself, which increases monotonically throughout the range of possible
waves. However, the limiting value of H/L is not accurately known a priori. As an
alternative Longuet-Higgins (1975) used the parameter

2 22 ¢
o =1 - L (5.1)
CCO

where g and q' denote the particle speeds-.at the crest and trough, in a frame moving
with the wave, and where ¢ and ¢, are the wave speed and the speed of infinitesimal
waves respectively, This parameter is similar to (3.1) and indeed reduces to (3.1)
when the depth is finite and the wavelength infinite. The range of is from O to
1, the value 1 corresponding precisely to the highest wave. .
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Figure 9. (from Longuet-Higgins, 1975). The square of the wave amplitude a and wave
speed ¢ for progressive waves in deep water, as a function of the
parameter (equation 5.1). The units are chosen so that g = 1 and
the wavelength L = 2% . The wave steecpness H/L equals a/T
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By using Padé sums, Longuet-Higgins (1075) obtained convergence up to and
including the highest wave ( ¢ = 1). DPrecisely similar effects as for solitary waves,
namely maxima in the speed, energy, momentum, momentum flux, etc., as functions of the
wave steepness, made their appearance (see Figure 9).

This result is particularly significant since the Stokes series (with ¢ as
parameter) is formally guite different from the Rayleigh-Boussinesqg series for the
solitary wave, Yet for Stokes's series no question of completeness arises, since
Levi-Civita proved actual convergence, for waves of sufficiently small amplitude.

More recently, Cokelet (1976) has calculated and tabulated the speeds, momenta
and other integral properties of symmetric gravity waves of arbitrary amplitude and
in waves of arbitrary depth h, His method is to use the general Stokes series for
waves in finite depth, with an expansion parameter similar to (5.t). For all ratios
ot the wavelength to depth, he finds maxima in the phase speeds as a function of the
wave steepness. There are maxima also in the momentum, momentum flux, energy and
energy flux. These accurate calculations may be of considerable use for practical
purposes.

6. ASYMPTOTIC SHAPE OF WAVE CREST

The wave crests in Figure 5 suggest that as (O > 1 the profile approaches the
120° corner-flow predicted by Stokes. But when ) < 1, and while the crests are
still rounded, is there any smooth asymptotic form which the free surface assumes in
some neighbourhood of the crest? A natural length-scale for such an asymptotic form

CRESTS OF STEEP SOLITARY WAVES (SCALED)

£ = 9%/2q = Fh(1-w)
y/e

0 x/t
W= 0-86
W =0-90
L W =0-94
2 o

——-— ASYMPTOTIC. PROFILE

Figure 10, The crests of steep solitary waves (from Figure 5) afier rescaling by
L = q‘/Zg, where q is the particle speed at the crest,
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is the length
4 = a?/2¢ (6.1)

where g denotes the particle speed at the crest in the frame moving with the wave.
Comparison with equation (3.1) shows that £ is directly related to & by

£ = (1 -w). (6.2)
As a test of the conjecture, Figure 10 shows the same wave profiiles as in
Figure 5 ( «3 = 0.90 to O.9l¢) now drawn on the new scale ,@ . When @ approaches 1

they do indeed tend to fall along the same curve.

To define our limiting flow we may take radial coordinates (r, 8 ) with the

origin O at a distance g = qz/Zg above the wave crest, and with the line § = (O
vertically downwards. The Bernoulli condition at the free surface is then

ax |?

i = 2gr cos 9 (6-3)
where X = + i)&‘ is the complex velocity potential and z = r‘el8 . VWe require a

solution whichh as r/—Q-—) °©, tends to the Stokes corner-flow:

3
x> 2587 as s, BI< % . (6.4)

This problem has been solved numerically in a recent paper by Longuet-Higgins and
Fox (1976). The resulting profile is shown in Figure 11 (and also Ly the broken line
in Figure 10), Net unreasonably, the free surface crosses its asymptote at about
r/ & = 3,32 and then approaches it very gradually from the outside, It can be shown
analytically that. for large values of r/{ the normal displacement n of the
surface from the straight-line asymptote must have the form

L
n/ﬁ ~ K( £/r)% cos [(3;},/2) in r - 6] (6.5)

where K and & are amplitude and phase constants and p is the positive root of the
equation

LT px O

5 tanh 5 = -277 (6.6)
In fact K = 0.60, & = 0.47 and p = 0.714. This means that the free surface
approaches its asymptote in a very slowly damped oscillation. There is a second
crossing of the asymptote at r/£ = 68.5, a third at r/4£ = 1286, and so on.

v/t

ASYMPTOTIC

PROFILE

OF STEEP GRAVITY WAVES ———

Figure 11, (from Longuet-Higgins and Fox, 1976a)., The asymptotic profile of the
crests of a steep gravity wave, on a scale = qz/Zg.
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The results can be checked not only by a direct comparison with the profiles of
wave crests calculated independently {such as in Figure 10) but also by a considevration
of the maximum surface slope. From Figure 11 it will be seen that between the two
crossings of the asymptote at r/4 = 3.32 and v/ = 68.5 the maximum angle of slope
must slightly exceed 30°, The actual value is 30.37°. This should correspond to the
maximum slope of almost-limiting gravity waves.

Now independent calculations of the complete profiles of steep solitary waves
have been made both by Sasaki and Murakami (1973) and by Byatt-Smith and Longuet-
Higgins (1976). Their values for the maximum surface slope are plotted against <O
in Figure 12, It can be seen that a linear extrapolation of the plotted points passes
very close to the asymptotic value that we have obtained independently.

T T 1 !
MAXIMUM SLOPE OF SOLITARY WAVES
30’ o
7
G BYATT-SMITH AND LONGUET~HIGGINS (1976) ‘
+
+ SASAKI AND MURAKAMI (1973)
28°|- R _
e ASYMPTOTIC PROFILE °
smax
®
26 d
(o)
(o)
+ .
24’ o -
o]
(o)
22 -1
(o)
+
° A4 1 | 1
20 08 w 09 70

Figure 12. (frgm Longuet-Higgins and Fox, 1976 ). The maximum surface slope of steep
solitary waves, as a function of the parameter <) , The limiting value at
> = 1 corresponds to the profile of Figure 11,
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FPigure 13 shows a similar comparison for periodic waves in deep water. The
agreement is again very close,

i i 1
| MAXIMUM SURFACE SLOPE -
OF DEEP-WATER WAVES )
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+ SASAKI AND MURAKAMI (1973) il
30 /// -
® ASYMPTOTIC PROFILE Pid
Qnax
20° - .
1 1 1
0.96 0-98 w’ 1:00

Figure 13. (from Longuet-Higgins and Fox, 1976 ). The maXimum surface slope of
progressive waves in deep water, as a function of the parameter ¢J .

The acceleration of a fluid particle at the wave crest is given by

ve

y = ~a®/R
where R is the radius of curvature. From the present profile this is found to be
0,39 g. In the far-field, as r/¢ - 0o , the acceleration tends tc the value ¥ g

directed radially outwards, as in the Stokes corner-flow.

453
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7. IMPROVEMENT IN THE CAICULATION OF STEEP GRAVITY WAVES

The maximum slope will in theory exceed 30° only for very steep, symmetric waves
and in a limited region near the crest, which may be affected by instabilities, wind
pressures and surface tension. Nevertheless the asymptotic solution found in Section
6 may have practical uses. At present the only accurate calculations of steep,
symmetric gravity waves have been obtained by mathematical tour-de-force, either by
carrying small-amplitude expansions to very high order or by numerical technigques, such
as Fourier series or integral equations, which involve lengthy and complicated numeri-
cal schemes. The main value of the asymptotic solution just described is that it may
be used as an inner solution, valid near the wave crest, and matched asymptotically to
an outer solution representing the flow in the remainder of the wave.

The appropriate matching has already been carried out for periodic waves in deep
wvater by the present author and M,J.H. Fox (1976). As a sample of their results,
Figure 14 shows a comparison of the square of the wave speed c? plotted against the
wave steepness., The peculiar shape of the top of the velocity curve is accurately
checked, showing that it is certainly not due to soine quirk of the Padé approximants.

Such an approach thus promises to simplify our calculations of steep, symmetric
waves, and to improve our understanding of them,

1.2

11

. I ! e | ) i ! L
1 00 0-5 w 1-0

Figure 14, Square of the velocity ¢ for progressive waves in deep watexr, as a
funciion of & . The plotted points correspond to the values
obtained from Padé sums (Longuet-Higgins, 1975; see also Figure 9),
The curve is found independently by matching the asymptotic solution
in Section 6.
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8. A METHOD FOR CALCULATING UNSTEADY SURFACE WAVES

In natural conditions the occurrence of a steady, siteep wave is somewhat
exceptional, Even symmetric waves tend to become unsteady and asymmetric long before
their energy reaches the theoretical maximum. However, a new and general method for
calculating the development. of an unsteady wave has recently been given by Longuet-
Higgins and Cokelet (1976). So far it has been applied only to waves in deep water
but it could readily be extended to waves in water of finite depth.

Y

Figure 15, Axes and notation for space-periodic waves in deep water,

The motion is assumed to be irrotational and periodic in space (see Figure 15)
though not generally periodic in time. All calculations are carried out with the
surface values of the space coordinates (x, y) and of the velocity potential
For the ratles of change of these quantities one has

=%§ (8.1)

%%:_p_gy+%(7¢)2

EN

where D/Dt denotes differentiation following the motion. The last (’quZ\thIl follows
from the time-dependent Bernoulli equation and the fact that D¢ /Dt = a¢ ¢ + (V}é
Hence, given the surface values of x, y, and V at some instant t on the

surface C(t) one can calculate x, y and 9!) at time (t + dt) on the displaced surface
c(t + at).

To proceed to the next time-step we need to know both components of the velocity
on C(t + dt), We can obtain the tangential component o¢ /3 s immediately, by
differentiating ?(t + dt) along the new surface. However we still lack the normal
component of velodity 3}5/3" on C(t + dt).

Now because of the space-periodicity we can transform C into a closed contour C!
(Figure 16) simply by writing

Gikl(x + diy) _ § ) (k = 2%/L) . (8.2)
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Figure 16, One wavelength in the (x, y) plane transformed to a closed domain in
the Y -plane.

N . ; . H
The domain of the fluid goes into the interior of C and the points at infinite depth
go into the origin §' = 0 . We then have to solve, in effect, the well-Known
Dirichlet problem, namely to find 3?5/ 2n on a contour C'!', given f on ¢! and

2
775 -0 (8.3)

everywhere inside C!',

This problem can be solved as follows (see Figure 16). Let (f?, & ) denote the
polar coordinates of a running point P on the boundary, relative to a fixed point Q,
also on C', Then it follows from Green's theorem that

\/;, 33‘?9 b R Lo = W‘ﬁ@ + fC,¢P & o¢ (8.1)

where in the right-hand integral we take the principle value, Since ¢ is known
everywhere on C', the right-hand side is given, and equation (L;.L;) is then a linear
integral equation for 8¢/ dn , with given kernal 1n K . Solution of this
equation gives us 6¢/QV\ on C(t + dt), and the time-stepping can proceed,

Numerical solution of equation (8.4) has been carried out by Longuet-Higgins and
Cokelet (1976) replacing the boundary by a finite number N of integration points.
Typically N = 60 for one wavelength. Details of the method, which are vital for its
accuracy and success, are given in their paper. The method was first tested for
accuracy on a free symmetric wave of finite amplitude for which the form and phase-
velocity were calculated independently by the method of Section 5, and good agreement
was obtained, Then the following experiment was performed., As initial state was
chosen a progressive wave of fairly large amplitude, whose energy was 0,80 times the
max imum Emax for a steady symmetric wave of that wavelength, The energy was then
raised by applying to the surface (numerically) a pressure of the form

p, sin (kx - ot) sin ot, (0 &t < T )
p = (8.5)
0 (ot<Q and ot > T )

through the boundary-conditions (8.1). This represented a sinusoidal distribution of
pressure, in qguadrature with the fundamental harmonic of the surface elevation,
increasing and dying away smoothly over half a wave period ( W/« ). After the
surface pressure had fallen to zero, the wave was supersaturated, that is its level
exceeded E . It was then allowed to run tree. Its subsequent development can be
followed igaxFigu.re 17.
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Figure 18 gives a close-up view of the free surface near the instant of over-
turning. The figure shows successive positions of the free surface (actually every
3 time—steps) in a frame moving with the speed ¢ of infihitesimal waves, The plotted
points refer always to the same marked particles? so that a line through a succession
of points defines a particle trajectory, in this reference frame,

628

509

<400

_.____._._{,_“ _____ N—
4.73 (’?m-alf)

o
)

Figure 18. {from Longuet-Higgins and Cokelet, 1976). Successive profiles of the
free surface near the instant of overturning, seen in a reference
frame moving with speed €+

The particles have a welcome tendency to congregate near points of high surface
curvature, which is precisely where they are needed for computational accuracy,

It will be seen that the crest remains rounded until well past the instant when
the surface becomes vertical, Thereafler the curvature near the tip of the breaker
increases rapidly. The free surface can be followed by this method only so long as
the separation between adjacent particles does not exceed a fraction of the local
radius of curvature. The question whether the curvature becomes infinite in finite
time cannot be decided by this method.
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