
CHAPTER 118 

ECONOMIC APPROACH TO OPTIMIZING DESIGN PARAMETERS 

W. Edgar Watt and Kenneth C. Wilson 

ABSTRACT 

For coastal engineering works, as for other structures, the 
designer must search for the economic optimum point. This point 
represents the minimum in the sum of direct cost and cost of possible 
future damage.  By setting up functional representations of these costs 
the optimum can be obtained directly. This approach is illustrated by 
models developed independently in the Netherlands and in Canada. At 
this stage the output of the models may be denoted as the 'perfect 
knowledge' optimum, in the sense that parameters of the cost functions 
are assumed to be known with complete accuracy. 

In the 'real world' case, however, the estimated values of the 
parameters will be subject to considerable uncertainty.  It is shown 
that because of this uncertainty the 'real world' design optimum will 
generally be shifted to give a structure larger than that indicated by 
the 'perfect knowledge' assumption. The novel contribution of the 
present paper consists of analyzing this shift to obtain simple 
expressions for the apparent overdesign due to uncertainty and for the 
resulting cost increase.  An illustrative example is presented. 
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INTRODUCTION 

Structures which must resist natural forces are generally 
designed to withstand a potential damage event which can be defined by 
a specific return period.  For most coastal engineering works damage 
can be associated with wave action. Although a rigorous description of 
potentially damaging waves would involve spectral analysis, in common 
practice it is found that a single wave height parameter is sufficient 
to quantify a potential damage event,  i.e. a given storm.  The wave 
height can then be combined with the appropriate tide height to yield 
the height parameter h .  This parameter is taken to be a random 
variable which has a probability density function f(h)  (Figure 1) 
and cumulative distribution function F(h) .  Engineers commonly use 
the exceedance probability, p = 1 - F(h) , or its reciprocal, the 
return period T , as indices of the magnitude of the event. 
Selecting a specific value of the height parameter as the design 
height,  H, , is equivalent to fixing the return period,  T , of the 

potential damage event which the structure is to withstand. Conversely, 
specification of a return period defines the design height. 

In principle, the optimum design can be obtained by economic 
analysis.  With small T  (and H.)  the initial outlay for construction 

will be low, but the cost of probable future damage will be large.  On 
the other hand with large T  (and H,)  probable future damage will be 

small but construction cost will be greatly increased.  The optimum 

return period,  T , which lies between these extremes, produces a 
minimum in the sum of construction cost plus cost of probable future 
damage.  Figure 2 shows this optimum point. 

The optimization process can be carried out by successive trial 
designs but this is tedious, and in many cases a valuable simplification 
can be made by approximating both the construction cost and the cost 
of probable future damage by mathematical functions.  In particular, 
this approach provides a suitable method for dealing with groups of 
similar structures.  Although some design studies may be required to 
determine the numerical values of coefficients included in the 
functions, the optimum point can now be obtained directly by 
differentiating the total cost for a minimum.  This approach to the 
optimum design of coastal works was pioneered in studies made in the 
Netherlands. An analysis developed independently in Canada for flood- 
control works in inland waters is conceptually similar and provides a 
valuable alternate formulation for coastal structures.  In both cases 
the expressions obtained for the optimum show the effects of the 
regional probability function and the type of structure.  In addition, 
the importance of economic factors such as interest rate is taken into 
account. 
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'PERFECT KNOWLEDGE' OPTIMIZATION 

Overall Concept 

The development of the analytical model is carried out in two 
stages.  In the first stage the relations leading to the economic 
optimum design for a typical structure are set up to yield the common 
return period for a regional aggregate.  In dealing with these 
relations it is assumed that all the required parameters, including the 
characteristics of the regional probability function, are known with 
complete accuracy. This may be termed the 'perfect knowledge' case, on 
the understanding that the knowledge of extreme events extends only to 
the statistics of their distribution and not to their particular 
values in specific future years. 

This first stage -- the 'perfect knowledge' model -- is outlined 
below.  In the second stage, which will be dealt with in subsequent 
sections, the analysis is modified to take account of the effects of 
uncertainties in the input data, including uncertainty in the assumed 
regional probability function. 

Cost Functions 

As mentioned previously, economic analysis could be carried out 
by determining direct cost and damage cost for a series of trial designs. 
However, greater insight can be obtained by using continuous cost 
functions rather than discrete trial values. The functions for direct 
cost and damage cost are expressed in terms of an appropriate variable, 
denoted as X , which is known as the scope of the trial design.  In 
coastal engineering problems X would represent the height of a dike 
or breakwater above some datum level. Note that here the scope X is 
quite distinct from the height parameter h .  The lower the value of 
X which is selected, the greater is the probability of overtopping, 
and hence of damage. 

The specific relations linking direct cost and damage cost to 
the scope X are somewhat different in the Netherlands and the 
Canadian models.  These relations are set out in Table 1.  However, in 
the text below these relations are given in general functional form. 
Whenever possible, the nomenclature used in the Netherlands study has 
been adopted. 

Direct Cost:  The direct cost,  I , comprises construction cost 
plus capitalized cost of annual maintenance over the lifetime of the 
structure. Therefore,  I is an increasing function of the scope of the 
trial design, which may be written as 

I = <f>1 (X) (1) 



2036 COASTAL ENGINEERING 

TABLE  1 

SUMMARY OF PERFECT KNOWLEDGE OPTIMIZATION 

Relat ion 

X 

Netherlands Model 

Scope X = H - H o 

Direct Cost I = 4,1 (X) I = io+ I'X 

Exceedance 
Probability 

P = Y 
= ^2   CX) 

-aX 
P = P0 e 

Damage Cost 
per Event *3 <X> 

W 

Present Value 
Function 

f (5, L} l/« f 

Cost of 
Probable 

R = ^(6,L)^2{X)^3 CX) R = R e-°X 
0 

Future 
Damage 

(R = p W / 6) k 0   *o      J 

Optimum Scope 

Optimum 
Return Period 

R a 

Canadian Model 

X = Q - 0 

P = (X/A)" 

((1 + 6)" - 1) / 6 

K =fL A^ 

h. 

(X/A)q 

(m+n) 

Relative Loss D =  * (e^.i) + (e 
-ny/q 

D a (I+R) : (I+R> 
R 

y = In (T/T) 

In the Canadian model the direct cost can also be expressed in the more general 

form 1=1 + K,X  .  This change does not affect the other equations given above. 

The expression given here for'damage cost per event1 is one of the possible 
formulations studied in the Canadian model.  For further information see 
reference 4.  Note that when r = 0, Xr = 1 and K  corresponds to W of the 
Netherlands model. 
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Cost of Probable Future Damage:  The cost of probable future 
damage or future losses, R , 

is the total present worth of possible damage events during the service 
life.  Hence,  R equals the product of two factors; the first is the 
present worth function of the interest rate and the service life, 
ij; (6, L) ,  and the second is the probable cost of damage in any 
individual year.  The second factor, in turn, is given by the product 
of the probability of a damage event,  <j>  (X) ,  and the ensuing 
damage cost, <|>, (X) . 

R = <p   (6, 10 • <t>2 (X) • <|>3 (X) (2) 

Optimum Scope and Optimum Return Period 

The optimum scope, X , which is associated with the minimum in 
the total cost can be determined by differentiating equations 1 and 2 
with respect to X and equating the sum of the derivatives to zero. 
The corresponding optimum return period is obtained from the reciprocal 
of the exceedance probability. 

T = 1 / <(>2 (X) (3) 

Relative Loss 

The difference between the total cost,  I + R , for any value of 

X and the total cost for X can be defined as a loss due to lack of 

optimization.  This loss, divided by some typical cost (say R ) , is 
denoted as the relative loss,  D .  In this work D is expressed not 

in terms of  (X - X)  but in terms of the relative return period T/T 
or, to be more specific, its natural logarithm, denoted here by y. 

D = <f>4 (y) (4) 

Figure 3 shows the form of this function. 

CONSEQUENCES OF UNCERTAINTY 

The optimization process dealt with in the previous section was 
based on the assumption that all the required parameters were known 
exactly.  In the 'real world" situation, however, the values employed 
necessarily represent estimates made from available data.  These 
estimates are, of course, subject to significant uncertainty. 

On initial inspection it might be thought that such uncertainty 
would not influence the design return period, which could still be taken 

as the 'perfect knowledge' optimum,  T .  However, further consideration 
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will show that this is not generally the case.  The total cost function 
is not symmetric about its minimum point, and for structures of the 
type considered here the left hand limb of the curve rises much more 
rapidly than the right hand limb, as illustrated by Figure 2.  It 
follows that the penalty for underdesign is greater than that for an 
equivalent overdesign.  If the 'perfect knowledge' optimum were 
adopted for design, then cases of both underdesign and overdesign would 
occur, but the total penalty, or financial loss, for the cases of 
underdesign would exceed that for the cases of overdesign.  In these 
circumstances the total loss can be reduced by the strategy of adopting 
a design return period larger than the 'perfect knowledge' optimum. 
The analysis of the 'real world' case which is given below relates this 
apparent overdesign to the degree of uncertainty and other parameters. 

It may be remarked that the analysis of such an apparent overdesign 
in terms of degree of uncertainty represents the formal expression of a 
concept which is implicit in the traditional factor of safety. The 
apparent or 'perfect knowledge' optimum design for most simple structures 
represents the boundary between underdesign, which results in failure, 
and overdesign, which adds excess material.  Here again, the penalty 
for underdesign exceeds that for equivalent overdesign, and this is 
taken into account in practice by apparent overdesign inherent in the 
use of the factor of safety.  It is an old truism that the factor of 
safety might well be called the 'factor of ignorance'. This is 
demonstrated by the increased factor of safety used in situations of 
increased uncertainty. For example, a large factor of safety will be 
applied for a natural material with highly variable properties, but a 
smaller factor will be applied for a manufactured material of controlled 
quality. 

OPTIMIZATION UNDER UNCERTAINTY 

Probability Distribution for Optimum Return Period 

As noted above, in the 'real world' case, the various quantities 

included in the expression for T are not known with absolute certainty, 
but must be considered as probabilistic in the sense that during the 
design process their values can only be estimated within some margin 
of variation or uncertainty. Therefore, if the best present estimates 
of the various quantities are substituted into equation 3, the result 
will be affected by these uncertainties.  It follows that the estimated 

optimum return period T (based on the 'perfect knowledge1 formulation) 

can be expected to differ from the true optimum T  by some amount 

which represents the combined effect of the uncertainties of all the 
components. 

Therefore, the value of the true optimum, T , can only be 

expressed by means of a probability statement.  This statement would 
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D(y) 

y=ln(T/T) 

FIGURE  3       RELATIVE   LOSS   FUNCTION 

f(T) 

T= ln(T/T0) 

FIGURE   4      PDF   FOR  OPTIMUM   RETURN    PERIOD 
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normally take the form of a cumulative distribution function or its 
derivative, the probability density function  (pdf) .  The pdf for 

T  could be determined by a Monte Carlo type analysis, using Equation 3, 

if information were available on the pdf for each of the variables. 

In the present analysis, T  was assumed to be lognormally distributed 

about its estimated value  T (i.e.  In (T/T ) = x = N (0, a  )). 

This is shown on Figure 4. The standard deviation, a    ,  of this 

distribution is then an index of the uncertainty which results from the 
combined effect of the uncertainties in the various economic and 
physical factors included in the expression for the optimum return 
period. 

Minimization of Expected Loss 

The uncertainties in estimating the optimum return period which 

have been dealt with above imply that for a given installation, T is 

either greater or less than the true value T . Hence a design based 

on T (T, = T)  will result in total cost greater than the minimum, 

and this excess cost can be considered as a penalty or loss.  Because 
of the uncertainties inherent in the 'real world' case, this loss 
cannot be completely eliminated.  The expected loss is defined as the 
summation of the product of loss and probability density over the full 
range of relative return period. 

I EL =  I   D(y) • R • f(x) • dx (5) 

As a result of the asymmetry of the total cost function, and 
hence D(y) , the penalty for underdesign is greater than that for an 
equivalent overdesign, and it follows that the expected loss can be 
minimized by selecting a design return period greater than the 
'perfect knowledge' optimum.  As shown on Figure 5, this can be 
visualized as a shift of the pdf, f(x) , relative to the loss curve, 
D(y).  The amount of this shift is denoted by a  (i.e.  a = y - x 

where a = In T./T , y = In T./T  and T = In T/T ) . The value a do o 
of a required to minimize the expected loss (see Figure 6) can be 
written functionally as 

a = <j>5 (D(y), f(x)) (6) 
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FIGURE   5    SHIFT   TO   MINIMIZE EXPECTED LOSS 

D(y)-f(r) 

FIGURE 6     EFFECT OF SHIFT ON EXPECTED    LOSS 
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Overdesign Factor 

On substituting the particular functions for D(y) given in 
Table 1 into equation S and differentiating for a minimum, one obtains 
the relations shown below for a . 

For the Netherlands Model: 

a = a2. / 2 (ya) 

For the Canadian Model: 

a =  (1 - (r + m) / q) • a2 / 2 (7b) 

Here r, m,  and q are exponents used in R-X, I-X and p-X 
relations respectively. 

As an alternative formulation, it may be useful to express this 
shift in terms of the design scope X (i.e. dike height above.some 
datum level) and its uncertainty as given by a„ or a,  „ •  In 

this case, using the scope-return period relation (equation 3) the 
following expressions are found for the Netherlands and Canadian 
models respectively. 

Xd = * + f aX C8a} 

ln xd = mx*3« a2n x (8b) 

Minimum Expected Loss 

Substitution of the values for a (equation 7) into equation 5 
yields the minimum value for the expected loss. As with D , a 
dimensionless form (L . ) is obtained by dividing this value by R . 

The resulting expressions for L .  are as follows. "      r mm 

For the Netherlands Model: 

L .   = a2 / 2 (9a) mm     T 

For the Canadian Model (ignoring certain higher-order terms): 

= n(n + m) ^ 
mm       2     T K    ' 

q 
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SIGNIFICANCE OF FUNCTIONAL MODELLING 

The principal outputs of the two functional models of economic 
optimization have been presented above.  Although the 'perfect 
knowledge' sections of the two models were developed completely 
independently, they show considerable basic similarity. The 
Netherlands model specifically assumes a straight line relation for 
construction cost and because of this linearization and the shape 
assumed for the regional probability distribution, it is able to use 
a minimum number of parameters.  The Canadian model is not constrained 
in this fashion, and thus is more versatile. At the same time, 
however, it requires more parameters. 

Under the conditions for which the Netherlands model was 
developed, it would appear that the results of the two models are 
virtually equivalent.  This is illustrated in the appendix, using the 
data to which the Netherlands model was originally applied.  It is 
seen that the calculated 'perfect knowledge' dike height is 5.97 m 
for the Netherlands Model and 5.92 m for the Canadian Model. 

The more recent developments of functional modelling in Canada 
have been directed to the effect of uncertainty, as noted in a previous 
section. This work comprises the extension of both the original 
Netherlands model and the Canadian model to allow for uncertain data, 
and it has been shown that in this 'real world' case the design scope 
should be larger than the 'perfect knowledge' optimum. The fact that 
the functional representation of optimum design can provide simple 
quantitative expressions for this 'apparent overdesign' or 'factor of 
ignorance' demonstrates the advantages of this technique over the 
conventional trial design method. 

The figures shown in the appendix again indicate that the two 
models give similar results, with the 'real world' optimum design 
heights being 6.14 m and 6.09 m for the Netherlands and Canadian 
formulations, respectively.  For the data used in this particular 
example the difference in dike height may not be large, but nevertheless 
the increase in construction cost over the'perfect knowledge'optimum 
amounts to about 7 000 000 guilders for both models.  By including 
the effect of data uncertainty in the analysis, the 'real world1 

modelling has shown that this extra construction cost is justified by 
a reduction in the probable cost of future damage. 

The loss or extra cost due to uncertainty, which equals or 
exceeds the increase in construction cost noted above, can potentially 
be reduced by improved data-gathering systems and prediction 
techniques.  In this connection the estimates of this loss provided by 
the 'real world1 functional modelling can provide a rational basis for 
allocating resources to field measurement and analytic studies 
directed to reducing uncertainty. 
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APPENDIX 

EXAMPLE CALCULATIONS WITH NETHERLANDS AND CANADIAN MODELS 

Data 

The data given below have been abstracted from the Report of the 
Delta Committee cited in the list of references. 

Annual exceedance probability of levels h metres above MSL given by 

p = 2.63 e"2-97 (h-1'70^ 

with estimated uncertainty (expressed in a      units) of 

o  = 0.23 (h-1.70) 

Effective annual interest rate (interest minus inflation), 0.015 

Costs, expressed in Mf (1 Mf = 10 guilders) 

Washout Cost,   W = 24 200 Mf 

Direct Cost,   I = 110 Mf at H = 5.00 m 

I = 150 Mf at Hd = 6.00 m 

'Perfect Knowledge' Optimization 

a) Netherlands Model  In this case X has an arbitrary origin.  It 
will be taken as X = H, - 5.00.  Also, from 

d 
above a =  2.97.  The resulting expressions for I and R , in Mf, 
are 

-? Q7 Y 
I = 110 + 40 X  and  R = 242 e 

1     Roa 

X = - In ~    = 0.97 m a      I' 

H, = 5.00 + X = 5.97 m a 

I = 148.8  and  R = 13.4 

b) Canadian Model  In this case the origin of X is taken as the 
same as that of the height distribution,  i.e. 

X = H, - 1.70 d 

Equating direct and damage costs to the values at H = 5.00 m and 
6.00 m (X = 3.3 and 4.3)  gives m = 1.17.  With r = 0, q = n = 
11.15.  Thus 
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27.2 (X)1'17  and  R = 1.46 x 108 (X)"11-15 

, l/tm+n) 

m K. 1> 
4.22 m 

H, = 1.70 + X = 5.92 m 
Q 

I = 146.6  and  R = 15.4 

Effect of 'Real World' Uncertainty 

a) Netherlands Model  Since H, = 6 m, a      should be evaluated 
 — •  d        T 

at this point. 

i.e.    a      =    0.23 (6 - 1.7)  =' 1.0 

a 
CJ„ .337 

Xd = * + 1 °\2    = 0.97+0.17 = 1.14m 

H, = 5.00 + X, = 6.14 m a a 

I, = 155.5 d 

Loss due to uncertainty = L . R = •=— R = 6.7 '     mm      2 

b) Canadian Model  Again, a =1.0, and, thus 

a 
a,  v = — = .0897 In X    q 

In X, = In X + q"^"m a? „  = 1.440 + .040 = 1.480 
d 2   In X 

X, = 4.39 m a 

H, = 1.70 + X, = 6.09 m d d 

I, = 153.6 a 

Loss due to uncertainty = L .  R mm 

= ^ ^  R = 8.5 
q 


