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ABSTRACT 

Most of coastal engineering problems have been studied with monocro- 
matic waves. However, sea waves which arrive at the coast are random. It 
is very difficult to estimate exactly the influence of these random waves 
to coastal structures. Then the model tests in a laboratory wave tank us- 
ing random wave simulation techniques seem to be most desirable way to 
estimate the influence of randomness of sea waves. For this purpose, the 
accomplishment of random wave simulation system, which make possible 
generating random waves having statistically same properties as those of 
sea waves, has long been desired. The authors achieved to establish such 
a new wave simulation system. In this paper, the characteristics of this 
system are demonstrated experimentally through several cases of random 
wave simulations. 

INTRODUCTION 

Random wave simulations are usually perfomed with a random wave gen- 
erator in a laboratory wave tank. Then the important problem is how to 
drive the random wave generator to simulate random sea waves. In other 
words, how to generate random signals by which the random wave generator 
is driven becomes important. There are two ways of generating random sig- 
nals, classifying random wave simulation techniques roughly. One is an 
analog method and the other is a digital method. In both methods, we must 
define at first what kind of properties of random waves should be simu- 
lated. Power spectrum shapes, Gaussian distribution of the water surface 
elevation and Rayleigh distribution of the wave height are well known 
representative properties for random sea waves. Simulated random signals 
must have the above properties at least. Especially the power spectrum 
shape of the simulated random signal must be same as that of sea waves. 
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It is known experimentally that other properties besides the power spec- 
trum shape are almost same as those of sea waves if the power spectrum 
shape of simulated random waves is similar to that of sea waves. So the 
main purpose of random wave simulation is how to simulate the power 
spectrum shape of sea waves. 

The analog method is the electrical simulation technique using band-pass 
filters. Random noise generated electrically is transmitted into a band- 
pass filter unit which is consist of many band-pass filters with slightly 
different central frequencies. Gains of each filter are controlled so as 
to make equal the power of the output signal from each filter to the ini- 
tially specified function in each frequency band. This initially specified 
function will be called as a target spectrum. Output signals from each 
filter are superimposed each other. Then the power spectrum of the output 
signal becomes equal to the target spectrum consequently. Finally this 
signal is transmitted into the random wave generator  0),(2). 

The digital method is usually carried out by means of a digital com- 
puter. Random numbers generated by the computer are averaged using a 
numerical filter with a weighted moving average method. Averaged values 
are converted into analog record by a D-A converter and transmitted into 
the random wave generator. In this method, the procedure for designing 
the numerical filter mathematically, which transforms random numbers to 
random signals of specified properties, becomes important. Usually this 
problem can be deduced to solving Wiener-Hopf's integral equation, which 
is necessary and sufficient conditions that input and output signals must 
satisfy. But this procedure is very complicated and laborious and there 
is no assurance of the existence of an analytical solution in any case 
(3),(4). 

From the fundamental knowledge about the Fourier transformation the- 
orem, the numerical filter can be calculated easily by the reverse Fourier 
transformation of a linear spectrum. This numerical filter does not satis- 
fy Wiener-Hopf's equation. In spite of mathematical discrepancy this 
method has been used frequently for convenience  (5),(6) ,(7). 

Beside these numerical filter methods, the wave superposition method 
has been treated by Borgman (5) and Goda (8). This is the most simple 
method to simulate random waves. But the simulated random waves by this 
method repeat themselves periodically every certain time interval. In 
order to avoid this periodicity several methods have been examined. Goda 
(8) recomended that the number of component waves is more than fifty. 
However, it can be said that when the number of component waves becomes 
so large it takes more time to calculate random signals than by the 
numerical filter method. 

The authors propose herein a new method to calculate numerical fil- 
ters. The procedure of this method is very simple and the numerical fil- 
ter obtained satisfies Wierner-Hopf's equation. 

NUMERICAL FILTER 

The problem to obtain a numerical filter can be deduced to design 
mathematically an optimum circuit system which transforms a white noise 
x(t) to a random wave profile y(t) of desired statistical properties. In 
Fig.l showing a linear circuit system, h(x) and g(x) mean unit impulse 
response functions in the normal and reverse directions of the circuit 
respectively. The relations between x(t) and y(t) are expressed as 
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K0=(°°A(T)   .fO-T)   dT (1) 
JO 

x(.i) = \  ff(r) y(/-r) Jr (2) 
Jo 

Eqs.(l)   and  (2)   can be written as  follows  in  digital  form expressions: 

Vt=S    h,Xt-r      (3) 
r=0 

xi= S gryt-r    (4) 

where x , y , h , g , x   and y   are digitized values of x(t), y(t), 

h(t), g(x), x(t-x) and y(t-T) with a time interval dx. Substituting Eq.(4) 
into Eq.(3) gives 

Vt— S hc 2 g„vt-„-T= I h,   S   Ot-T-nVn 
r=0   n = 0 r-0   n = -oo 

t t-n 
= S      Vn  I  Ot-n-rhr     (5) 
n=-oo   t=0 

Then from the condititon that y  appearing in both sides of Eq.(5) are 

always equal, the following relation is derived: 

i gl-,hr = dt  (*=(), 1, 2, oo)  (6) 
r = 0 

where 6 is  Dirac delta function 

5(=1 (c = 0), 8i = 0  (/=*F0)  (7) 

In Eq.(6), if either h  ( x = 0,1,2, .... ,» ) or g are known, the other 

can be determined easily. But h  and g are not yet defined independently. 

Then other conditions are introduced to define h and g separately. In 
Eqs.(3), (4) and (6), it is impossible to sum up infinitely in real compu- 
tation, then the upper boundary of summation is replaced by a sufficientely 
large number N . Now the white noise having the following characteristics 
is introduced newly as a random input: 

/i[.n] = 0, /<:[.rt.r,-/] = 5r  (8) 

where E[  ] means time averaging procedure. 
If it is assumed that h  ( T = 0,1,2, .... ,N ) are given, g are 

known from Eq.(6). y  ( t = 0,1,2, .... ,<*> ) can be determined by substi- 

tuting the white noise x into Eq.(3). Newly defined white noise x' 

obtained by substituting these y  into Eq.(4) must be equal to x , but 

there are little differences between them, because the upper value of the 
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summation is replaced by a sufficiently large but finite number N in 
Eqs.(3),(4) and (6). Then let us try to obtain h and g which will 

minimize the mean squares of the difference between x and x'. 

D2 = £[(x, -x/)2] = £Cr,2] ~2Elxt x,'] + E[xt'*l 

 (9) 

From Eqs.(3),   (4)   and  (8)   and  the  condition h.   = 0 when  i <  0   ,  Eq.(9) 
can be written as 

»2=l-2 I g< E[xtyi-rl +22 g,gnrr.n 
r=0 r = 0 n = 0 

N       N 
--i-2h0go+ I   S g,gnrr-„ •00) 

where r. ( i = 0,1,2, , N ) are digital values of the autocorrelation 

function of the output y . In order to obtain g. ( i = 0,1,2, .... , N ) 
2      t l 

which minimize D , differentiating Eq.(10) with respect to g. and putting 

each equation to be equal to zero, the following equation can be derived: 

I g,r,-„=h08n 0i=0, 1, 2,-AC)  (11) 

This equation can also be expressed in matrix representation as 

n n >v- 
7'2   '"1   TV1 

•rti 

•rn-i 

••rif-t 

ffo  \ fa>\ 

9i 0 

g% = 0 

\ gri s   0   J 

•C12) 

. rn m-\ rN-2 — n> ) 

As h  appearing in the right hand side of Eq.(12) is still unknown, then 

an attempt to solve the equations except the top dnes including h is made. 
This means to solve the matrix of rank N-l. 

n> n ra rtf-i \ 

r\ r0 n rN-2 

r% ri r0 nv_3 

I rN-l rs-2 7>-3—7'o  j 

ffi/ffo 

g%/g« 

ffs/ffo 

.ffw/ffo 

r3 

rN 

•(13) 

Now  denote   the  solution  of   this matrix by   g!   (   i =   1,2,   ....   ,   N   ),  which 

are   the  ratios   of  g.   to  g     as   seen  in Eq.(13). 

Putting n = 0  in Eq.(ll)   gives 

gon+giri+gir2+ +givrN=lia (14) 

If both sides  of Eq.(14)   are  devided by  g   ,  Eq.(14)   is written  as 
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r0+gi'rt+g2'r2 + ±QN'rN=ho/ga    (15) 

The  left hand side  of Eq.(15)   can be  determined by solving Eq.(13).   Denot- 
ing  the  total summation of Eq.(15)  by q   ,   g    can be expressed as  follows: 

9„ = — 9n' (16) 
1 

Substituting these relations into Eq.(lO), the following equation can be 
obtained: 

iy=i-^  a?) 
i 

2 2 
If q is possitive, D has a minimum value zero when h = q . From Eq.(16), 

g can be finally determined as 

<7o =-L, »„ = —(« = 1, 2, JV) (18) 
•J q V q 

Substituting these g  into Eq.(6), then h  ( n = 0,1,2, .... ,N) can be 
n n 

determined, h are the numerical filters which transforms the white noise 
n 

into random signals of.a target spectrum. 

NUMERICAL SIMULATION 

In this section numerical simulations using the method explained pre- 
viously are treated, and the results are compared with target spectra. 

In addition random wave simulations by the Fourier transformation 
method are compared with those by this method. Two types of numerical 
filters can be defined by the Fourier transformation method. One is a numer- 
ical filter and the other is an asymmetrical one. From the results of numer- 
ical simulations in the preceding study, it was found that the asymmetrical 
filter gives better results than the symmetrical one. Then the results of 
random wave simulations by the newly proposed method herein will be compared 
with those by the asymmetrical filter. 

Random signals by the Fourier transformation method are calculated 
by the relation 

N/2 

yt = I      Wi   <19) 
'   i=-N/2    S 1 

where a. ( i = -N/2, .... ,0, .... , N/2 ) are the numerical filters 
defined""by the sine transformation of a linearized target spectrum. 
Eq.(19) has a similar form to Eq.(3) except lower limit of the summation. 

The spectrum for random sea waves is frequently expressed as 

5(/) = Cl/-"exp(C2r»)  (20) 
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where c , c , m and n are constants determined by wave conditions. This 

equation can be normalized using the peak frequency f and the spectral 

value S(f ) as follows: 
P 

sw)=supXf/fPr• 
•exp{-^[l-(///„)-»]}  (21) 

Values of f and S(f ) used in this numerical simulation are tabulated in 
P       P 

Table-1. Target spectra are determined by substituting these values into 
Eq.(21). Autocorrelation functions are calculated by Wiener-Khintchine's 
theorem. 

By substituting the digitized autocorrelation function into Eqs.(6), 
(13), (15) and (18), numerical filters can be determined. Fig-2 shows the 
examples of the numerical filters tabulated in Table-1. These numerical 
filters transform the random numbers, which have flat characteristics of 
power spectrum density, into the random signals of a target spectrum. 

Fig-3 shows a part of uniform random numbers used in these numerical 
simulations. These random numbers are generated by the mixed congruence 
method using the computer subroutine. Fig-4 shows a part of numerically 
simulated random waves in Case-I-b. 

Fig-5(a)^(d) and Fig-6(a)"v(f) show the plots of the power spectra of 
simulated random waves by the proposed method and the Fourier transforma- 
tion method (dotted lines) with the target spectra (solid lines). It is 
known from these figures that the proposed method gives better results 
than the Fourier transformation method. 

These numerical simulations were perfomed in same conditions. N in 
Eq.(3) and Eq.(19) is 128 and the time interval dx is 0.05 sec. So the 
same degree of accuracy can be obtained by this new method with a smaller 
value of N than by the Fourier transformation method. 

Goda (8) concluded,based on his experimental study that the time 
interval dx is preferable to satisfy the following relation: 

,  „ 0.05 
dT $  —f     • (22) 

P 

This relation is satisfied in all cases. However, dx must be selected not 
so as to be too little because when the time interval becomes small, ft 
in Eq.(3) must be large. It is known from the accuracy of the simulated 
random waves that the moderate size of N is 100 or so and dx is desirable 
to be equal to 0.05/f which is the largest value that satisfies Goda's 
criterion. p 

The numerical filters as shown in Fig-2 must satisfy the following 
Wiener-Hopf's integral equation which is necessary and sufficient condi- 
tions: 

t|)  (x) =     h(a).* (x-a) da   (23) 
xy      Jo       x 

where i|)  is the crosscorrelation function between the input x(t) and the 

output y(t), ty     is the autocorrelation function of the input x(t) and h(o) 

is the filter or weighting function. 
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This  equation  can be  expressed in digital  form as 

E[   x y     ]   -     f    h.E[   xt_T.xt_o   ] ...      (24) 
o=0 

The left hand side of Eq.(24) can be written using Eq.(3) as follows: 

N N 
E[ x   . J h <x   ] = T h -E[ x  -xk   ] (25) 

t-x L
n    s t-s     L

n   s    t-t  t-s 
s=0 s=0 

This is equal to the right hand side of Eq.(24). Therefore, h  ( x = 0,1, 
2, .... , N ) satisfy Wierner-Hopf s integral equation.    x 

RANDOM WAVE SIMULATION SYSTEM 

Fig-7 shows the flow chart of the random wave simulation system. Two 
types of information can be available as an input of this system. One is 
a theoretical expression of the power spectrum or autocorrelation function. 
The other is the power spectrum or autocorrelation of observed sea waves 
or records of water surface itself. This system only needs basically the 
digitized autocorrelation function to simulate random waves. Either power 
spectra or autocorrelation functions can be available, because both are 
related each other by Wiener-Khintchine's theorem. 

If the observed sea surface elevations are sellected as input of this 
system, the right hand side of this flow chart will be used. This part of 
the flow chart is mainly aimed to generate random numbers. Because it is 
a very difficult problem to determine the randomness of sea waves,   this 
part is attached to introduce the randomness in the simulation procedure 
from the observed sea waves. Reverse numerical filter g in Eqs.(4) 

and (6) are used to generate random numbers.    Other procedures are 
the same as those at the left hand side of the flow chart. 

Random waves in prototype must be reduced to a moderate size in order 
to generate in a laboratory wave tank. Usually the Froude similitude law 
is used to reduce the power spectra to a moderate scale. Then this reduced 
power spectrum will be called as a target spectrum. In the next step, the 
target spectrum must be modified because the random wave generator does 
not have flat response characteristics of frequency. Therefore,the wave 
making characteristics must be considered. In this system, Biesel-Suquet's 
theoretical relation between the movement of a wave making paddle and 
generated waves in a wave tank is adopted. Although this relation is for 
periodic small amplitude waves, it will be valid for random waves as the 
paddle movement is small. Fig-8 shows the experimental results for the 
ratio of the component amplitude of random waves to that of paddle move- 
ment. Plotted data agree well with the theoretical relations. Biesel-Suquet's 

theoretical relations shown in Fig-8 are expressed as 

for piston type, 

_H__ _      2 sinh2 /;/; 
2R ~ sinh kh cosh kh+kh   (26) 
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for flatter  type      H „2sinhM   1-cosh kh + khsinhkh 

The modified  target  spectrum S*(f)   will be   defined by 

s*(f>=s(n-iFtm    (28) 

where S(f) is a target spectrum and F(f) the inverse expression of Eq.(26) 
or Eq.(27). 

Pierson-Moskowitz and Neuman spectra are selected to demonstrate the 
feasibility of this system. Target spectra are determined by Eq.(21). f 

and S(f ) of each spectrum are shown in Table-2. Fig-9 shows an example 

of the target spectrum and modified target spectrum. 
Numerical filters were calculated in the same manner as used in the 

former section. Random numbers were averaged with the numerical filter, 
and these averaged values were transmitted into a D-A converter. The out- 
put signal from the D-A converter should be arranged to the smooth signal 
with the low pass filter. Then finally the random signals were transmitted 
into the wave generator. 

Magnetic tapes and data recorders included in Fig-7 are attached to 
store digital and analog signals for future experiments. 

Fig-10 shows the wave tank used in this system. This wave tank is 
27 m long, 50 cm wide and 75 cm deep with glass side walls. At one end 
of this tank a random wave generator is furnished. At the other side of 
the wave tank, a wave absorver is installed and a wave gauge is set at the 
position of 10 m apart from the wave making paddle. Photo-1 and Photo-2 
show the wave tank and random wave generator respectively. 

The random wave generator is of servo-controlled electro-hydraulic 
system. Some typical properties of this wave generator are listed in Table- 
3. The wave generator has two actuators, which are connected with a piston 
type wave making paddle and a flatter type one respectively. Each actuator 
can be controlled independently. When the peak frequency of the target 
spectrum is higher than 1.0 Hz, random wave simulations will be perfomed 
with the flatter type wave making paddle, and if the peak frequency is 
lower than 1.0 Hz, the piston type wave making paddle is used. Furthermore, 
each paddle can be controlled simultaneously with different random signals. 

A band pass filter unit not included in this system with fifteen band 
pass filters of 1/3 oct. frequency band from 0.2 to 5.0 Hz is attached as 
an optional faculty to this random wave generator. Therfor, the random 
wave simulations by an analog method can be made (2). 

Fig-11 (a) ^ (d) and Fig-12 (a) ^ (d) show the experimental results 
of Pierson-Moskowitz and Neuman spectral simulations. The plotted data 
in each figure denote the results of power spectral analysis of water sur- 
face elevation measured by the wave gauge, and the solid lines show target 
spectra. From these figures, it is known that the power spectra of simulated 
waves are very close to the target spectra except in the region of low 
frequency. 

The difference between the data and the target spectra at low frequency 
may be mainly caused by the surf beat which is usually observed in random 
waves near the coast. 

This random wave simulation system aims to simulate a random wave 
spectrum. At the same time,other properties such as probability distributions 
of surface elevation and wave height must resemble those of sea waves. 
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Fig-13 shows some examples of the probability distributions of water sur- 
face elevation of simulated waves for Case-l-b and Case-2-a shown in Table- 
2. Plotted values are slightly skew to the minus side compared with the 
Gaussian distribution shown in a solid line, but this tendency is always 
observed in sea wave data. This is owing to the non-linear characteristics 
of wave motion. 

Fig-14 shows wave height distributions defined by the zero-un-cross 
method for Case-l-b and Case-2-a. Agreement of data with the Rayleigh 
distribution is very well. These results means that the simulated waves 
in a wave tank have the same characteristics as those of sea waves. 

CONCLUSION 

The random wave simulation system has been discussed with several 
cases of random wave simulations in a wave tank. New, simple and accurate 
method to determine the numerical filter in this system has been proposed. 
The numerical simulation of random waves and experiments in a laboratory 
wave tank have shown that this system is very satisfactory. 

There are some restrictions of wave making in extremly low and high 
frequency regions not only for this system but also for a regular wave 
generator, even though the random wave generator adopted in this system 
is much improved so as to equipt two types of wave making paddles. It is, 
therefore very difficult to estimate random waves in wide frequency range, 
for example, random waves of widely separated multiple peaked spectrum by 
a usual random wave generator only. 

The ideal random wave simulation system will be consist of an extremly 
low frequency random wave generator like a tsunami generator and an ordi- 
nary random wave generator and a wind tunnel. 

This random wave simulation system was completed in 1973. Since then, 
more than 40 cases of random wave simulation have been perfomed, and the 
statistical characteristics of random waves,such as distributions of the 
wave period, wave height and wave period and also combined distributions, 
have been studied using these simulated random waves (9), (10) 
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Fig-1       Diagram of  linear  circuit  system 

Table-1       Characteristics  of  target  spectra 

Case No. f 
P 

(Hz) 

S(V m n N 

I -a 0.6 1.0 4 4 128 
I -b 0.6 "1.0 5 4 128 
I -c 0.6 1.0 6 4 128 
I -d 0.6 1.0 7 4 128 

II -a 0.4 1.0 5 4 128 
II-b 0.6 1.0 5 4 128 
II -c 0.8 1.0 5 4 128 
II -d 1.0 1.0 5 4 128 

IH-a 0.8 1.0 5 4 64 
in-b 1.0 1.0 5 4 64 

"T 

0.4 

0.2 

0.0 

-0.2 

-0.4 

iJEIL _ 
I.I.,.,, 

(sec) 
10 

Fig-2       Examples  of  numerical  filters 
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Fig-3       Uniform random numbers 

9  10 

Fig-4  Signals of simulated waves ( Case-I-b ) 
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Table-2       Characteristics  of  target 

spectra used in experiments 

Case No. fp S(f  ) 

(cm2sec) 

m n 

(Hz) 

1-a 0.4 5.0 5 4 
1-b 0.5 5.0 5 4 
1-c 0.6 7.0 5 4 
1-d 0.7 10.0 5 4 

2-a 0.5 2.0 6 2 
2-b 0.6 2.0 6 2 
2-c 0.7 4.0 6 2 
2-d 0.8 5.0 6 2 
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Fig-9       Target  spectrum and 

Modified  spectrum 
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Fig-10       Wave   tank 
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Photo-1      Wave  tank 

Photo-2       Random wave  generator 

Table-3      Typical properties of random wave generator 

^^-^^ 
Maximum  Maximum   Frequency 
power   stroke    characteristics 

Actuator (A) (Piston) 

Actuator (B) (Flatter) 

1.0 ton  ± 10.0 cm  0.01 -v. 10.0 Hz 

0.5 ton  ± 10.0 cm  0.01 -v. 10.0 Hz 
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Fig-11  Power spectra of simulated waves in wave tank 

( Pierson-Moskowitz spectra ) 
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Fig-12  Power spectra of simulated waves in wave tank 

( Neumann spectra ) 
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