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SIX-PARAMETER WAVE SPECTRA 

by 

Michel K. Ochi* and E. Nadine Hubble* 

ABSTRACT 

In an attempt to develop a systematic series of wave spectra 
covering a variety of spectral shapes observed in the ocean, this paper 
presents a newly developed series of wave spectra which involves six 
parameters. In the development of the six-parameter wave spectra, the 
spectra are decomposed into two parts. Each part is expressed by a 
mathematical formula with three parameters, and the total spectrum is 
expressed by the combination of two sets of three-parameter spectra. 
Results of analysis have shown that the six-parameter wave spectra thus 
derived appear to represent almost all stages of development of a sea 
during a storm. Then, from the statistical analysis of 800 spectra 
observed at the North Atlantic Ocean, the values of the six-parameters 
are expressed in terms of significant wave height so that a family of 
spectra for a desired sea severity can be generated. 

INTRODUCTION 

Recent progress in application of statistics to ocean and 
coastal engineering enables us to evaluate responses of ocean structures 
in a seaway at an early design stage by carrying out spectral analysis. 
In applying the linear superposition principle for prediction, however, 
wave spectra in desired seas have to be prepared in advance, and the 
magnitude of responses of ocean structure is significantly influenced 
by the shape of wave spectra for a given sea severity. 

The shape of wave spectra observed in the ocean varies consider- 
ably (even though the significant wave heights are same) depending on 
the duration and fetch of wind, stage of growth and decay of a storm, 
and existence of swell. For example, Figure 1 shows a variety of shapes 
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of wave spectra all of which have the same significant wave height of 
3.5 m (11.48 ft)    (+1%), and wind speeds are between 20 to 25 knots. 
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Figure 1   Variety of wave spectra for significant wave 
height of 3.5 m (11.48 ft) 

As can be seen in the figure, the spectrum JHA 40 has a very 
sharp single peak at the lower frequencies, while some spectra (JHC 
128, NW 23, NW 39) have double peaks. Furthermore, three spectra (JHC 
113, NW 228, and JHC 128) have the same modal frequency of 0.58. Thus, 
even though two parameters (significant wave height and modal frequency) 
are the same, the shape of the spectra are significantly different, 
and this may result in a significant difference in the evaluated magnitude 
of responses of ocean structures. This indicates that additional parameters 
are required for more accurate representation of wave spectra to provide 
useful information for more rational design of ocean structures. 

In an attempt to develop a systematic series of wave spectra 
covering a variety of spectral shapes, this paper presents a newly developed 
series of wave spectra which involves six parameters. 
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In the development of the six-parameter wave spectra, the 
wave spectra are decomposed into two parts—one which includes primarily 
the lower frequency components of the wave energy and the second which 
covers primarily the higher frequency components of the energy. Then, 
each wave spectrum is expressed in a mathematical formula with three 
parameters; i.e., significant wave height, modal period, and shape parameter, 
and the entire spectrum is expressed by a combination of two sets of 
three-parameter spectra. The parameters are determined numerically 
such that the difference between the theoretical six-parameter and observed 
spectra is minimal. 

The six-parameter representation of ocean waves is made on 
a total of 800 observed spectra, and the results are classified into 
10 groups depending on the severity. Then, for each group a statistical 
analysis is carried out on the parameters taking into account the correla- 
tion between them. Finally, the results are presented in a family of 
spectra including the most probable spectrum expected to occur for a 
specified sea state as well as the limiting spectral shapes which may 
occur with a confidence coefficient of 0.95. The values of the six- 
parameters for this set of mathematical spectra are expressed in terms 
of significant wave height so that a family of spectra for a desired 
sea severity can be generated. 

DERIVATION OF SIX-PARAMETER WAVE SPECTRA 

In the development of the six-parameter wave spectra, the 
spectra are decomposed into two parts as illustrated in Figure 2; one 
which includes primarily the lower frequency components of the wave 
energy and the second which covers primarily the higher frequency 
components of the energy. This concept of decomposing the wave spectrum 
into two parts was also proposed by Strekalov et. al. in 1972 in their 
analysis of measured wave spectra [1]. In the present analysis, the 
spectrum of each part is expressed by a mathematical formula with three 
parameters so that the total spectrum is expressed by the combination 
of two sets of three-parameter spectra. 

It may be of interest to note here the shape of wave spectra 
which have been most frequently observed to date. Although numerous 
shapes of wave spectra have been observed, the results of analysis made 
on available data indicate that spectral shapes similar to those shown 
in Figure 3 through 5 have been most frequently observed. In a broad 
sense, the shape of these spectra have a peak at the lower frequencies 
which decreases exponentially to a plateau at the higher frequencies. 
Thus, it is very difficult to express the entire spectral shape in a 
simple mathematical formula. The lower frequency part of the spectra 
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Figure 2   Decomposition of 
wave spectra 
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Figure 3   Example of wave spectrum Figure 4   Example of wave spectrum 
(sig. height 2.89 m, 9.47 ft)       (sig. height 7.47 m, 24.5 ft) 
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Figure 5   Example of wave spectrum 
(sig. height 10.09 m, 33.1 ft) 
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shown in these figures may be well expressed by some currently available 
spectral formulations; however, in the presently existing formula, the 
wave energy at the higher frequencies decreases exponentially with 
increase in frequency and hence the energy at the plateau is not 
represented. Although the wave energy at the higher frequencies is 
usually much less than that at the lower frequencies, its contribution 
to responses of marine vehicles and structures may be significant depend- 
ing on their size and vehicle speed. Thus, it is highly desirable 
to represent the shape of the entire spectrum as closely as possible, 
and this may be achieved by separating the spectra into two parts. 

First, we may derive the three-parameter representation for 
both the low and high frequency part of the spectrum as follows: 

From results of dimensional analysis of ocean waves, Phillips 
has derived the following form of the spectrum of ocean waves over a 
range of frequencies between the modal frequency and that at which 
capillary waves become significant [2]: 

S(oo) = agV5 (1) 

where, a  = equilibrium range constant 
g = gravity acceleration 

The validity of this spectral presentation for wind-generated 
waves has been shown by Kitaigorodskii [3] from an analysis of Burling's 
observed data, and many formulae currently available for spectral 
representation of ocean waves are expressed in the following form [4] 
[5] [6] ; 

A 

S(o)) = -g- e U; 
u 

Since it is commonly assumed that ocean waves comprise a Gaussian 
process with a narrow-band spectrum, it can be shown that the significant 
wave height, S, defined as the average of the highest one-third waves 
becomes, 

r  = 4/m =J5 (3) 

where, mQ = /s(w)dw = jg 

Next, let the spectrum, S(w), be divided by the area, m0, 
so that the spectrum has a unit area. That is, 
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S'(.)=^e-B/W (4) 5 

The unit area spectrum, denoted by S'(o>), can be considered 
as if it were a probability density function, since S'(w) is a positive, 
continuous, and integrable function with unit area, and thereby satisfies 
all conditions required for the probability function. S'(u), in fact, 
yields the exponential probability density function by letting to1* = 
1/x. Hence, it can be generalized in the form of a new probability density 
function with an additional parameter, A, which yields the gamma 
probability function. That is, 

S (u)) ~ rW~4X+Te (5) 
1
 ' CO 

Under the assumption that the spectrum is narrow-banded, S'(w) 
may be converted to the dimensional wave spectrum S(w) which satisfies 
the condition that the area under the spectrum is equal to (?/4)2 given 
in Equation (3). Then, we have, 

ID*,-
2
   „. 4 

S(u) - 4 f[X7TFTe (6) 
x ' to 

The constant, B, in Equation (6) can be expressed in terms 
of the modal value, wm, by setting the differentiation of S(w) with 
respect to w to be zero. That is, 

4A+l\ 4 (7) 
-r)% { 

Thus, from Equations (6) and (7), the following spectral 
formulation can be made: 

s(u) = I rr~, y sL e" N~/W       (8) z\u)     4  pjx)   4A+1 e 
w 

The spectrum given in Equation (8) has three parameters; namely, 
significant wave height, ?, modal frequency, (%,, and a parameter A. 

The parameter, A, controls the shape (sharpness) of the spectrum 
when the other two parameters are held constant, and hence it may be 
called a spectral shape parameter. For example, Figure 6 shows computer 
printout of a family of wave spectra for various A while the other two 
parameters, ? and com, are held constant at 3.0 m (9.8 ft.) and 0.6 rps, 
respectively. As can be seen in the figure, the spectral shape becomes 
sharper with increasing A. 
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Let ^ = 1 in Equation (8).    Then, we have, 

4      1 ?<A)4 

c,  ,      1.25 rl "m   '''"Ul las 
S(<o)  = -j- K   -§- e (9) 

The spectrum given in Equation (9) is the Bretschneider two- 
parameter wave spectrum expressed in terms of significant wave height 
and modal frequency. Thus, the three-parameter spectrum given in Equation 
(8) includes the Bretschneider two-parameter spectrum as a special case 
(A = 1), and this in turn also includes the Pierson-Moskowitz one-parameter 
spectrum (A =1 and %  = 0.4 /g/S). 

By combining two sets of three-parameter spectra, one representing 
the low frequency components and the other the high frequency components 
of the wave energy, the following six-parameter spectral representation 
can be derived: \ A 

S(a))~4 L*     r(x.)   Tr+Te (10) 

j      J     u J 

where, j = 1, 2 stands for the lower and higher frequency components, 
respectively. 

The six parameters, Si, ?2, <Ani, "n^, ^i, and A2, involved 
in Equation (10) are determined numerically such that the difference 
between theoretical and observed spectra is minimal. For this, 
appropriate initial values are chosen for each parameter, and then the 
computation is carried out for various combinations of the parameters 
in order to determine the final values for which the difference between 
theoretical and observed spectra is minimal. An example of the computer 
output is shown in Figure 7. The heavy line in the figure is the measured 
spectrum and the line with the circles is the six-parameter spectral 
representation. The values of the parameters for this example are 
Si = 4.14 m (13.59 ft.), S2 = 3.27 m (10.73 ft.), "mi = 0.58, com2 = 1.00, 
Xi = 2.67, and X2 = 1.37. 

Recently, a computer program has been developed by applying 
a nonlinear least square fit technique by which the six parameters can 
be evaluated directly from the information on wave spectra stored on 
tape. This eliminates the need to generate individual spectra in visual 
form from the tape to which mathematical formula is fitted. 

Examples of comparisons between observed spectra and mathematical 
six-parameter spectra are shown in Figures 8 through 11. For example, 
Figure 8 shows a comparison for the case when swell coexists with wind- 
generated waves and hence the spectrum has double peaks. Figure 9 shows 
an example of the case when the wind-generated waves are growing and 
are nearly fully-developed, and spectral shapes similar to this are 
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frequently observed as mentioned earlier. On the other hand, Figure 
10 shows an example for seas of mild severity with a relatively broad- 
band spectrum while Figure 11 shows a comparison for a very severe sea 
of significant wave height 14.5 m (47.7 ft) in which the sea is partially 
developed by strong wind, and has a very sharp peak at the lower frequencies 
in the spectrum. As can be seen in these examples, the six-parameter 
spectra derived in Equation (10) appear to represent almost all stages 
of development of a sea during a storm. 
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Figure 6   Three-parameter spectra 
for various X-values (sig. height 
3.0 m, 9.8 ft, modal frequency 
0.6 rps) 

Figure 7   Comparison of measured 
and six-paramenter spectrum 
(sig. height 5.28 m, 17.3 ft) 
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Figure 8   Comparison of measured  Figure 9   Comparison of measured 
and six-parameter spectrum (sig.    and six-parameter spectrum (sig. 
height 2.38 m, 7.79 ft) height 3.33 m, 10.91 ft) 
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Figure 10   Comparison of measured Figure 11  Comparison of measured 
and six-parameter spectrum (sig.   and six-parameter spectrum (sig. 
height 2.02 m. 6.62 ft) height 14.54 m, 47.65 ft) 

STATISTICAL ANALYSIS OF PARAMETERS 

It was shown in the preceeding section that the six-parameter 
spectra represent fairly well a variety of spectral shapes observed 
in the ocean. Perhaps one of the most useful applications of the spectra 
is to carry out a statistical analysis on each parameter so that a family 
of spectra for a given sea severity will be generated with a preassigned 
probability of assurance. For this purpose, a total of 800 available 
spectra observed in the North Atlantic Ocean [7] [8] [9] are classified 
into ten groups depending on severity as given in Table 1. Then, for 
each group a statistical analysis is carried out on the parameters, 
except for the last two groups IX and X where the number of samples 
is small. 

First, consider the statistical properties of significant 
wave heights Si and S2, for the low and high frequency components, 
respectively, for a given severity. Consider the i-th group in Table 1 
in which the wave spectra with significant heights ranging from (?,•) . 
to (?i)max are included in the sample. Then, the significant heights'1" 
for the low and high frequency components (Si and S2, respectively) 
cannot exceed (S-j)max- In other words, the probability density function 
of Si and S2 have to be truncated at (Si)max- The results of the analysis 
have shown that the significant heights Sj and S2 both obey the normal 
probability law, and that the concept of truncation is necessary only 
for S1} the significant height for the low frequency component. 

Figure 12 shows a comparison between the histogram obtained 
from the data and the truncated normal probability distribution curve 
of Sls for Group IV (a nominal significant height C = 4.57 m, 15 ft.). 
Figure 13 shows an example of the comparison for S2 for the same Group 
IV. Still other examples, Figures 14 and 15 show similar comparisons 
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made for more severe seas, Group VII (? = 9.15.m, 30 ft.). As can be 
seen in these figures, the significant wave heights ?, and C, obey the 
normal probability law from which the confidence band of each parameter 
can be established. However, for a given sea severity, it is not necessary 
to consider the confidence band for ^ and ?2 individually  This is 
.because the two significant wave heights ?a and ?2, and the significant 
wave height of the entire spectrum, C, are functionally related as discussed 
in the following: 

If it is assumed that the low and high frequency component 
spectra are both narrow-banded and that their sum (namely, the entire 
spectrum) is also narrow-banded, then the following simple relationship 
holds: 

?1 + c2 :n) 

If one of the component spectra (perhaps, the high frequency 
component spectrum) is not narrow-banded, then the significant wave 
heightof the entire spectrum is analytically derived as outlined in 
Appendix A. In order to compare the difference between the two approaches. 
Figure 16 is prepared. 

Table I         Group of sign ificant wave h eights used for analysis 

GROUP 

SIGNIFICANT WAVE HEIGHT 

NCMINAL RANGE 

I 4.0 ft ( 1.22 m) Less than 5.5 ft ( 1.68 m) 

II 6.5        ( 1.98    ) 5.5 ft  ( 1.68 m)       7.5 ft ( 2.29 m) 

in 10.0        C 3.05    ) 7.5        ( 2.29 )  ---- 12.5 ( 3.81    ) 

IV 15.0        ( 4.57    ) 12.5        ( 3.81 )  — - 17.5 ( 5.34    ) 

V 20.0        ( 6.10    ) 17.5        ( 5.34 )   22.5 ( 6.86    ) 

VI 25.0        ( 7.62    ) 22.5        ( 6.86 )  ---- 27.5 ( 8.38    ) 

VII 30.0        C 9-15    ) 27.5        ( 8.38 ) 32.5 ( 9-91    ) 

VIII 35.0        (10.67    ) 32.5        ( 9.91 )   37.5 (11.43    ) 

IX 40.0        (12.20    ) 37.5        (11.43 ) 42.5 (12.96    ) 

X 45.0        (13.72    ) Higher than 42 5 ft (12.96 m) 
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Figure 15   Histogram and proba- 
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The solid lines in Figure 16 show the relationship between 
significant wave heights, Cj, C2, and ?, as obtained from Equation (A-10) 
in Appendix A, while the dashed lines show the relationships obtained 
from Equation (11). Included also in the figure are the results of 
the analysis of measured wave spectra whose significant wave heights are 
within ±2.5 percent of the specified height. For example, for significant 
wave height, C = 9.1 m (30 ft.), the results of the analysis of wave 
spectra with significant heights from 8.9 m (29.3 ft.) to 9.4 m (30.8 ft.) 
are plotted in the figure. As can be seen in the figure, the two lines 
obtained from Equations (A-10) and (11) do not differ appreciably, 
and that the results of analysis of the measured spectra fall on these 
lines. Hence, the simple formula given in Equation (11) may be used for 
the functional relationship between Cj and C2. Thus, for a given sea 
severity of significant wave height C, the six parameters involved in 
Equation (10) can be reduced to five parameters by taking the ratio of 
the two significant wave heights, ?i/C2- 

For convenience, let 
Cx/C2 = tan e, and the statistical property of 9 will be discussed 
hereafter. 
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I  The derivation of the probability density function of 
0=tan(C1/C2)(where, 0 < 8 < 90) is outlined in Appendix B, and 
comparisons between histogram and the probability density function 
given in Equation (B-3) are shown in Figures 17 and. 18 which pertain 
to Groups IV and VII, respectively. As can be seen in these examples, 
the derived probability density function agrees well with the histograms 
and hence the statistical analysis will be made using this probability 
function. 
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Next, the probability density function of the modal frequencies, 
<Dmi and (%i2. will be obtained. In the determination of the modal 
frequencies for a given wave spectrum, no limitation is set for the value 
of wmj, namely, 0 < u^ < <». However, the modal frequency, ">m2, has to 
be greater than <•%, and furthermore, the restriction is made such that 
<%i2 should not be less than 0.6 in order to avoid the possibility of 
an unrealistic representation of the spectral shape. For example, 
suppose a spectrum has triple peaks, two of which are in the frequency 
range below 0.6, then the computer program may take these two peaks 
(even though the energy is not appreciable) and discard the third peak 
in the higher frequency range which is associated with the wind-generated 
seas. In this case, it may be more appropriate to represent the two 
peaks in the frequency range less than 0.6 by one peak, and consider the 
energy in the higher frequency range. 

The results of analysis of the available data have indicated 
that witij and wm2 both obey the normal distribution law, although 

um2 
is truncated at 0.6. As an example, comparisons between histogram and 
the probability density function for Group IV are shown in Figures 19 
and 20. 

The value of the shape parameter, Xj, is much higher than that 
of X2, in general; however, it appears that both follow the gamma 
probability law. Comparisons between the histogram and the gamma 
probability density function for X! and X2 for Group IV are shown in 
Figure 21 and 22, respectively. Other examples of the comparisons for 
Group V (C = 6.10 m, 20 ft.) are shown in Figures 23 and 24. 
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FAMILY OF WAVE SPECTRA 

In this section, a family of wave spectra will be developed for 
a desired sea severity using the probability function applicable for each 
parameter in an attempt to represent various shapes of spectra associated 
with a storm. 
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In the development of the family of spectra, an attempt was made 
first to divide each probability density function into seven divisions as 
shown at the top of Figure 25. The figure is an example for the modal 
frequency, I%J for Group IV (nominal significant height 4.75 m, 15 ft.). 
Then six values were determined by which 50%, 80%, and 95% of the 
probability density function was covered as shown at the top of the figure. 
For each value of "mi, the value of each of the other parameters was deter- 
mined from the original data by taking their respective averages in the 
region of ±5% of umi. For example, the e-value for wmi = 0.65 (the upper 
value for 80% coverage)was determined by taking the average value of 
6 from a sample which belonged to +5% of 1%^ = 0.65 (0.62 < w^ < 0.68) 
in Group IV. Since there are five parameters, 6, <%, , wm2, \t,  and X2, 
this procedure resulted in a family consisting of a total of 25 spectra 
for a given sea severity. Judging from the results of this procedure, 
however, it appears that 25 wave spectra are too many to be considered 
since many of the shapes look alike. 

To reduce the number of spectra involved, another approach is to 
choose three values for each parameter; namely, the modal value, the upper 
and the lower values determined from a confidence band for a confidence 
coefficient of 0.95. For example, the most probable <%,1 is obtained as 
0.53 for Group IV as shown in Figure 25, and the upper and lower bound 
values are 0.71 and 0.36, respectively. Similarly, three wmj-values are 
evaluated for all other groups (except Groups IX and X) listed in Table 1, 
and the results are plotted in Figure 26 as a function of significant wave 
height, ?. Included also in this figure are the formulae representing the 
data points so that the im-^  values for a desired sea severity can be 
evaluated. 

Next, the values of the other parameters for each w^ are deter- 
mined for all groups in the same fashion as mentioned earlier, the results 
of which are plotted in Figures 27 through 30 as a function of C. It is 
noted that the parameter values shown in these figures are all associated 
with the parameter lam1.    The formulae representing the data points are 
also included in these figures. Although the formulae are derived without 
consideration of data points for severe seas (? = 12.2 m,-40 ft. or above), 
the formulae may still be applicable for severe seas,- since the data does 
not show serious scatter in relatively severe seas. Thus, a set of three 
spectra associated with the parameter <%,, can be drawn for an arbitrarily 
specified sea severity. As an example, Figure 31 shows a set for a signif- 
icant wave height of 4.0 m (13.1 ft.). As can be seen in the figure, the 
dominant peaks of the spectra range from %   = 0.38 to 0.74, and the spectral 
shape becomes more broad as the modal frequency i^, increases. 

The above discussion along with Figures 25 through 31 pertain 
to the parameter %1.    The same procedure as that to derive a set of three 
spectra associated with u^,, is carried out for the other four parameters, 
and thus a total of fifteen mathematical spectra can be established for a 
given sea severity. Of these fifteen spectra, five are associated with 
the mode value of the five parameters. The results of the analysis have 
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indicated, however, that the shapes of these five spectra are nearly the 
same as shown in Figure 32. Hence, the spectrum associated with the mode 
value of the parameter 8 may be chosen as representative of the five spec- 
tra determined from the mode values of the parameters. 

0.0   0,1   0,8   1.2    1,6   2.1, 

FREQUENCY IN RPS 

!  1  1 
d 

A, - 

jh A2 

$ \ 
\ 
V 

1.0 1.2 1.1 

FREQUENCY IN RPS 

Figure 31  Spectral density function Figure 32  Comparison of five 
for probable', lower and upper-bound spectra associated with the mode 
values of ioml (Sig. height 4.0 m, value of five parameters (Sig. 
12A  ft) height 5.0 m, 16.4 ft) 

Table 2a   Values of six-parameters (ft-units) 

?i h "ml "m'2 *1 ** 
Most Probable 

Spectrum 0.84 z, 0.54 C 0.70 e"0-014 « 1.15 e"0-012 t 3.00 1.54 e'0-019 ? 

0.95 ? 0.31 ? 0.70 e"0-014 ? 1.50 e"0-014 ? 1.35 2.48 e'0-031 C 

0.65 C 0.76 ? 0.61 e"0-012 « 0.94 e"0-011 C 4.95 2.48 e'0-031 C 

0.84 c 0.54 C 0.93 e"0-017 « 1.50 e"0'014 ? 3.00 2.77 e-°'034 C 

0.84 5 0.54 r, 0.41 e"0-005 « 0.88 e"0-008 ? 2.55 1.82 e"0'027 C 

957, Confidence 
Spectra 0.90 C 0.44 r. 0.81 e"0-016 ? 1.60 e-°-010 ? 1.80 2.95 e'0-032 C 

0.77 i 0.64 r, 0.54 e"0-012 « 0.61 4.50 1.95 e"0-025 ? 

0.73 C 0.68 K 0.70 e"0-014 C 0.99 e"0-012 ? 6.40 1.78 e"0-021 ? 

0.92 C 0.39 E 0.70 e"0-014 « 1.37 e"0-012 ? 0.70 1.78 e"0-021 ? 

0.84 c 0.54 5 0.74 e"0-016 « 1.30 e-°-012 « 2.65 3.90 e"0-026 ? 

0.84 c 0.54 5 0.62 e"0-012 c 1.03 e"0-009 ? 2.60 0.53 e"0-021 C 

C - significant wave height in feet 
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Table 2b   Values of six-parameters (m-units) 

\ C2 "ml <°m2 \ X2 

MDSt Probable 
Spectrum 0.84 c 0.54 i 0.70 e"0-046 ? 1.15 e-0'039 ? 3.00 1.54e-°-062 = 

0.95 ? 0.31 C 0.70 e-°-m Z 1.50 e-°-m Z 
1.35 2.48 e"0-102 ? 

0.65 ? 0.76 e 0.61 e"0-039 ? 0.94 e'0-036 ? 4.95 2.48 e"0-102 ? 

0.84 ? 0.54 c 0.93 e"0'056 5 1.50 e'0'046 C 3.00 277e-0.112 C 

0.84 C 0.54 ? 0.41 e-°-016 ? 0.88 e'0-026 C 2.55 182e-0.089 c 

95% Confidence 
Spectra 0.90 ? 0.44 c 0.81 e"0-052 C 1.60 e'0-033 5 1.80 2.95 e"0-105 5 

0.77 c 0.64 c 0.54 e"0-039 <= 0.61 4.50 195e-0.082 ? 

0.73 C 0.68 c 0.70 e"0-046 ? 0.99 e'0-039 ? 6.40 1.78 e"0-069 < 

0.92 s 0.39 S 0.70 e"0-046 < 1.37 e'0-039 ' 0.70 178e-0.069 c 

0.84 ? 0.54 ? 0.74 e-°-052 5 1.30 e"0-039 S 2.65 3.90 e"0-085 ? 

0.84 5 0.54 C 0.62 e"0-039 C 1.03 e"0-030 C 2.60 053e-0.069 5 

? = significant wave height in meters 

Thus, a total of eleven spectra derived in the above are consider- 
ed as a family of wave spectra for a specified sea severity. The values 
of six parameters for these eleven spectra are expressed in terms of sig- 
nificant-wave height, C, and are tabulated in Table 2 so that a family of 
spectra for a desired sea can be generated from Equation (10). In these 
eleven spectra, one is considered as the "most probable spectrum" repre- 
senting a specified sea, and the remaining ten spectra are those expected 
to occur with 95 percent confidence. 

Examples of the family of spectra thus derived are shown in Figures 
33 through 36. Figures 33 and 34 are for significant wave heights of 1.25 m 
(4.1 ft.) and 3.0 m(9.8 ft.), respectively, and the shapes of wave spectra 
vary considerably in these seas of relatively mild severity. The frequency 
domain where the predominant wave energy exists varies to a great extent 
(from 0.4 to 1.2) depending on the shape of spectra. On the other hand, 
Figure 35 is for a significant wave height of 9.0 m (29.5 ft.), and the 
frequency domain where the predominant wave energy exists varies to a much 
less extent (from 0.3 to 0.7) in this severe sea although a variety of 
spectral shapes may still be observed. 

Figure 36 is for a significant wave height of 13.0 m (42.6 ft.), 
an example of very severe seas. A family of spectra shown in this figure 
is of particular interest since the values of all parameters for this fam- 
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ily of spectra are determined by extending the lines of the analysis of 
data, examples of which are shown earlier in Figures 26 through 30. In 
order to examine whether or not the family of spectra thus generated repre- 
sents the measured spectra, Figure 37 is prepared. The figure shows an 
observed spectrum which has the same significant wave height as that of 
the family shown in Figure 36, 13.0 m (42.6 ft.). Included also in the 
figure is the computer-generated six-parameter spectrum. From the compar- 
ison of these two figures, it can be seen that the example given in Figure 
37 agrees well with one of the members of the family (the most probable 
spectrum) given in Figure 36. Thus, it appears that the families of spec- 
tra generated using the parameter values obtained from the extension of 
the lines in the analysis of the data can be considered to represent real- 
istic sea spectra. 

0,4 Figure 33  Family 
of spectra for sig- 

nificant wave height 
03<*of 1.25 m (4.1 ft.) 

0,8        1.0   "    1.2 
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^.Figure 34     Family 
jof spectra for sig- 

l,5<jjjnif1cant wave height 
of 3.0 m (9.8 ft.) 
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AGOR 16 CL - 67.0 K, V - 10 KMTS) 
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Figure 38  Significant 
amplitudes of the verti- 
cal relative bow motion 
of a catamaran in various 
seas (10-knot speed) 

SIGNIFICANT HAVE HEIGHT IN METERS 

APPLICATION OF SIX-PARAMETER SPECTRA 

The six-parameter wave spectra can be applied to evaluate respon- 
ses such as motions and wave-induced forces, etc., of marine vehicles and 
structures in a seaway for design consideration. Figure 38 shows, as an 
example of the application, the significant values of the vertical bow mo- 
tion relative to waves of a catamaran (length 67 m, 220 ft.) for 10-knot 
speed in various sea severities. Included also in the figure are the re- 
sponses evaluated by using the Pierson-Moskowitz fully-developed sea spec- 
tra, and those due to individual wave spectra (about 300) observed at Sta- 
tion India in the North Atlantic Ocean [9]. 

As can be seen in the figure, for a specified sea severity, there 
are 11 responses (one for each member of the family of the six-parameter 
spectra), and one of the family members yields the largest response, and 
another yields the smallest response. The most probable spectrum given in 
Table 2 yields the most probable response. By connecting the points ob- 
tained in each sea severity, we may establish the most probable response, 
the upper-bound and the lower-bound responses which will provide useful in- 
formation for design. The upper and lower-bounds cover the majority of the 
responses obtained from using the measured wave spectra, and it may safely 
be said for this case that the values of the six parameters obtained from a 
statistical analysis of the data yield a family of spectra representing 
realistic seas reasonably well with 95 percent confidence. 

The results of a similar application made for predicting extreme 
wave-induced loads on an ocean structure may be found in Reference [10]. 
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The six-parameter wave representation may be used for the analysis 
of wave spectra associated with particular situations such as breaking 
waves, wave run-up, etc. The measured spectra may be expressed in terms of 
six parameters and a statistical analysis may be carried out on the para- 
meters to find significant factors which influence the spectra. 

Another application of the six-parameter representation is to 
store or file a massive amount of measured data for statistical analysis. 
In the case where consecutive measurements are made within a certain time 
interval, the data may be stored in the form of six variables, the values 
of which change gradually with time, and hence the sea condition associated 
with the growth and decay of a storm may be discussed from a statistical 
analysis of the parameters. 

CONCLUSIONS 

Consideration of various shapes of wave spectra for a given sea 
severity is of particular significance for evaluation of response of ocean 
and coastal structures to waves, since the magnitude of responses is greatly 
influenced by the relative location of the modal frequencies of waves and 
response of individual structures. In an attempt to develop a systematic 
series of wave spectra covering a variety of spectral shapes, a series of 
wave spectra which involves six parameters are newly developed. 

In the development of the six-parameter wave spectra, the spectra 
are decomposed into two parts, and each part is expressed by a mathematical 
formula with three parameters; i.e., significant wave height, modal fre- 
quency, and shape parameter, and the entire spectrum is expressed by the 
combination of two sets of three-parameter spectra. The parameters are de- 
termined numerically such that the difference between theoretical and ob- 
served spectra is minimal. The six-parameter spectra thus obtained appear 
to represent almost all stages of the sea condition associated with a storm. 

Then, a total of 800 spectra observed in the North Atlantic Ocean 
are classified into 10 groups depending on severity, and for each group a 
statistical analysis is carried out on the parameters taking into account 
the correlation between them. From the results of analysis, a family con- 
sisting of eleven sets of mathematical spectra is established for a given 
sea severity. In these eleven spectra, one is considered as the "most pro- 
bable spectrum" representing a specified sea, and the remaining ten spectra 
are those expected to occur with 95 percent confidence. The values of six 
parameters for these eleven spectra are expressed in terms of significant 
wave height, and are tabulated in Table 2 of the paper so that a family of 
spectra for a desired sea severity can be generated from the formula (Equa- 
tion 10) given in the paper. 
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APPENDIX A: SIGNIFICANT WAVE HEIGHT FOR A SPECTRUM CONSISTING 
OF HIGH AND LOW FREQUENCY COMPONENTS 

Let x(t) be the wave profile of an irregular sea which is a 
normal random process with zero mean and a narrow-band spectrum, and 
let x(t) be comprised of two components; Xj(t) and x2(t), which corre- 
spond to the wave profile of the low frequency and the high frequency 
components, respectively. Here, xx(t) and x2(t) are both normal random 
processes; however, in the following it is assumed that Xj(t) is a narrow- 
banded but x2(t) is not necessarily narrow-banded. The amplitude, fre- 
quency, and variance are denoted by A, w, and a2, respectively, and the 
subscripts 1 and 2 refer to the low and high frequency components, respec- 
tively. 

Then, from the assumption described above, the wave profile 
x(t) may be written in the following form: 

x(t) = A(t) Cos (u2t - e(t)) (A-D 

The low-frequency component wave profile becomes, 

Xl(t) = Aj(t) Cos (ojt - e^t)) (A"2) 

On the other hand, the high frequency component wave may be 
expressed in the following form: 

where, 

x?(t) = x2c(t) Cos (ui2t) + x2s(t) Sin U2t) (A-3) 

X„ (t) =2j[anCos(nu)-w2)t + bnSin(nw-u2)tJ 

x2s(t) =y^|anSin(nu>-w2)t - bnCos(nu-a)2)tj 

and „T 

x2(t) Cos (nut) dt 

0 

bn"-T-/x2^ Sin (nut) dt 

Here, x2C(t) and X2S(t) are independent normal processes, and 
their joint probability density function can be written as, 

1 •   e 

2         2 
x2c + X2s 

2a2 

o    2 2ira2 

f(*2c'X2s)=-V- e ^ 

From the condition that x(t) = Xi(t) + x2(t), Equations (A-l) 
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(A-2), and (A-3) yield: 

x(t) = rx2c(t)+A1(t)'Cost(.lcos u2t +Tx2s(t)-A1(t)Sini|j]sin<o2t (A-5) 
where, 

Thus, from Equations (A-l) and (A-5), we can derive the following 
relationship: 

x2c = A Cos 0 ~ Al Cos * 
x2s = A Sin 0 + A1 Sin ty 

(A-6) 

Since the joint probability density function of x2 and x2 
is given in Equation (A-4), the joint probability density function of 
A and 9 can be obtained from Equations (A-4) and (A-6) by transformation 
of two random variables (x2c, x2C) to (A, e), and therefrom the marginal 
probability density function of A can be obtained. This part of the 
work was done by Middleton [A-l], and he derived the following formula: 

A2+A* 

f(A)-/"2,rf(A.e)de-Ae   2°2 I0P), 0,A<»    (A-7) 

The probability density function of the amplitude, A, given 
in the above, however, is expressed in terms of the amplitude of the 
low frequency component waves, A!.  Hence, Equation (A-7) can be 
considered as a conditional probability density function f(A|A,). In 
order to express the probability density function of A in terms of the 
variance of the two component waves (Jj and o2> the condition is used 
that the low frequency wave component has a narrow-band spectrum and 
hence its amplitude follows the Rayleigh probability law. Thus, the 
probability density function function of A can be written as follows: 

f(A) =/*C0 f(A|A1) f(Aj) dAj 

A2 
I 

dA  (A-8) 
i 

By carrying through the integration involved in the above 
equation, the following formula can be derived: 
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f(A) A 

a2 

A2 

o 2 

(': ̂
VTV^ A 

2 a2 

eWw ifc 

•(? 
A2 

I ̂ Z) 
Z 

=yx SinhZ 

-M   \   I  (A"9) 

where, 

Equation (A-9) is the probability density function of the 
amplitude, A, in terms of two variances, a\  and a\,  which are equal to 
the area under the low and high frequency components, respectively, of 
the wave spectrum. The significant wave height of the spectrum, K,  is 
then obtained numerically from Equation (A-9) as follows: 

00 

5 = 3 /  A f(A) dA (A-10) 
Jk "* 

where, A* can be found from 

0 
REFERENCE: 

/ 

•A* 
f(A) dA = 2/3 

A-l. Middleton, D., "An Introduction to Statistical Communication Theory", 
McGraw Hill Book Company, New York, 1960 

APPENDIX B: DERIVATION OF PROBABILITY DENSITY FUNCTION 
OF 6 = tarT'Uj/Cj,) 

In the text it is discussed that the significant wave heights Cx 
and S2 both obey the normal probability law, and that the concept of trun- 
cation is necessary for the significant height for the low frequency com- 
ponent, C . 

Let V-i  and ol  be the mean and variance, respectively, of the 
significant height ?i belonging to the i-th group in Table 1 given in the 
text, and let u2, °2 be the mean and variance of the significant height C2 • 
Since ?i and S2 may not necessarily be statistically independent, let 
P be the correlation coefficient which can be evaluated from the sample 
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belonging to the i-th group.    Then, by taking into account the truncation 
of Si   at (C^)max. the joint probability density function of Ci and ?2 
belonging to the i-th group can be written as. 

ffSj.Cg) = 

2(l-p2) 

1 

1 -j f(Cj)  d^      2TO1a2'v/T^ 

(Cl) 

Cj-^ 

max 

(B-l) 

x e 

0 < Ci  < (?•) '     0 < c„ < "1'max 
where, f(Ci) is the probability density function of the significant 
height Si  which is a normal distribution with mean Vi and variance a:. 

Let n = Ci/C2.    Then, from Equation (B-l), the probability 
density function of 1 becomes, 

f(n) = 
1 -L 

1 -f     fCs^dSj  STO^/I-P 

(C,> 
2 

/ 

max 

s,n-u 

x e 2(l-p2) 

Son-yA/??"^ 2"^1\ . 2p(!2^2!iY- 
J\ 

l'vl \+  /?2"u2 

d^2 (B-2) 
0 < n < 

Next, let e = tan_1n = tan""1^/?.,). ' Then, the probability 
density function of 8 can be obtained numerically using Equation (B-2) as 
follows: 

f(0) = f(n) 
2 

Sec' 0 0 < 0 < 90 (B-3) 

n = tan 0 


