CHAPTER 117

Wave osctliktions n w ofyshow oll sforage pank

ky tocshang Raissi ${ }^{1}$

INTORDUCTION

The rapidly incrasing dumand to exploit knom offshore oil fieids thronghout the wor? , and the costly conventional metind of pining the on to the shore here given sumport to the concept of offonce stcrafe feminals loceind in the imnediate vicinty $a f$ the field. The Ktazzan Dubdi oil storage tank at Fateh fiold, iffEhnce from Dubai (Chamberlin, 1970), the Danargad one million-bbil crude-nil storage barge at Sy us fietd, iran, offshore in the Persian Gulf (Feizy and Mcibnald, 19/2), ant the ne: offshore reinforedcomete aifion ob: oil storage tank th the mofisk field in the Vortr Sei (Cuean Jndustry, 1972), show the ran attitude which the のftise oilproduction industry has developed toward wir sys:em.

A closed floating, or pile-supprrted, bottomless barrier migh movide an effective solution for storing oil offshore or containing an oili spint.

The crude oil coming from the protuction platform is injected at the: sea level inside the closed botomless barriet, it dispalco the water inside, and remains above the watex as a resuit of its densioy, The oscillations of the internal wave at the interfac: of oil and water and the surface wer resulting from different incident waves in such a container mie stalieu in this work.

THEORETCAI: ANALYSIS
Suppose that a homogenous layer of funid of density o_{1} (oil) of thiskness in lies wier another homogeous luver of fluid of deasity o_{2} (water) of thickness Fl h (see Fig. i). The two fluids are yngiecintu and tile sartece tension and viscosity of the fluids will a: br taken into accomi.

[^0]The boundary conditions at the interface are as follows:
a. Vertical velocity is the sane in buth fluids:

$$
\begin{equation*}
\phi_{1_{\mathrm{Z}}}=\Phi_{2}=\eta_{2 \mathrm{Z}} \quad \text { at } \quad z=+h \tag{1}
\end{equation*}
$$

b. Presstre is continuous or the interface:

$$
\begin{aligned}
& P_{1}=\rho_{1}\left(\Phi_{1} t+\rho\left(h-n_{2}\right)\right) \\
& P_{2}=\rho_{2}\left(\Phi_{2 t+g}\left(h-n_{2}\right)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
\rho_{2}\left(\Phi, t+g\left(h-\eta_{2}\right)\right)=\rho_{2}\left(\phi_{1} t+g_{\left(h-\eta_{2}\right)}\right) \tag{2}
\end{equation*}
$$

Taking the partial derivacive of Eq. (2) with respect to t gives

$$
\begin{equation*}
\rho_{2} \Phi_{2 t t-} \hat{A l}_{1} \Phi_{1} t-g\left(\rho_{2-} \rho_{1}\right) \quad n_{2 t=0} \tag{3}
\end{equation*}
$$

The free-surface boundi $y^{\prime \prime}$ condition is

The botton boundary condition is

$$
\begin{equation*}
\Phi_{2 z}=0 \text { at } Z=\mathrm{H} \tag{5}
\end{equation*}
$$

From the continuit, equation for an incompressible fluid, $\vec{V} i=0$, and the defincion of the velocity potential, Laplace's equation is obtained:

$$
\begin{align*}
& \nabla^{2} \Phi_{2}=0 \tag{6}\\
& \nabla^{2} \Phi_{2}=0 \tag{7}
\end{align*}
$$

Therefore, the problom is to find the velocity potentials Φ_{1}, and Φ_{2}, which satisfy Haplace's equations, Eqs. (6) and (7), subject to a number of prescribed boundary rorititions. Using the inethod of separation of variables, we will yet to the following equation, (wehausen 1970).

$$
-\frac{\sigma^{2}}{\delta k}=\frac{\rho_{2}(\operatorname{coth} k h+1)+\left\{\rho_{2}(c o t h k h-1)+2 p_{1}\right\}}{\left.2\left\{\rho_{2}\right\} \operatorname{coti} h h+\rho_{1}\right\}}
$$

$\operatorname{Son}(+)$

$$
\begin{equation*}
\frac{x^{2}}{\dot{b k}}=1.0 \tag{9}
\end{equation*}
$$

for (-)

$$
\begin{equation*}
\frac{\sigma^{z}}{g_{h}}=\frac{\rho_{2}-\rho_{1}}{\rho_{2} \operatorname{coth} k r+\rho_{1}} \tag{10}
\end{equation*}
$$

From Eq. (g) we hive

$$
\begin{align*}
& \eta_{1}=(a \cos k x+b \sin k) \sin (o t+\tau) \tag{11}\\
& \eta_{2}=e^{-k h}(a \cos k x+b \sin k x) \sin (o t+\tau) \tag{12}
\end{align*}
$$

and from Eq. (1u) we have

$$
\begin{equation*}
n_{1}=(a \cos k x+b \sin k x) \sin (o t+\tau) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{2=} \frac{\rho_{1}}{\rho_{2}-\rho_{i}} e^{\ln (u \cos k x+b \sin x) \sin (o t+x)} \tag{14}
\end{equation*}
$$

Tro-Dimensional Case (A Roctangular Bottomless Container)
For the case of tivo barriers extending from the surface to a given deprh (D), asseniug that the dopih of immersion of the barricers are hagger than half of the surfee wavelength. In order to have a rosonarce motion within the container, we nust have

$$
\begin{equation*}
\frac{n L}{2}=B \tag{15}
\end{equation*}
$$

where n is the number of half-wavelengths, and B is the distance between the barriers. From Eq.(15),

$$
K=\frac{\pi n}{B}
$$

Then Eq. (9) becomes:

$$
\begin{equation*}
\frac{\sigma^{2} B}{\pi g}=n \tag{16}
\end{equation*}
$$

and

$$
\begin{aligned}
& n_{1}=A \cos \frac{\pi n}{B} \sin (\omega t+\tau) \\
& n_{2}=A e^{-k h} \cos \frac{\pi n}{B} \sin (o t+\tau)
\end{aligned}
$$

Then Eq (10) becomes:

$$
\begin{equation*}
-\frac{\sigma^{2} B}{\pi g}=n \frac{1-\frac{\rho_{1}}{\rho_{2}}-}{\operatorname{Cotin}-\frac{\pi n h}{B}}+\frac{\rho_{1}}{\rho_{2}} \tag{17}
\end{equation*}
$$

and

$$
\begin{aligned}
& n_{1}=A \operatorname{Cos} \frac{\pi n}{B} \sin (\sigma t+\tau) \\
& n_{2}=-A \frac{\rho_{1}}{\rho_{2}-\rho_{1}} e^{k h} \operatorname{Cos} \frac{\pi n}{B} \sin (\sigma \tau+\tau)
\end{aligned}
$$

There will be resonance with a latge surface wave whenever

$$
\begin{equation*}
\frac{\sigma^{2} \mathrm{~B}}{n g}=1,3,3 \ldots \tag{18}
\end{equation*}
$$

There will be resonance with a large incernil wave whenever

$$
\begin{equation*}
\frac{\sigma^{2} B}{\pi g}=\frac{1-\frac{\rho_{1}}{\rho_{2}}}{\operatorname{coth}-\frac{\pi h}{B}+\frac{\rho_{1}}{\rho_{2}}}, 2 \frac{i-\frac{\rho_{1}}{\rho_{2}}}{\operatorname{coth}^{2}-\frac{h}{R}+\frac{\rho_{1}}{\rho_{2}}}+, \ldots, \tag{19}
\end{equation*}
$$

This is not the exact solution of the prohlem, beculuse the barriers were assumed to extend to a depth which is more than half a surface wave length and also the water depth if was crisidered to be infinite. For this reason the experimental wave heigrit of the internal waves and surface waves were compared wieh the numerical solution of this problem, Based on avaritional form of the equation for steady cscillatory irrotational motion of an inviscid incompressible fluid (3ai, 1s.2).

Three Dimensional Case (Circuiar Dottomiess Container)
The amplitude variation in polar coordinates in the case of oscillatior in a circular basin of constant depth is aesciabed by the follcwing expression (Lamb, 1932):

$$
\begin{equation*}
n=\Sigma_{m} \Sigma_{\mathrm{m}} J_{\mathrm{m}}(\mathrm{Kr} ; \operatorname{Cor} 0 \operatorname{Cos} \sigma t \tag{n}
\end{equation*}
$$

For oscipation inces a cylinder, the following mundary condition should be satasried:

$$
\begin{equation*}
\frac{\partial r}{\partial r}=0 \quad \text { at } \quad r=a \tag{21}
\end{equation*}
$$

This is identical to stating that the normal velocity at the boundary is zeic, from Eq.

$$
\begin{equation*}
\hat{i}_{m}(K a)=0 \tag{22}
\end{equation*}
$$

This means a maximum or a minimum (a crest or a trourh) sholit exist at the outer edge of the crinder.

The lowest symnetricai liode of sscillation is the first root uf J_{0} (Ka) \quad Ka $=3.832$

This gives one nodal lircje located at $\mathrm{r} / a=0.683$. The period of the wave which causes this mode of oscijlation at the interface of oil and water can be obtained by substituting Eq. (22) into Eq. (10). This gives:

$$
\begin{equation*}
\frac{\sigma^{2} \underline{Q}}{g}=3.832 \frac{1-\frac{\rho_{1}}{\rho_{2}}}{\operatorname{coth}\left(3.832 \frac{h}{a}\right)+\frac{\rho_{1}}{\rho_{2}}} \tag{2.3}
\end{equation*}
$$

The condition for the same mode of oscillation to occur at the surface of the oil can be obtained by substituting Eq. (22) into En. (0) , giving

$$
\begin{equation*}
\frac{\sigma^{2} a}{g}=3.832 \tag{24}
\end{equation*}
$$

The same calculation $1 s$ being carried for other modes of oscililation,

EXPERIMENTAL EQUIPMENT ANI ARRANGENENTS

Two-Dimencicnal Mraie1

The two-dimensional model stulies were performed in a wave channel thet is 1 ft . wide by 3 ft . decr by 100 ft . long (Fig 5).

At one end of the channel there is a flapper-type gencrator; at the other ond a beach was installed to absorv wave energy and minimige wave reflection. Also shrwe in the figure is a wave finter located in front of the wave machint. A rectangular bottoriless container 1 ft . wide by 1.5 ft . deep by 2.33 ft . long was constructed of $1 / 4$ inch iucite, sinulating a perfectly reflecting rigid barrier.

Two types of wave gages were used to measure the wave ampiitude, one for the interncl waves z_{i} interface of oil and water, and the other for measuring the striface oil waves inside the container.

For the first tyre, parallal-wire resistance wave gages were used (Wiegel, 1953). Since oil is a very poor electric conductor crmaned with tap water only the depth wet the immersion of wires in water is proportional to the probe conductivjty.

For measuring the surface oil wayes inside the container, a crpacitance type wave recorder was used. the capacitor has 1 derinite initial capacitance winich depends on the probe length, distaince beiween the probes, and the dielectric of the material berworn the capacitor "plates".

In adidion, motion picturcs were iaken through the glass walls of the channei (while the container had oil insite) of several experimental runs. The cainer: was mounted so that its line of sight Was pernendicular to the side of the allwite and level witio the triiizurbed oil and water intertace. it eid on the glas wall of the wave chame1, peraitted the measument of the rurface and irternal waves insibe the contriners.

Three-Jimensional Mod1c

This experiment was conilucted in an ripole-tank.
The tank is 20 feet long, $49 \frac{1}{2}$ inches wide, and 4 inches decp. Poidodic weves were gencrated by a mechanical wive flap driven by an electric motor (Fig. 6).

A wave filter was located in front of the wave geierator, and circualr Lucite cyinder was used as a model of a circualr cill container.

A section of the bottom of the ripple tank was made of plate slass, undernearn the glass bottom was a plane mirrur motate at 45 degrees to the horizontal. A strong light source was retilected by the mirror thirough the giass bottom. The light beams were corvergcd by nave srests and divergef by wave troughs. This permitict visual observations of the wave patterns on a horizontally moun ied tiacinspapor screen acuve the taik. Pictures were taken of the wave pattanns inside the cylinder at different incident-wave conditiors by a camera located above the tracinc-paper screen (Fig.1).

PRESENTATION AND DISCUSSIOA OF PESULTS

Two-Dimensional Model Study

Fxperimental studies were conducted to measura the perioits of waves causing oscillotions at the interface of oil and water, and also at the surface of the water.

Measurements were also made of the distribution of maxam
intemat and surface-wave amplitudes, iaside the tro-rimensionel c:container. Three differert liquids with specific grawitics ot $S=0.685$, and 0.830 and 0.910 were used to suistitute for oin inside ire nicel. the experimonts were run for only one depth, $H=1.5$ ft., and one immersion depth of the barriers, $D=0.5 \mathrm{ft}$. An oil layer of thickness $\mathrm{h}=0.3$ was used inside the oil container (ig. 1) for all the experiments.

The theorotical solition described in "heoretical scetien t qs. (18 and 19) was used to predict. the frequoncies associuted with surface and internal wave oscillations. Figures 2 to 4 ill ditiate the theoretical and experimental valuse of $a^{2} g / r g$ for any mode of surface - and internal-wave oscillation.
filthough the mathonatical treatmen: was carrien cuï waier the assumption that the depths of the jmersion of the barrions tio larger than $/ 2$ the surface wavelergth ($\mathrm{D} \geqslant 1 / 2 \mathrm{~L}$), the experimental results correspond very well with the theory for all rarges of wave periods ($T=3.8$ to 0.65 sec .).

A small difference could be detected between the theoretical values of circular wave frequency and the experimental. ones for the surface-wave oscillations. The experimental values were higher than the theoretical ones, especially for the first mode of oscillation which is associated with longer waves. This difference is due to the change in wave number associated with surface wave oscillation caused by insufficient innersion depth of barriers, which miakes the theoretical solution orily annroximate.

However, this effect is nct important for riigher modes of surface oscillations and internal-wave oscillations owing to the short wave lengths causing them. In this case the theoreticai assump + ion $\mathrm{D} \geqslant 1 / 2 \mathrm{~L}$ is valid.

Comparison of Figs. 2,3 and 4 show that tiec change in oil density does not have any significant effect on the period of waves causing the oil-surface oscillations, but that it has a signjficant effect on the wave periods causing the iniernal-wave oscillations. Tie greater the density of the oil, the latger the ware period corrcipacing to any nocie of oscillatiois.

The computer numerical technjaue (bai. 1972), was 'aseb to cairulate Amplification Factors for cmparison with the experimental meastrements, (Figs 7 and 8).. The amplicication factor (A) for the surface waves is the ratio of the maimu wave height to the inciant-wave height, and for the internal waves it is the ratio of the maximum inemaiwave height to the inciocnt-wave height. The experimental resuitis for the internal waves agree we? with the theory. However: the experiment results show a higher anplificacion factur for the surface wave than is predicted by theory. This might be due to an insufficient number of internal boiadary segments being used along the interface of oil and water for the numerical Calculations. An effect of the oil density on the internal - and surfare-wave heights during the osciilations could be seen by comparing rijgs. 7 ard 8. Both show the internal . and surface-wave heights for the first mote of inter-nal-wave oscillation. The internal-wave heights for oil wi.ch a density of $0.83 \mathrm{gr}^{\prime} \mathrm{cm}^{3}$ are higher than the ones for oil with a densioy of $0.685 \mathrm{gr} / \mathrm{cm}^{3}$.

It should be noted that the incident waves that cause oscillations of the highri-density oil are the longer waves, and that the higher internalwave oscillations are partially due to the higher wave onergy wioch can penstrate inside the botcomless storage tank. Figure 7 also shows a lower sirface-wive height for cil with higher density for the first mode of intenal-wave oscillation. 'Tis might be due $i o$ the fact that the wave period causing the first mode of interncl-iave oscillation for oil with lower density, is nearer to the zeru mode of oscillation of the surface wave.

Three-Dimensional Study

This experiment was conducted for a water depth of $11=3.5$ in. The immersion depth of the one-fnot diamere circualr oil contansir was $D=2$ in. An oil layer thichess of $h=1 i n$. was used inside 1 ne ail container. Figure 11 shows photoraphes taken of the difteron modes of osciliation at the interface of the water and oil with an wis density of $0.80 \mathrm{gr} / \mathrm{cm}^{3}$. The theoretical sollticn? Eas. (23 and 24) predicts the frequencies associated with any mode of suriace - ard internal-wave oscillation.

Figures 9 and 10 shon the theoretical and experineretai values of $0^{2} \mathrm{D} / \mathrm{g}$ for ary mode of internal - and suriace-wave oscillarion.

CONCLUSIONS

From the study the following major conclusions are drawn:

1. The prediction from the theory of resonant fiequencies for interna. and suriace waves corresjonds very well with the experimental rosults.
2. A change in oil density does not liave any signifjcant effect or the period of the waves need to cause surface-wave occillation, It does have a significant effect on the period of the waves needed to cause internal-wave oscillation; the higher the dunsity of oil, the higher tin wave period neectea to generate a particualr rode of oscillatior.
3. The experimental results for the intemal-wive amplification factors correspond closely to the numerical results. However, the experimental results give higher amplification fantoss than the theory for the surface waves within the tank.
4. The internal-wave heights are higher for oils with higher density, all other conditions buing equal.

ACMOMLEDGMENTS

The author wishes to express his sincore appreciation to professors R.L. Wieged, J.V. Wehausei and J.W. Johnson for their hely and adrise throughout this research. Dr. June Bai is acknowledge for his compite: progrnn which was used it this work.

Tije work reported hescin was partially supported by the coirtal Engineering Research ccatei, corps of Engineers, U.S. Amy. It was also partially supported by the Sea Grant Program at the university of Calaifornia.

REFERENCES

1. Baj, Krang, Juñe, "A Variational Method in Potentail Flows with a Free Surface: "Ph.D. Thesis in Naval Architecture, University of California, Berkeley, Cilifornia, 1972.
2. Thatter!in, R. S., "Khazzan Dubai, Design, Construction and Installation, "Chicago Bridge and Iron Co. Paner No. OTC 1492, Preceetings of Second Offshore Techroiogy Conference, Dallas, Texas, April 1970.
3. Feizy, G., and MEDonald, J. E., 'Pazargad-irorld's Largest Crude Oil Storage Barge, "Iran Pan American Dil Cc. Daper No. OTC 1525, proceedings of Fourth Offshore Technology Conference, Houston, Texas, May 1972.
4. Lamt, H., flydrodivnanics, Sixth Edition, Dover Publications, Now York, 1945.
5. Ocean Industry, "North Sea Report, "Thillips Ekofisk Miliion Barrel Oil Stowage Tank Near Completion, PP. 35-35, July 1972.
6. Wiege?, Robert, Parallel Wire Resistance Wave Meter, Coastal Engineering instruments, Council on Wave kesearch, The Fngineering Fonndation, 1953, ก: 59-43.

FIG. 5 DRAWING OF THE WAVE CHANNEL

fig. 9 internal wave oscillation

FIG.i1INTERNAL WAVE PATTERN INSIDE THE CIRCULAR BOTTOMLESS OIL CONTAINER

[^0]: 1- Sristant Professor tuiveroity of cerman - Iran

