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1 .       INTRODUCTION 

The   s ight   and   sound   of  breaking waves   and   surf   is   so   familiar   and   enjoyable   that 
we   tend   to   forget   how   little   we   really   understand   about   them.      Why   is   it,   that 
compared   to   other branches   of wave   studies   our   knowledge   of  breaking waves   is   so 
empirical   and   inexact? 

The   reason  must   lie   partly   in  the   difficulty   of   finding a precise mathematical 
description   of  a   fluid   flow   that   is   in   general   nonlinear   and   time-dependent.      The 
fluid   accelerations   can no   longer  be   assumed   t o  be   small   compared   t o   gravity,   as   in 
Stokes's   theory   for   periodic   waves   and   the   theory   of  cnoidal  waves   in   shallow   water, 
nor   is   the   particle   velocity   any   longer   small   compared   to   the   phase   velocity. 

The   aim  of   this   paper   is   to   bring   together   s ome   recent   contributions   to   the 
calculation both   of   steep   symmetric   waves   and   of   time-dependent   surface   waves.      These 
have   a bearing  on   the   behaviour   of whitecaps   in  deep water   and   of   surf   in  the   breaker 
zone . 

Since   spilling breakers   in  gently   shoaling water   closely   resemble   solitary  waves, 
we   begin with   the   description   of   solitary  waves   of   limiting amplitude,   then  discuss 
steep waves   of  arbitrary  height.      The   observed   intermittency   of whitecaps   is 
discussed   in   terms   of   the   energy   maximum,   as   a   function   of wave   steepness,      In 
Sections   6   and   7   a   simpler  description   of  steady   symmetric   waves   is   proposed,   using 
an   asymptotic   expression   for   the   flow   near   the   wave   crest.       Finally  we   describe   a 
new   numerical   technique   (MEL,    or  mixed  Eulerian-Lagrangian)   with  which   it   has   been 
found   possible   to   follow  the   development   of  periodic   waves   past   the   point   when   over- 
turning  takes   place. 

2.      THE   LIMITING   SOLITARY   WAVE 

A   simple   and   very   accurate   approximation  to   the   limiting   solitary  wave   has 
recently been  given by   Longuet-Higgins    {197k).      If x   and   y   are   horizontal   and   vertical 
coordinates   and  h   the   undisturbed   depth   of water,    then  the   surface   profile   on   one   side 
(x >0)   is   approximated  by 

y/h   = Ae~*x/h   +   Be-^/h (2.1 ) 

The constants A, B and A , (i. are determined by the conditions, first, that the 
particle at the crest moves with the phase-speed c = FVgh.  So from Bernoulli's 
equation, 

y/h = ^F2 {X = 0),        (2.2) 

Secondly,   the   angle   of   inclination  at   the   surface   is   -30°,   so 

dy/dx   =   -1/VT (x   =   0)# (2.3) 
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We know th. 
(x •+ OO ) the pr 

irdly (see Lamb, 1932  y"  252), that in the outer fringe 
the profile behaves asymptotically like e~ *• , where 

s   of   the  wave 
symptotically 

tan X 
(2.2,) 

exactly.      This   is   satisfied  by   (2,0)   if   0 <A<   P-.      Fourthly we   have   Starr's   exact 
relation 

3V/g   =    (F2    -   1)   M (2.5) 

where   V   is   the   potential   energy  and  M   the   mass: 
v/s   =     j     ib^dx, M   =     j    y   dx; 

-00 _oo 
and   lastly an  exact   relation 

J f(l    +  y/h)(l    -   2F~2y/h)^(l    +   dy/dx2)^   -   1_j   dx   =   0        (2.6) 
-00 

proved   by   Longuet-Higgins    {'\91h) •     Equations   (2.2)   to   (2,6)   are   five   relations   to 
determine   the   constants  A,   B,    A     ,    \i  and   F,   giving 

A   =   1.5389, A   =   1.Oi+95 
B   =   -.7093, (i   =   1 .^630 

F2   =   1 .6592. 
(2.7) 

The resulting profile, plotted in Figure 1, agrees numerically with that given by 
Yamada (1957) to within 1$ everywhere, and generally to within 0.2$. 

Figure 1.  (from Longuet-Higgins , 1 97-!+) .  The profile of the highest solitary wave 
as given by equation (2.1) (solid line) compared with the numerical 
calculations of Yamada (1957) (circles) and Le.nau (1966) (crosses). 
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3.      SOLITARY   WAVES   OF ARBITRARY   HEIGHT 

The   properties   of   solitary waves   of  arbitrary  amplitude   a   in water   of  undisturbed 
depth  h   have   been   studied   in   two  recent   papers   by   Longuet-Higgins   and   Fenton   (197U) 
and  by  Byatt-Smith   and   Longuet-Higgins   (1 976)   using  quite   different   methods. 

It   is   convenient   to   define   a   parameter     CO      for   the   family   of   solitary  waves   by 
the   equation 

CO   '=   1 q2/gh 

where q is the part icle-speed at the wave crest, in a frame of reference moving along 
with the phase-speed.  For waves of small amplitude, q = *J "gh so CO     is small, whereas 
for limiting waves q vanishes, so  6J  = 1.  In general 

and the complete range of ^O      is 

0 < 6J^ 1 

precisely known. 

(3.1) 

Figure 2 shows a succession of wave profiles, computed precisely for moderate 
values of 03    .      The height of the waves increases monotonically with Oj   .  This is in 
qualitative agreement with the approximate Rayleigh-Boussinesq theory, in which 

1 ch*(^t(x) 

Co (F2 2a/h) 4 I*2 >= a/h (3.2) 

and CO  increases almost linearly with a/h.  As the wave height increases, so the 
horizontal width of the profile decreases, like 1/x or (a/h)"*.  This implies that 
successive profiles must intersect each other, and from Figure 2 it is clear that as 
the amplitude increases, so the point of intersection gradually moves in towards the 
wave   crest. 
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Figure 2.  (from Byatt-Smith and Longuet-Higgins, 1976),  Profiles of solitary waves 
at moderate values of the parameter CO 
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At finite values of the wave steepness the acceleration near the crest becomes 
comparable with g and the approximate Rayleigh-Boussinesq theory is no longer valid. 
An exact theory was however calculated by two methods.  In Longuet-Higgins and Fenton 
(197k)   the Rayleigh-Boussinesq theory was treated as the first term in an infinite 
series in powers of CO , which was carried to high order and then summed by rational 
approximants (Fade sums).  All integral properties converged, up to and including 
CO     =   1, and from these it was possible to calculate also the dimensionless phase- 
speed F. 

Figure 3 shows the dimensionless phase-speed calculated by means of Pade sums, 
and plotted as a function of the wave steepness a/h.  After increasing steadily with 
a/h.,   F reaches a maximum and then actually decreases at higher values of a/h.  The 
maximum speed F = 1.29Z| occurs when a/h = 0.790, whereas the speed of the highest 
wave is only F = 1.286. 

The presence of a maximum in the phase-speed is at first sight surprising, since, 
it implies that over a certain range of steepnesses there can exist two distinct soli- 
tary waves in the same depth of water, having the same phase-speed.  The reason becomes 

Figure 3.  The dimensionless phase-speed F = c/  gh for solitary waves, as a function 
of the relative crest height a/h. 
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Figure It.  (from Byatt-Smith and Longuet-Hlggins, 1976).  The form of steep solitary 
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Figure 5.  Comparison of the profiles of two steep solitary waves (CO  a: 0.90 and 0.96). 
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apparent from Figure If.  This shows some accurately calculated profiles near the wave 
crest, from  CO  = 0.90 to   GO = O.96.  Evidently the trend begun at the lower wave 
amplitudes in Figure 2 continues, and as  GO  increases the point of intersection 
moves up close to the wave crest.  The situation is shown more clearly in Figure 5, 
from which it will be seen that the higher of the two waves, corresponding to 
CO    =   O.96 actually lies below the lower wave ( 6J = O.90) over most of the wave 
profile.  This implies that the average elevation of the higher wave is actually less 
than that of the lower wave. 

Now Starr's exact relatio (2.5) can be written in the form 

(F2 1 ) =|?A (3.3) 

where y is the average surface elevation, defined by 

y   = J    y2dx/J  y dx (3-4) 
._ 00 —to 

So if y decreases as CO      increases, so also must F decrease, by equation (3.2). 

Although the completeness of the Rayleigh series was questioned by Witting (1975)» 
nevertheless the existence of the maximum speed has been confirmed by a quite different 
method of calculation based on the integral equation of Byatt-Smith (1970) for soli- 
tary waves.  In his first paper, Byatt-Smith took the phase-speed F as an independent 
parameter in the integral equation, and from it calculated the wave height and profile. 
He was unable to obtain solutions with F greater than about 1.29^, and in this 
neighbourhood convergence was slow.  The explanation is apparently that in this 
neighbourhood a small change in F corresponds to a large change in the profile.  But 
in a second paper (Byatt-Smith and Longuet-Higgins, 1976)  03    was taken as 
independent parameter, and the wave speed F as dependent variable.  The solutions 
converged rapidly and the maximum in F was verified (see Figure 6), 

1-295 
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Figure   6. (from Byatt-Smith and Longuet-Higgins, 1976).  The dimensionless phase- 
speed F at high values of fa    ,   calculated by two different methods. 
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k.      WAVES ENTERING SHALLOW WATER 

In addition to the maximum in tlie phase-speed, Longuet-Higgins and Fenton (19V+) 
also found maxima in the mass, momentum and energy of solitary waves, as a function of 
a/h or of CO   (see Figure 7).  This has implications for waves entering gradually 
shoaling water.  For, in the absence of appreciable dissipation, the energy E  of a 
solitary wave might be expected to remain a constant.  As the•mean depth h diminished, 
the dimensionless energy E = E /ogh3 would be expected to increase, at first.  So, 
provided the wave remained symmetrical it would be represented by a point travelling 
up the curve in Figure 7, with both E and a/h increasing. 

Before the maximum value of E is reached, however, the wave must leave the energy 
curve, which it generally does by becoming unsymmetrical and then spilling or plunging 
forwards (see Section 8).  If it plunges heavily, it becomes radically altered.  But 
if it spills gently, it may thereby dissipate enough energy to travel on down the curve 
more or less as a symmetric wave damped by a whiteca.p on the forward face.  This 

Figure 7,  (from Longuet-Higgins and Fenton, 1970.  The normalised mass M, momentum I 
and energy E of a solitary wave, as a function of the relative height a/h. 
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presumably is a spilling breaker, for which a theory has recently been given by 
Longuet-Higgins and Turner (197^4)-  In their model, the whitecap was represented as a 
gravity-current, of density  p'  less than unity, riding down the forward face of an 
irrotational wave and exchanging mass and momentum by entrainment across the inter- 
face .  Calculations showed that the flow could exist provided that   P' / e>      was of 
order 0.7 (similar to the ratio observed in hydraulic jumps) and that the surface 
slope exceeded an angle of about 20°. 

In this model, however, and also according to observation, the length of the 
whitecap tends to increase continually*, so producing a disproportionate damping of 
the wave.  What hatmens when the point in Figure 7 reaches the right-hand edge of the 
graph, representing the steepest symmetric wave?  Longuet-Higgins and Penton (1974) 
suggested that it may jump back to a point lower down the curve, representing a wave 
with almost the same mass and momentum, but with a slightly lower energy.  This wave 
would have a rounded crest and a lower value of a/h.  The process might then be 
repeated. 

Some support for this suggestion comes from an analysis of the film of shoaling 
solitary waves made by Kjeldsen and Olsen (197i)-  Measurements of the length I        of 
the whitecap as a function of the time t (see Figure 8) show- that it increases not 
continuously but in a series of jumps.  At each jump, the crest becomes rounded and a 
part of the whitecap is lost by being left behind the travelling crest.  The remnant 
appears on the near face of the wave as a patch of aerated water, which quickly 
subsides. 
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Figure 8.  (from Longuet-Higgins and Turner, 1974).  Measurements of the length I     of 
the whxtecap on shoaling solitary waves as a function of the time, showing 
intermittency. 

*No allowance was made in this 
through the upper surface. 

del for loss of buoyancy by air bubbles rising 
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PERIODIC WAVES 

For progressive waves in deep water, it has been shown by Schwartz (197k)   that 
the well-known Stokes expansion in powers of the first harmonic a , which is satis- 
factory at low wave amplitudes, fails to converge at larger wave amplitudes, short of 
the highest.  This is because the waves become markedly non-sinusoidal, developing 
narrow crests and broad troughs, and the amplitude a  of the first harmonic in fact 
reaches a maximum and then diminishes before the highest wave is reached.  So for 
steepnesses greater than about 0,1 even the higher-order Stokes expansions are 
divergent and misleading. 

Schwartz (I97ii) overcame this difficulty by using as expansion parameter the wave 
steepness H/L itself, which increases monotonically throughout the range of possible 
waves.  However, the limiting value of H/L is not accurately known a priori.  As an 
alternative Longuet-Higgins (1975) used the parameter 

6J (5.1) 

where q and q' denote the particle speeds at the crest and trough, in a frame moving 
with the wave, and where c and cQ are the wave speed and the speed of infinitesimal 
waves respectively.  This parameter is similar to (3.1 ) and indeed reduces to (3.1) 
when the depth is finite and the wavelength infinite.  The range of cO      is from 0 to 
1, the value 1 corresponding precisely to the highest wave. 

0-2 

Figure 9.  (from Longuet-Higgins, 1975).  The square of the wave amplitude a and wave 
speed c for progressive waves in deep water, as a function of "the 
parameter Co   (equation 5.1).  The units are chosen so that g - 1 and 
the wavelength L = 2 7T  .  The wave steepness H/L equals a/'7f . 
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By using Pade sums, Longnet-Higgins (1975) obtained convergence up to and 
including the highest wave ( 63    = 1).  Precisely similar effects as for solitary waves 
namely maxima in the speed, energy, momentum, momentum flux, etc., as functions of the 
wave steepness, made their appearance (see Figure 9). 

This result is particularly significant since the Stokes series (with OJ      as 
parameter) is formally quite different from the Rayleigh-Boussinesq series for the 
solitary wave.  Yet for Stokes's series no question of completeness arises, since 
Levi-Civita proved actual convergence, for waves of sufficiently small amplitude. 

More recently, Cokelet (1976) has calculated and tabulated the speeds, momenta 
and other integral properties of symmetric gravity waves of arbitrary amplitude and 
in waves of arbitrary depth h.  His method is to use the general Stokes series for 
waves in finite depth, with an expansion parameter similar to (5.1 ) .  For all ratios 
of the wavelength to depth, he finds maxima in the phase speeds as a function of the 
wave steepness.  There are maxima also in the momentum, momentum flux, energy and 
energy flux.  These accurate calculations may be of considerable use for practical 
purposes. 

ASYMPTOTIC SHAPE OF WAVE CREST 

The wave crests in Figure 5 suggest that as CO -*- 1 the profile approaches the 
120° corner-flow predicted by Stokes.  But when cO < 1 » and while the crests are 
still rounded, is there any smooth asymptotic form which the free surface assumes in 
some neighbourhood of the crest?  A natural length-scale for such an asymptotic form 

y/« 

CRESTS OF   STEEP     SOLITARY   WAVES     (SCALED) 

I- <t*/23 -ih(l-w) 

•x/« 

 ASYMPTOTIC    PROFILE 

Figure 10.  The crests of steep solitary waves (from Figure 5) after rescaling by 
_£ = q2/kg,   where q is the particle speed at the crest. 
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the length 

q2/2 (6.1) 

where q denotes the particle speed at the crest in the frame moving with the wave. 
Comparison with equation (3.1 ) shows that £.       is directly related to  £J>  by 

ih(l - W ). (6.2) 

As a test of the conjecture, Figure 10 shows the same wave profiles as in 
Figure 5 ( 03    =   0. 90 to 0. 9^1 ) now drawn on the new scale Jl_    .  When  6J  approaches 1 
they do indeed tend to fall along- the same curve . 

To define our limiting flow we may take radial coordinates (r, \j   ) with the 
origin 0 at a distance   .£  = q2/2g above the wave crest, and with the line 0=O 
vertically downwards.  The Bernoulli condition at the free surface is then 

dX 2gr cos I 

where   X   =    ih  +   i %r   is   the   complex   velocity   potential   and   z   =   re 
solution  which   as   r/H -> 00       tends   to   ttie   Stokes   corner-flow: 

2     \  1/2. 
T e z r^oo,     |&Kf  . 

(6.3) 

We   require   a 

(6.2,) 

This   problem has   been   solved   numerically   in  a   recent   paper  by   Longuet-Higgins   and 
Fox   (1 976) .      The   resulting  profile   is   shown   in Figure   11    (and   als o  by  the   broken   line 
in  Figure   10).      Not   unreasonably,   the   free   surface   crosses   its   asymptote   at   about 
r/&•       -   3.32   and   then  approaches   it   very   gradually   from   the   outside.      It   can be   shown 
analytically   that, for   large   values   of r/&      the   normal   displacement     n        of   the 
surface   from   the   straight-line   asymptote   must   have   the   form 

n/i   ~   K(   il/r)^  cos £(3|i/2)   In r   -   gj (6.5) 

are amplitude and phase constants and [L   is the posi.tive root of the where K and £ 
equation 

2 
tanh Jii (6.6) 

IT 
247J 

In fact K = 0.60,  e-      =   0.h7   and \x  =   0.711,.  This means that the free surface 
approaches its asymptote in a very slowly damped oscillation.  There is a second 

"" .5, crossing   of   the   asymptote   at   r/JL third   at   r/ -L      =   1286,   and   so   on. 
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Figure   11.      (from  Longuet-Higgins   and   Fox,   1976a).      The   asymptotic   profile   of   the 
crests   of  a   steep   gravity wave,   on  a   scale       ,£.     =   q2/2g. 



452 COASTAL ENGINEERING-1976 

The results can be checked not only by a direct comparison with the profiles of 
wave crests calculated independently (such as in Figure 10) but also by a consideration 
of the maximum surface slope.  Prom Figure 11 it will be seen that between the two 
crossings of the asymptote at r/ Jl      =3.32 and r/-^  =68.5 the maximum angle of slope 
must slightly exceed 30°.  The actual value is 30.37°.  This should correspond to the 
maximum slope of almost-limiting gravity waves. 

Now independent calculations of the complete profiles of steep solitary waves 
have been made both by Sasaki and Murakami (1973) and by Byatt-Smith and Longuet- 
Higgins (1976).  Their values for the maximum surface slope are plotted against ^ 
in Figure 12,  It can be seen that a linear extrapolation of the plotted points passes 
very close to the asymptotic value that we have obtained independently. 
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Figure 12.  (from Longuet-Higgins and Pox, 1976 ).  The maximum surface slope of steep 
solitary waves, as a function of the parameter 1X1   .      The limiting value at 
o> = 1 corresponds to the profile of Figure 11, 
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Figure 1 
agreement is 

3 shows a similar comparison for periodic waves in deep water. 
again very close. 

_   MAXIMUM   SURFACE   SLOPE 
OF   DEEP-WATER  WAVES 
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Figure   13.       (from Longuet-Higgins   and  Fox,    1976   ).      The   maximum   surface   slope   of 
progressive   waves   in deep water,   as   a   function   of   the   parameter     oj 

The   acceleration   of   a   fluid   particle   at   the   wave   crest   is   given  by 

y = -q2/R 

where   R   is   the   radius   of   curvature.      From  the   present   profile   this   is   found   to  be 
0.39     g.      In   the   far-field,   as   r/ll ^ &e>     ,   the   acceleration   tends   to   the   value   4~ 
directed   radially   outwards,   as   in   the   Stokes   corner-flow. 
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7,  IMPROVEMENT IN THE CALCULATION OF STEEP GRAVITY WAVES 

The maximum slope will in theory exceed 30° only for very steep, symmetric waves 
and in a limited region near the crest, which may be affected by instabilities, wind 
pressures and surface tension.  Nevertheless the asymptotic solution found in Section 
6 may have practical uses.  At present the only accurate calculations of steep, 
symmetric gravity waves have been obtained by mathematical tour-de-force, either by 
carrying small-amplitude expansions to very high order or by numerical techniques, such 
as Fourier series or integral equations, which involve lengthy and complicated numeri- 
cal schemes.  The main value of the asymptotic solution just described is that it may 
be used as an inner solution, valid near the wave crest, and matched asymptotically to 
an outer solution representing the flow in the remainder of the wave. 

The appropriate matching has already been carried out for periodic waves in deep 
water by the present author and M.J.H. Fox (1976).  As a sample of their results, 
Figure 1^ shows a comparison of the square of the wave speed c2 plotted against the 
wave steepness.  The peculiar shape of the top of the velocity curve is accurately 
checked, showing that it is certainly not due to some quirk of the Fade approximants. 

Such an approach thus promises to simplify our calculations of steep, symmetric 
waves, and tc- improve our understanding of them. 

Figure 1i,.  Square of the velocity c for progressive waves in deep water, as a 
function of  6J  .  The plotted points correspond to the values 
obtained from Pade" sums (Longuet-Higgins , 1975; see also Figure 9). 
The curve is found independently by matching the asymptotic solution 
in Section 6. 
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8.  A METHOD FOR CALCULATING UNSTEADY SURFACE WAVES 

In natural conditions the occurrence of a steady, steep wave is somewhat 
exceptional.  Even symmetric waves tend to become unsteady and asymmetric long before 
their energy reaches the theoretical maximum.  However, a new and general method for 
calculat ing the development. 
Higgins and Cokelet (1976). 
but it could readily be exte 

f an unsteady wave has recently been given by Longuet- 
So far it has been applied only to waves in deep water 

nded to waves in water of finite depth,, 

Figure 15.  Axes and notation for space-periodic waves in deep water. 

The motion is assumed to be irrotational and periodic in space (see Figure 15) 
though not generally periodic in time.  All calculations are carried out with the 
surface values of the space coordinates (x, y) and of the velocity potential d> , 
For the rates of change of these quantities one has 

Dx _ ^p 
Dt ~ ~Jx 

B<(>   = 

Dt i(7<f> V 

where D/Dt denotes differentiation following the motion.  The last equation follows 
from the time-dependent Bernoulli equation and the fact that D^)/Dt = 9. <f> / <? t + (Vf>) 
Hence t given the surface values of x, y,  ch     and  J7"c6   at some instant t on the 
surface C(,tJ one can calculate x, y and  rf>   at time (t +   dt) on the displaced surface 
C(t + dt). ' 

To proceed to the next time-step we need to know both components of the velocity 
on  C(t + dt).  We can obtain the tangential component  9CD /3s immediately, by 
differentiating  (£)(t + dt) along the new surface.  However we still lack the normal 
component of velocity  cx£/~dY\      on c(t + dt) . 

Now because of the space-periodicity we can transform C into a closed contour Cr 

(Figure 16) simply by writing 

ik(x + iy) 
$, (k   = 2T/L) . (8.2) 
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Figure   16.      One   wavelength   in   the   (x,   y)   plane   transformed   to   a  closed  domain   in 
the       "t"   -plane . 

The   domain   of   the   fluid   goes   into   the   interior   of C   and   the   points   at   infinite   depth 
into   the   origin        £"    =   0   .      We   then have   to  solve,   in effect,   the   well-known 

Dirichlet   problem,   namely  to   find      c3><p/'dn     on a   contour C',   given C   and 

(8.3) 

everywhere   inside   C'. 

This problem can be solved as follows (see Figure 16). Let ( r\ , (*" ) denote the 
polar coordinates of a running point P on the boundary, relative to a fixed point Q, 
also   on C.     Then   it   follows   from Green's   theorem  that 

^    f^     -***<**     -       *£,     +    SC,0P   ** (8.4) 
where in the right-hand integral we take the principle value.  Since <p       is known 
everywhere on C, the right-hand side is given, and equation {k-k)   is then a linear 
integral equation for  <) <I> / c> n , with given kernal   In f?  ,  Solution of this 
equation gives us   offl/3n  on C (t + dt ) , and the time-stepping can proceed. 

Numerical solution of equation (8.^) has been carried out by Longuet-Higgins and 
Cokelet (1976) replacing the boundary by a finite number N of integration points. 
Typically N = 60 for one wavelength.  Details of the method, which are vital for its 
accuracy and success, are given in their paper.  The method was first tested for 
accuracy on a free symmetric wave of finite amplitude for which the form and phase- 
velocity were calculated independently by the method of Section 5, and good agreement 
was obtained.  Then the following experiment was performed.  As initial state was 
chosen a progressive wave of fairly large amplitude, whose energy was 0.80 times the 
maximum E    for a steady symmetric wave of that wavelength.  The energy was then 
raised by applying to the surface (numerically) a pressure of the form 

Ip  sin (kx - crt) sin ct, (0< <y t < IT )    "\ 

t       (8.5) 

0 ( crt < o and <rt > 7T  )     J 

through the boundary-conditions (8.1).  This represented a sinusoidal distribution of 
pressure, in quadrature with the fundamental harmonic of the surface elevation, 
increasing and dying away smoothly over half a wave period ( "K~/ Cf ).  After the 
surface pressure had fallen to zero, the wave was supersaturated, that is its level 
exceeded E   .  It was then allowed to run free.  Its subsequent development can be 
followed inaXPigure 17- 



BREAKING WAVES 457 

Figure 17.  (from Longuet-Higgins and Cokelet, 1976).  Development of a progressive 
wave in deep water.  From (a) to (c) a surface pressure (8.5) is applied 
to the rear face of the wave.  From (d) to (e) the wave is free. 
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Figure 18 gives a close-up view of the free surface near the instant of over- 
turning.  The figure shows success ive positions of the free surface (actually every 
3 time-steps) in a frame moving with the speed c  of infinitesimal waves.  The plotted 
points refer always to the same marked particles, so that a line through a succession 
of points defines a particle trajectory, in this reference frame. 

jft. — .=-%,. 
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Figure 18.  (from Longuet-Higgins and Coke let, 19?6).  Successive profiles of the 
free surface near the instant of overturning, seen in a reference 
frame moving with speed c . 

The part icles have a welcome tendency to congregate near points of high surface 
curvature, which is precisely where they are needed for computational accuracy, 

It will be seen that the crest remains rounded until well past the instant when 
the surface becomes vertical.  Thereafter the curvature near the tip of the breaker 
increases rapidly.  The free surface can be followed by this method only so long as 
the separation between adjacent particles does not exceed a fraction of the local 
radius of curvature.  The question whether the curvature becomes infinite in finite 
time cannot be decided by this method. 
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In practice the tip of the jet will be much influenced both by surface tension, 
which we have neglected, and by air currents.  Both these may cause it to break up 
into spray.  Both effects could possibly be included in the calculation.  The present 
calculat ions were intended to apply only to waves on a sufficiently large scale . 

Though the computation involves only the surface values of x, y and cp , the 
pressure and velocity components in the interior may also be found from the surface 
values, by the use of Cauchy ' s theorem.  The pressure gradients in the tip are small, 
but there is no evidence of a reversed normal gradient of the pressure. 

Because it uses the velocity potential  ©  yet follows marked particles, the 
above technique may be called MEL (mixed Eulerian and Lagrangian).  The example just 
discussed illustrates only one possible application of the general method.  Various 
other initial condit ions might be chosen so as to correspond, for example, t o a 
standing wave, or to a partially reflected wave, or to a mixture of progressive wave 
trains having rationally related wavelengths.  These would constitute a wave group 
with slowly varying wave envelope.  It will be of interest to see how the resulting 
energy and momentum lost in the jet of the breaking wave are related to the different 
initial conditions. 

9•   EXPERIMENTAL CONFIRMATION 

Although the above computations were for deep water, nevertheless one -would expect 
the local behaviour of the wave crest to be asymptotically similar whether in deep or 
shallow water.  To test whether the surface could remain smooth and continuous after 
the tangent became vertical, the author and N.D. Smith, with the collaboration of 
Dr. N. Hogben, made a high-speed film of waves breaking on a 1:6 beach slope, in the 
No. 2 Towing Tank of the National Physical Laboratory at Teddington.  Figure 19 shows 
one frame from a film taken at 500 framee/sec.  The grid-spacing is 5-0 cm.  The film 
confirms that the free surface can indeed remain snooth and rounded until after over- 
turning takes place. 

Figure 19.  Wave breaking on plane beach, slope 1:6. 
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