
CHAPTER 141 

FINITE ELEMENT MODEL OF TWO LAYER 

COASTAL CIRCULATION 

by 

JOHN D. WANG l 

JEROME J. CONNOR 2 

ABSTRACT 

A set of "averaged partial differential equations for the circula- 
tion in a two layered coastal water is established by assuming each layer 
to be vertically homogeneous and by performing a vertical integration over 
the layer thicknesses.  Since the phenomena to be investigated typically 
consist of long waves such as a tidal wave, the hydrostatic pressure as- 
sumption is also introduced. The finite element method is employed to 
transform the partial differential equations to a discrete system of or- 
dinary differential equations which are solved using an implicit time 
stepping method similar to the trapezoidal rule, but with the variables 
(elevation and flows) staggered in time.  A linear stability analysis 
shows the initial value problem to be unconditionally stable.  In prac- 
tice, instability due to boundary conditions and non-linearity sets in. 

Comparisons between computed and analytical solutions for simple 
cases give good agreement.  The tidal excitation of Massachusetts Bay, 
represented as a rectangular basin with opening on one side is presented 
as an illustrative example. 

INTRODUCTION 

The rapidly increasing development of our coastal areas has generated 
the need for a better understanding of the physical processes in a coastal 
water body and for methods to predict the effect of man-made changes.  In 
particular, significant effort has been directed at determining flow pat- 
terns and mass transport [1, 7, 8, 10, 13].  For complex phenomena such as 
these, one usually has to resort to physical or numerical models to obtain 
solutions.  This paper describes a numerical technique, based on the finite 
element method, to predict tide and wind driven circulation for a stable 
stratified water body in which two distinct layers can be distinguished, a 
condition often found in coastal waters during summer time. Due to the 
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increased solar radiation a warmer, lighter surface layer forms with a 
rather abrupt density change between layers.  It is reasonable to approx- 
imate the problem as consisting of two vertically homogeneous layers, 
thereby reducing the degree of complexity. 

Until recently, numerical models of coastal circulation have been 
almost exclusively of the finite difference type.  In previous works 
by the authors [4] a rigorous formulation and solution strategy for 
2-dimensional one layer flow using the finite element method has been 
presented. This method is particularly attractive with respect to 
formulation and specifying boundary conditions. However, the error 
and stability aspects for hyperbolic and elliptic boundary value problems 
treated with finite element methods are not completely resolved. A stab- 
ility analysis of the linearized system is presented here for some simple 
schemes.  Apart from numerical problems, there are unresolved questions 
concerning the actual physical processes such as momentum and mass trans- 
fer between layers and at open boundaries.  These are areas where much 
more research is needed before truly predictive capabilities are at hand. 

MATHEMATICAL FORMULATION 

The two layer flow problem is governed by the conservation of mass 
and momentum requirements.  For illustration, it is useful to look at 
the one layer case first.  Assuming that the water column is fairly well 
mixed it is reasonable to simplify the problem by performing a vertical 
integration using Leibnitz's rule and the boundary conditions on the 
surface and bottom.  Fig. 1 shows a definition sketch with a horizontal 
x-y coordinate system, z vertically upwards, surface elevation X]  and 
bottom at z=-h.  The dependent variables are the total water depth H 
(or alternatively n) and the total volume flows per unit width in x and 
y directions. 

H = h + n (1) 

«x = I-hUdZ 
(2) 

*y   "    J  -hVdZ 

The form of  the governing equations have been shown  to be  [4]: 

fc(PH)  + l?x + ly^y = qi (3) 

4-q  + 2-(uq ) + l-(uq ) = fq  + B + |-(F   - F ) + |-F 
St^x  3xv 4xy  3yv Hy    Hy   x  3x xx   p   3y yx 

4-q + t-Gq  ) + 4"(vq )=-fq+B+ — F  + |-<F  - F ) 
3tHy  3x Hx   3y Hy x   y  3x xy  dy yy   p 

(4) 
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Fig.   1.   Definition sketch  for one  layer  flow. 

1       fl     A 1 
F„ = P"  J -hpdZ  "   2 gh^ 

=   g(hn + |n 
2) + \ f- gH2 + E- H (5) 

. 1   -  s   8H     ,    .     „3h     , 3h     ,     s b   .      . 
V  = P~(P    IE.   + ^V: + Pogy^T + Tx    ~ Tx ) ;   i  -  1,2 

i o 1 1 111 
(6) 
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and qj denotes   an internal source,   f =  2fisin<j>_is   the  Coriolis  parameter, 
^Fxx' Txy'   Fyy'>   are lnternal stresses;  u  and v  are  average  velocities; 

Fp    is  the excess  integrated pressure,  pS  is  the barometric pressure on 

the surface;   and T   ,   T     are surface  and bottom shear stresses.     For  con- 
venience we  frequently write  xi,   x2   for x,  y.     The mass  density p  = p + Ap 
is  replaced by  the constant mean value p    everywhere except in  the      ° 
hydrostatic pressure   (5).     This  is known°as  the Boussinesque approxima- 
tion. 

The internal stress  terms  F        F        F      represent  the specific   momentum 
xx  xy  yy 

transfers due to viscosity, turbulence and vertical shear. 
Their general form is: 

Vj 
J ~h I  xx M°     i J 

uV u*.' } dz i . 
1 J J 

; + (u! • u'.   )>ensemble 

1, 2 

(7) 

where T is the molecular stress term; u' is the turbulent fluctuation 
of the velocity, u" is the velocity deviation from the vertical mean 
value  u, and u'  is the deviation of the turbulent fluctuation. As 
indicated in (7) all turbulent fluctuations are ensemble averaged. 

U = instantaneous velocity 
u = ensemble average of U 
u = vertical average of u 
u'= turbulent fluctuation of U 

u'= vertical average of u' 

u"= vertical deviation of u 

u' = vertical deviation of u' 

> velocity 

Fig. 2. Velocity distribution in the vertical and its components. 
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One of the mast significant difficulties with an averaged or in- 
tegrated formulation is the occurrence of additional variables due to 
the non-linear terms. In turbulence theory, these variables give rise 
to the so-called Reynolds stresses and the phenomenon is often called 
the closure problem because there are more variables than equations. 
For our approach, we have lumped all these apparent stresses together 
with viscous stresses in the internal specific force measures (force 
per unit width and density) F  , F , F  . An engineering solution 

xx  xy  yy 
has been to interpret the apparent stresses as momentum transfer and 
represent them by a diffusion process analogous to Newton's law for 
viscous shear.  Following this approach, we express the force measures 
as 

3q1   3qi 
F    = E. . (•j"1' + -5—^)        no summing over i, j     (8) 
X, X,     11 oX .    OX . 

1 j      J    i       j 

Once the "eddy diffusion" coefficient matrix E.. is specified, 
the problem is closed.  However, contrary to molecular viscosity which 
is a fluid property, the E.,'s are functions of the flow field.  More 
specifically they can depend on the flow, shear stresses on bottom and 
surface, depth and time.  By definition F.. = F.. and therefore E.. 

lj   Ji ij 
must be symmetric.  If E.. is taken as anisotropic, the principal dir- 

ections should usually be defined along and perpendicular to the local 
velocity direction. The effect of the internal stresses is to dissipate 
or generate energy depending on whether E.. is positive or negative [5,11]. 

At present little is known about the validity of (8), in particular 
what is the relationship for E.. in terms of flow parameters.  It will 
be shown later that positive eddy viscosity improves numerical stability, 
mainly by dissipating high frequency energy. 

The equations governing vertically integrated layered flow follow 
by generalizing (3), (4) and are written as 

+ WV = qk (9) 

S(\q
Xk

) + ^(\qyk} 

=  fq .   + |~(F    ,    - F . )  + |-F    .   + i- IT ,    -  T , _•, 
yk       dx    xxk pk dy yxk       p    (. xk xk   ••• 

pk dx    " pk_i      3x      J 
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,  *       + ~—(v, q  , J   + TC—(v, q , J 3t 8x    k^xk 3yv knyk 

= -fq ,   + f-F    ,   + |-(F    ,   -F.)  +L  fT       _T ^xk       3x xyk       3y    yyk pk p        L
yk       \k-i_ 

+ 
8\ 3\-l) ^ + \ir~ pk-i w~ i 

where the notation for layer k is defined in Figure (3). 

interface k+1 

terface k 

terface k-1 

Fig. 3. Definition sketch for multilayered flow. 
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We still assume hydrostatic pressure, i.e., the pressure at the k'th 
interface is given by pk_1 - pfc = Pk&\ (H) 

For two-layer flow, p2 = atmospheric pressure 

The equilibrium equations on the boundary take the following forms: 
F . = F* .    on S, (12) 
nnk   nnk        k 

where F*       is  the prescribed specific force measure normal  to  the bound- 

ary on  layer k,   S, . 

Conservation of mass   (continuity)   is  satisfied when 

<W " <nk  °n Sk (13) 

Here q*, is the prescribed normal boundary flux for layer k.  When the 
eddy viscosity terms are retained in the formulation, additional equil- 
ibrium conditions on tangential forces 

and flows 
nsk   nsk (14) 

qs = q* (15) 

can be specified. 

The interfacial shear stresses are evaluated with the most common- 
ly used relation: 

V iJ - S^kv^ - vi)2 + <\ - vi>2^        (16) 

Investigations have shown the dimensionless friction factor, C  , to be 

dependent on at least Reynolds number and densimetric Froude number 
(Richardson number) [2]. 

Summarizing the formulation, the dependent variables are the volume 
flows per unit width in each layer, q , , q , and the layer thicknesses H . 

The governing equations are given by (9) - (10) which apply in the inter- 
ior and (12) ~ (13) on the boundaries. 

THE WEAK FORM 

There has been considerable recent effort by mathematicians directed 
at proving that the solutions obtained from the flow equations, notably 
the Navier Stokes equations, are unique [6],  In one approach, the dif- 
ferential equations are transformed to an integral expression which is 
called the weak or Galerkin form [9, 12].  When the weak form has a uni- 
que solution, this will also be the unique solution of the original 
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equations,  and the weak form is  then called the generalized form.     Thus, 
the mathematical problem reduces  to showing  that  the weak form has  a 
unique solution.     There  are indications   [6,  12]   that  the generalized 
equations  constitute  the well-posed form of  the problem    In what  follows, 
we  cast the problem into its weak form and use  this  as  the basis  for 
the finite element approximation.    No attempt is made here  to present 
a mathematical proof of uniqueness.    However, we  do present  comparisons 
with analytical solutions. 

The weak form is  derived by weighting   the  continuity  and equili- 
brium equations,  and integrating  over the  total  area. 

JJ{ 
\ 

«„       3q 3q 

-9t        3x        9y , 
-qj^dA 

+ J     K-1nh-AHkds = 0 <17) 

S
k 

JI  f{^f + feK)+fe("V- fqy 

+ |-(F    - F     )   - |-F      - T 
3x    p xx 3y yx 

I. 
\ 

x-^k 
+  K + ^)k_1

]^xkdA 

+   [      h      -  F*   \     Aq ,     ds  =  0 
J^ \ nx        nkj k   4xk (18) 

lj-^ + |-(vq  )  + f-(vq  )  + fq     - f-F 
'   at      3x    Mx        By      y x      3x xy 

|_(F - F ) _ T _ p|a 
3y   p      yy       y      3yJk 
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r    + p~— [       ] Ao     dA 
y     3y)k._i   qyk 

f      (F      - F*  1      Aq 
Jo     I ny nyj k      y 

where AH,  Aq   ,   Aq     are  arbitrary  finite  continuous   functions  and F*   , 

F*     are  the prescribed values  of   the x and y  components  of   the normal 

specific force measure.     Applying Gauss's   theorem for partial integra- 
tion  to  the momentum equations yields   the  desired  form: 

II.    ^{^ + feK>+fe("V-fqy-Tx-^}k 

+     IT    + p|^-l n   .)  Aq ,   +       (F      - F )   3—i (. x      F3xJk-1       ^xk       • (.    xx p     3x 

3Aq    ) 
+ F      -—I   . ]  dA yx    3y   J   k 

"I    {Fnx^xlkds  =  ° (19) 

JI [( ft + i(^ + iS} + fqx " Ty " plK 

iTy + PtK-l )   ^   .    +        F 
3Aq 

yk J   xy    3x 

3Aq 
+  (F      - F )  -K^l , ]   dA 

yy      p     3y J k 

- IF*    Aq   I  ,    ds J     { ny    Hyj k 



2410 COASTAL ENGINEERING 

FINITE ELEMENT DISCRETIZATION 

The discretization in space Is obtained by applying the finite el- 
ement technique, which allows for a flexible grid configuration, easy 
handling of complex boundaries and topography, and straightforward math- 
ematical representation. 

A boundary segment is classified according to the boundary condition 
for the segment.  On S , the open ocean boundary, the layer depths are 
prescribed.  On S , which can be either a land boundary or across a stream, 
the normal flux is prescribed. 

ocean boundary 

Fig. 4. Boundary classificatio 

When eddy viscosity is included, lateral shear can exist and the 
tangential forces and fluxes on the boundaries must also be matched. 
Prescribing the tangential flow, usually as a no-slip condition, does 
not cause any conceptual problems.  However, the need to know both nor- 
mal and tangential forces presents a serious data acquisition problem 
since layer depths can no longer be used as a replacement for the pressure 
force. 

The weak form is the natural basis for the finite element method.  We 
require the weighting functions AH, Aq , Aq  to be admissible, that is, 

described by the same shape functions as the dependent variables and sat- 
isfying the homogeneous boundary conditions. With these restrictions, 
AH, Aq , Aq  can be interpreted as admissible variations of H, q , q . 

'  Hx' y r x' > 
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The  integrals 

I      (-FnxjkA^kdS 
Sq
k 

L  i"F*y] Aq , ds 
bqk 

vanish and we are left with 

Jl {s*&*£-U"" 
an I 

ix J k-1        xk (   xx        p      3x 

3Aq 
+  F       -5-^ f l ]   dA 

yx    oy   J kJ 

+     k. + P?&k_i>   A^v+     l<F       "  F  )       "' 

(b) 

(20) 

JI    "  (^ + l^x>  + feS}  + f^ -  \ " 4?J k (21) 

+ K+ *g} k-i> \+ L ^ 
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+ (F  - F )  a 
yy  p  °y 

- L  I F*  Aq "I . ds 
JSn. I ny  Myj k ok 

We have found that, under normal circumstances, the force Integrals (b) 
on the prescribed flow boundary which, in theory, vanish  have to be 
retained as a correction in practical application. This is due to the 
fact that the normal direction chosen for a boundary node point is the 
average direction for the adjacent segments, and specifying q =0 for 
the node does not (unless the sides are parallel) result in q =0 for 
the segments. This correction tends to zero as the grid is refined; 
but for practical grid sizes, (20) and (19) should be used. 

All variables are now expressed in terms of the element nodal values 
and functions defining the spatial variation over the element domain, 

f = <K  F. (22) 1 x 

F. are the nodal values and <j>. are prescribed functions of x and y. 
Substituting (22) in (197 - (20) results in a system of ordinary 

differential equations relating the nodal variables 

MJJH + DQ = PH (23) 

M Q - DTH + CQ + EQ = P (24) 

where H is a vector containing the nodal values of layer thickness, Q 
contains the nodal fluxes listed as [q  q  ... q  q  . . . q  q  ] with 

i being the node number;  the dot denotes time differentiation, P„ and 
P are vectors containing non-linear and forcing terms. Although the 
elements of the coefficient matrices depend on grid and element type, 
they do have certain invariant properties: M and E (eddy viscosity) 

are symmetric and positive definite, and C (Coriolis) is skewsymmetric. 

TIME INTEGRATION 

Integration of (23) - (24) through time is carried out with the trape- 
zoidal rule, a simple implicit scheme.  The assumption is made that non- 
linear, Coriolis, and eddy viscosity terms are of relatively minor import- 
ance, hence a simple backward difference approximation is used for them. 
Our starting point is 



TWO-LAYER CIRCULATION MODEL 2413 

V + 59 " !H (25) 

M Q - DTH = P    -  CQ- EQ (26) 

A direct  application  of  the   trapezoidal  rule  is possible.     However, 
storage   requirements   are excessive  since  one has   to solve  for all  3N   (N 
is number of nodes)  unknowns  at  the same  time,  and furthermore  the  coeffi- 
cient matrix is  unsymmetric.     18N*BW words  of  storage  are  required where 
BW is   the minimum bandwidth. 

To  circumvent  the  storage problem a split-time  scheme was  devised.     The 
variables H  and Q are  staggered in  time  such  that H  is   defined at  time  t, 
t + At,   and Q  is  defined  at  t - -^At,   t + -rAt etc.     In  this way, we  can write 
(25)   as 11 

MJJH = PH - DQ (27) 

M Q = P     - CQ -  EQ + DTH (28) 

and solve   (27)   and   (28)   in successive  order.     The  coefficient matrices  re- 
main symmetric,   and required storage  is  reduced  to  5N-BW words.     In addition 
the  accuracy is  improved because  the  difference  approximations  are  central 
rather  than backward,   and also  significant economy  in  computation  time  is 
realized. 

The  stability  of  the  linearised,  homogeneous  initial value problems   can 
be  investigated with  the matrix method.     We  define 

M    = M. +  Sit  E (29) 
~1       ~Q 

M    = M„  -   (l-O)AtE (30) 
~2       ~Q 

and write   (27)   -   (28)   as: 

(M    + 8AtC)Q J.-     =   (M    -   (l-9)AtC)Q     1 + AtDTH    + At P„ (31) 
~1 ~  ~n+-^ ~2 ~  ~n^«- ~  ~n ~H 

^n+l=-At59n4+Wn + AtEH (32) 

Their  combined form is 

M    +  BAtC       0 QJ. M    -   (l-G)AtC 
1 ~       ~   K   j ~i..2 

AtD tt, 1    | H 

n+2 (        1-2 

n+1 

Taking  6 equal  to  1  corresponds   to  a fully  implicit  treatment of  Coriolis 
and eddy viscosity,   and  8 equal  to  0  is  equivalent  to  a  completely explicit 
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treatment. Values between 0 and 1 are also possible. We use 8 = 0 in 
our "split-time" scheme. 

By defining    ^  fQn+i] 

(33) takes a more convenient form, 

(M + 8C + D) X ^ = (M + (1-9)0 + DT) X (35) 

Expressing X as 
~n+i X J_.   =  AX (36) 

~n+l ~n 

and substituting   (36)   in   (35)   leads   to 

m + At[(l-8)(-a)  + d  ]  - iAtU      +  (l-6)c     ] ,„, 
1    S S S SS \ J I ) 

~ m + At[8(e)  + d  ]  =  iAt|d      + 8c    ] 
S 3 S S S 

where i = V-l; m>0; e>0; subscript s signifies that the value stems from 
the symmetric part of the matrix; and ss denotes the skew symmetric con- 
tribution. 

For  8=  0,  we  obtain 

m + Atd     - Ate -  iAt[d      + C     ] 
-\   _ S SS SS /oo\ 
A" iTTTEd     +   iAtd Ub; 

S SS 

When eddy viscosity  and Coriolis   terms   are neglected,   (38)   reduced  to 

I m + Atd     -  iAtd      I 

^Hm-T-Atd^iAtd55!-1 (39) 
S SS 

Therefore,   under  the  given assumptions,   the   0=  0  split-time  scheme 
is unconditionally  stable.     However,   application  of  the method has   reveal- 
ed  that  instability sets i.n«f Courant numbers  larger than approximately  1.5. 
An explanation  is not yet known,  but possible  sources  of  instability  are 
non-linear effects,  boundary   conditions   and bottom variation.     This   is  ob- 
viously an area where more  research  is needed. 

RESULTS.   VERIFICATION  STUDIES 

The most  desirable verification  of  a numerical  model  is   a  comparison 
with  an  "exact"  analytical  solution of   the  same  system of  equations.     Fortune- 
ly,   the  analytical solution of  standing waves   in  a 2-layered infinitely wide 
channel  of  length  is  known and we  use   this  as  a basis   for verification.     Fig- 
ure  5 shows  a side view of  the  channel and plans  of  two grid configurations. 
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|f     a  sxn(uit) 

rt 

LAYER Z h, - 10 m 

LAYER 1 h,* lOrn 

—7.—r,.,T...jr,.,.r.,r,.y,,,.,;r.y ,  ,,r   ..y     -y       /    v _,„  ,,..v..j f,.   „r..j y ., y- 

L- L -- 500  m 
•r *./ 7 V ^""'V—p—y—r-j—y.....j—.,—y-j/-^ 

Side view of channel 

Flan view of channel with grid. Ax=50 m; Ay=50 m; At=2.5 sec. 

Plan view of channel with fine grid. Ax=25 m; Ay=50 m; At=1.25 sec. 

Fig. 5. Sketch of first comparison study. Rectangular channel. 

The solution for the surface and interface displacements r\   ,  n with a 
forcing consisting of sinusoidal oscillation (amplitude a) of the surface 
and no movement of the interface at the entrance is given by 

gh gh 
ri = {k(l 1 k2)cos k x + B(l- \ k2)cos k x \ sinwt 

.to       i i to       2 -    • 

f)    =     jA cosk x + B  cosk xV sinwt 

(40) 

(41) 

with 
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a(l - —Ik2) a<~Jk, -  1) 
A - a„» -; B-  !?     x      u  (42) 

gh gh 
(k2   - k2)  --§• cosk L (k2  - k2)—Icosk L 

I     2    U       1 1     2  .10      2 

,-h  , h .        £T~p  A  ~h 1 
-  1 <"l + "g)..,2  +  ,,2 //l Hl ("l + "2)^  Hl   1 1    2 . 

) 12 12 12 

The numerical model was initialised with the correct values of elevations 
at maximum displacement (velocities zero) and then run with the forcing for 
several tidal periods (T = 500 sec). 

The analytical results and absolute error in the numerical solution are 
plotted in figure 6. The agreement for the fine grid is reasonable although 
not impressive. 

The forcing period T was increased to 1000 sec, so that the number of 
short waves in the channel is approximately 1. Results are plotted in figure 7 
and show very good agreement.  This indicated that about 20 points per full wave 
length are necessary with the linear element for an accurate representation. 

The second comparison is only qualitative, since it is impossible to 
satisfy the same boundary conditions in analytical and numerical models.  The 
problem involved determining of the harmonic oscillation in a rectangular basin 
with an opening on one side.  The dimensions of the basin are chosen so as to 
approximate the Massachusetts Bay on the east coast of the U.S. 

The analytical solution of this problem is developed in [3] and is expressed 
in terms of infinite Fourier series.  Collocation was used to specify the boun- 
dary conditions as discussed in the reference.  In the numerical computation, the 
free surface was subjected to a tidal excitation, and the interface surface was 
fixed at its initial position. A sample plot of layer velocities is shown in 
figure 8, which compares favorably with the analytical results in figure 9. 

CONCLUSION 

The value of a model is determined by its ability to describe actual 
physical processes.  For this type of evaluation, much more data is needed. 
The finite element method appears advantageous with respect to flexible spatial 
discretization and treatment of boundary conditions.  The formulation is inde- 
pendent of grid configuration arid choice of element type, since the structure of 
the equations remains the same.  Compared with well-known finite difference 
models, the bandwidth of the finite element coefficient matrix is usually larger 
but the finite element model requires less nodes, i.e., less unknowns.  Thus 
storage requirements are usually somewhat less, but the finite element method 
mightrequire more computations. Additional research needs to be done on the 
time integration in order to increase the time step.  The ocean boundary con- 
ditions are extremely important and additional work is needed to determine those 

properly. 
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Initial position of 
surface 

Initial position of 
interface 

Error magnified 5x 

oCoarse grid,   after T 
• Fine grid,  after T 
"Fine grid,   after   2T 

Fig   6,   Comparison of  solutions   for rectansular   channel.  T=500sec. 

Error magnified  5x. 

* Fine grid  after  2T 

Fig.   7.   Comparison of  solutions  f, or  rectangular   channel.   T=1000  sec. 
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