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ABSTRACT 

An experimental investigation was made to study wave-current 
interaction. Wave amplitude attenuation was measured along a labora- 
tory wave channel to compare wave dissipation with and without flow. 
Mean, wave, and turbulent velocities were also measured to determine 
the modifications of the flow imposed by the gravity waves propogat- 
ing with the current.  The process of energy transfer in the wave- 
current system was studied.  Energy was found to be extracted from 
the waves, diffused downward and dissipated by an increase in bottom 
shear stress. 

INTRODUCTION 

The development of a model to accurately describe the generation 
and decay of ocean surface waves has been a primary objective of 
oceanographers for decades.  In present wave forecasting formulas 
there is far more agreement on empirical wave growth than on wave dis- 
sipation. Numerous studies have dealt with the aspect of laminar 
wave energy dissipation such as the early theoretical work of Lamb 
(1932) and Hunt (1952). Experimentally, a large variety of studies 
have been made relating wave dissipation to near-surface viscous 
effects or to the oscillatory boundary layers.  In real situations, 
waves seldom travel across non-turbulent waters. Thus an account must 
be made of the interaction which results as orbital wave velocities 
work against the shear current and turbulence which likely exist. 

This paper describes a laboratory study of the interaction of 
waves and current as mechanically generated, monochromatic, inter- 
mediate-depth gravity waves propogate on a turbulent open channel 
flow. The two areas of primary concern are: 

1. Wave modification - the change in wave form, mainly wave 
amplitude, resulting in increased wave energy dissipation. 

2. Current modification - the alteration of mean and turbulent 
flow parameters due to the wave interactions, as well as 
changes in the resistance to flow and energy transport pro- 
perties. 
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THEORETICAL ANALYSIS 

In order to create a set of baseline data for wave attenuation 
analysis, it is first necessary to examine wave energy dissipation 
without the effect of channel flow. Hunt (1952) utilized the basic 
laminar wave dissipation equations and integrated the effects of the 
oscillatory boundary losses for the side and bot'tom and derived an 
expression for a wave attenuation modulus, 

2k /v~~ , kb + sinh 2kh -, m 
01 * F~ / 25" L7kh + sinh 2 khJ UJ 

where b is channel width, h is flow depth, k is wave number (2ir/wave 
length), v is kinematic viscosity and a is wave frequency (2ir /period) 
derived from a^ = gk tanh kh. Wave amplitude attenuation is then 
defined by the exponential form 

-ax ,-, 
a = a e (2) 

o 

where a is the initial wave amplitude and a is the attenuated ampli- 
tude at distance x. 

The analysis of the wave-current amplitude attenuation utilizes 
a control volume of unit width bounded by upstream and downstream 
vertical sections, the channel bottom and the free water surface. 
Whitham (1962) applied the concept of the radiation stress (introduced 
by Longuet-Higgins and Stewart (I960)) to the momentum and energy 
flux in water waves. Application of Whitham1s concepts to the case 
of attenuating monochromatic waves propogating on a uniform open 
channel flow begins with the integral momentum equation, 

d r  i... 2.    , .      xx    - (3) 
ar (phum 3 + pghsin 9 + sr = - Tb 

WhereSxx=E^sllh2kh + ^ w 

is the longitudinal component of radiation stress, sin 9 is channel 
slope,  ^, is the mean bottom shear stress, a is wave amplitude, E 
is wave energy density (1/2 pga ), and U is the mass transport 
velocity defined by m 

U = u  + !__ (5) 
m      phc K  J 

where u is mean uniform flow velocity, and c is phase speed. By 
substituting equations (4) and (51 into (3), differentiating and 
retaining terms to the order of a and assuming an exponential wave 
attenuation of the form of equation (2), the resulting equation for 
bottom shear stress is 
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2 r*2 i~l 
tb = pgh sin e + pgaa I - (u + c ) - j\ (6) 

where c is the group velocity defined by 

L   sinh 2khJ 

Note that for 6=0, and u = 0, equation (6) reduces to the form 

xK = pgaa
2 1^ - i-J (8) 

b 

which is just dS /dx.  In other words for the case of waves on 
still water the shear stress on the bottom is balanced by the rate 
of change of the radiation stress. Also note that if 6^0, 
u 7s 0, and a  = 0, or the case of waves propagating on a current with- 
out attenuation, 

xb = pgh sine (9) 

which is the bottom shear stress without waves. 

In the same manner, the equation for the energy flux through 
the control volume is 

d_ 
dx 

fphU 3 - "I 
-        + Pgli U    + S    U    + EU    + Ec        = -D (10) |_    2 6mxxmmgJ 

where D is the energy dissipation defined as dE/dt. Again sub- 
stituting and retaining terms of the order a2 gives the total dissi- 
pation as 

D = pgh sine u  + E %^- + au (1 + ^.) + 2ac (1 + ^)  (11) 

The first term on the right is the energy dissipation due to channel 
flow alone as the product of shear stress and mean velocity. The 
remaining terms represent the additional dissipation due to wave- 
current interaction and will be denoted D .  For the case of no flow, 
u = 0, 6=0, and noting that da/dx = -aa" equation (11) reduces to 

D = c Pgaa2 (12) 

or  D = -c ~ (13) 
g dx 

Thus the energy dissipation in still water is a product of the group 
velocity and the longitudinal wave energy density gradient. 

The above analysis provides a basis for the experimental 
measurements. Terms of equation (11) may be directly measured and 
an estimate may be computed for the total dissipation between suc- 
cessive sections of the channel.  Limitations are imposed by the 
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assumption of a uniform velocity profile and the neglect of side- 
wall losses. Also neglected is the integral effect of the turbulent 
interaction. A possible improvement may be made to the analysis by 
the use of the energy equation derived by Brink-Kjaer and Jonsson 
(1975) which assumes a linear shear profile. 

EXPERIMENTAL APPARATUS AND PROCEDURES 

Figure 1 shows a schematic of the wind-wave facility at Colorado 
State University. The flume is 15.8 m long, 60 cm wide and 70 cm 
deep. Flow was recirculated at a constant depth of 15.2 cm and 
waves were generated by a vertical plunger of the upstream end. Mean 
flow velocities ranged from 15.0 to 60.0 cm/sec and wave frequencies 
varied from 1.3 to 2.5 Hz. 

An initial study of wave attenuation in still water was made to 
compare the experimental results to the theoretical laminar dissi- 
pation of equation (1). Water surface elevations were measured with 
a capacitance probe mounted on a moving carriage. Average or rms 
wave heights were measured at 15 cm intervals along the centerline 
of the 10 m test section. Wave lengths were measured directly by 
longitudinally separating two capacitance probes and observing the 
corresponding Lissajous figure on an X-Y oscilloscope plot.  Integral 
wave locations were recorded when the figure repeated itself. 

Waves were next generated on a series of steady currents and 
wave profiles were measured. Artificial bottom roughness elements 
assured a fully developed turbulent flow. Velocity measurements were 
made with a split hot-film anemometer at various depths in the flow 
field both with and without waves. Simultaneous wave and velocity 
data were digitized and stored on magnetic tape. 

Iterative computer techniques were used to analyze the split- 
film data due to the large intensities of the velocity fluctuations. 
Phase averaging techniques were next used to compute flow quantities 
relative to the average wave profile. Quantities computed at each 
depth included mean velocity, wave velocity, longitudinal and verti- 
cal turbulence intensities, .and turbulent and wave induced Reynolds 
stress. 

To separate the velocity components the instantaneous velocity, 
u., 
~i ~''~i' 
u., and a random component, u. . Thus 

u^x.z.t) = (LCx.z) + ^(x.z.t) + ut (x,z,t)  i = 1,2 (14) 

By first time averaging, the mean signal is removed. The process 
of phase averaging then identities wave induced and turbulent 
velocities as a function of wave phase. Phase averaging is symbolized 
by brackets ( (•> ). 
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WAVE MODIFICATION 

Figure 2 shows three typical mean wave amplitude variation 
curves for waves in still water. Figure 3 illustrates similar mea- 
surements for waves on a flowing channel. The rms amplitudes are 
normalized by the amplitude at the beginning of the test section. 
Reflected wave energy creates the regular variation in rms wave 
amplitude throughout the channel.  In most still water cases the 
pattern obeyed the one-half wave length theory presented by Ursell 
et.al. (1959). For waves on a current the pattern was distorted due 
to the modification of wave parameters by the flow, but a regular 
sinusoidal pattern still existed in the channel. 

Attenuation, or wave energy dissipation is demonstrated by the 
gradual decay of wave amplitude along the channel. The measured 
exponential decay modulus, a  , was calculated by a least squares fit 
of equation (2) to the measured profiles.  It is readily apparent 
that neglecting wave reflection would seriously affect attenuation 
measurements. Figure 4 is a plot of representative measured attenu- 
ation coefficients on still water against the viscous theory of 
Hunt (1952).  In nearly all cases the theory slightly underestimates 
the measured attenuation modulus, a fact that many investigators have 
previously noted (Eagleson (1962), and Grosch et.al. (I960)). 

In order to compare wave attenuation on still and moving water 
it is necessary to analyze the wave-current results from a ref- 
erence system convected with the mean velocity. The results then 
show a reduced relative frequency and decreased fetch.  Figure 5 
shows wave dissipation as a function of wave amplitude on still 
water. Note again that the dissipation is slightly underestimated 
by viscous theory but increases nearly as the square of the ampli- 
tude.  Figure 6 is a similar plot of waves on a current, where D 
is the wage dissipation from the convected reference system, calcu- 
lated from equation (11). Note in this case the large increase in 
wave dissipation due to the wave-current interaction and the 
divergence from the a variation as amplitude increases. Figure 7 
shows the dissipation as a function of wave steepness, ak, with mean 
velocity, u, as a third variable, Steeper waves on the same flow 
are shown to dissipate energy faster, probably due to the added- 
stretching of vortex lines as described by Phillips (1959). 

FLOW MODIFICATION 

Figure 8 illustrates the effect on the velocity profile of 
increasing frequency and amplitude of waves superposed on a constant 
mean velocity. Mean velocities at each relative depth, z/h, are 
normalized by the bulk mean velocity. As the frequency and amplitude 
increase, the mean velocity profile flattens near the surface and 
steepens near the bottom. Equation (16) predicts that T, will 
increase as the wave amplitude and attenuation modulus increase. 
The increase in velocity gradient near the bottom indicates the 
relative increase in average boundary shear. 
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The modification of mean velocity and turbulence quantities 
for a typical run is shown in Figure 9. Dotted profiles are those 
measured without waves. Quantities for the wave-current profiles 
are an average over a wavelength of the phase averaged results. The 
mean velocity profiles indicate a strong interaction with a large 
increase in gradient near the bottom. The local longitudinal and 
vertical turbulence intensities show an increase near the surface 
and relative reduction in the middle regions. The Reynolds stress 

becomes positive near the surface due to the reversal of the mean 
velocity gradient, and its magnitude is lower throughout the depth. 
It is apparent that the interaction of the waves and shear flow 
produce turbulence near the surface and that it diffuses downward, 
likely through the action of wave induced pressure terms. A 
further analysis of the energy transfer mechanism is given in 
van Hoften (1976). 

Local flow characteristics give insight into the magnitude of 
the interaction. Figure 10 shows the longitudinal wave induced 
velocity at various relative depths. Velocity variations are typical 
of intermediate-depth waves with finite velocities near the bottom. 
Figure 11 is a plot of the phase averaged longitudinal turbulence 
intensity and Figure 12 is the turbulent Reynolds stress. Note 
that both exhibit double frequency behavior and both become less 
phase dependent as depth increases. 

One-dimensional energy spectra of the longitudinal velocity 
fluctuation, with and without waves, were computed. Figure 13 
shows spectra computed at four relative depths without waves. The 
inertial subrange where the slope obeys the -5/3 law appears as a 
narrow band due to the relatively low flow Reynolds number (R = 36,900). 
The high frequency portions of the spectra conform closely to the 
-7 slope where viscous effects determine energy transfer. A -1 slope 
at z/h = 0.07 is mildly indicated in the region where Tchen (1953) pre- 
dicts large turbulence production, near solid boundaries. Figure 14 
shows spectra of the total longitudinal velocity (u + u') with waves. 
The large peaks in the plots correspond to the wave induced velocity 
component at 1.88 Hz. Note that relative peaks decrease with depth, 
as the velocity plots from Figure 10 indicate. The spectrum at z/h = 0.95 
appears to have a range of low frequencies where the -1 slope applies, 
representing a production range. Chang and Cheng (1972) studied tur- 
bulent airflow over water waves and predicted that the -1 power law 
should apply from the dominant wave frequency to the lower bound of 
the inertial subrange. The low Reynolds number of the present flows, 
however, prevents an accurate assessment of this concept. 

CONCLUSIONS 

Waves propagating on an open channel flow are shown to be altered 
by a combination of the interaction of the waves with the shear 
gradient and the existing turbulence. The effect is to extract 
energy from the waves resulting in an increased wave attenuation. 
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The flow itself is altered by the superposed waves. The induced 
orbital wave velocities distort the mean velocity profile increasing 
the gradient near the bed. Turbulence energy is produced near the 
surface by the interaction of the wave induced Reynolds stresses and 
the fluctuating velocity gredients. The energy diffuses downward 
where it is dissipated on the bottom by an increase in apparent 
boundary shear stress. 
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Figure 2.  Still water reflection and attenuation profiles 
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Figure 9.    Mean velocity and turbulence profiles with and without waves. 
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Figure 10.  Phase averaged wave induced velocity <u>. 
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Figure 12.  Phase averaged turbulent Reynolds stress <u w >. 
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Figure  13.     Spectra of  longitudinal  velocity,  u,  without waves. 
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