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Abstract 

This paper deals with a theoretical method of calculation of the fluid mo- 

tion, when a sinusoidal plane wave incidents to a permeable breakwater of arbi- 

trary shape at constant water depth and shows that the problem for impermeable 

breakwater is solved as a special case of this method. 

The method described here is the extension of the author's method   of so- 

lution for two-dimensional permeable breakwater by the method of continuation 

of velocity potentials for two different fluid regions into three-dimensional 

problems by means of Green functions. 

Here, the analytical process of calculation is presented and as represen- 

tative examples, wave height distributions and wave forces around an isolated 

elliptic- and rectangular breakwater are calculated and compared with experi- 

ments in wave channel. 

The principle of this method is also applied to the analysis of submerged 

and semi-immersed fixed cylinder and the motions of floating body of arbitrary 

shape. 

Introdution 

We have many investigations on wave scattering problem for impermeable, 

straight breakwater, but few of permeable one, especially, of arbitrary shape. 

Here, we show a method of calculation for fluid motion around as isolated per- 

meable and impermeable breakwater of arbitrary shape. 

Assuming the fluid resistance to be proprotional to the fluid velocity, the 

fluid motion in a permeable breakwater regions has a velocity potential. And 

the motion in outer region of breakwater has also another velocity potential. 

These velocity potentials are developed into infinite series of orthogonal 

functions in terms of the depth z from still water surfaces, with eigenvalues 

determined by free surface and bottom boundary conditions in both fluid regions. 

And  the coefficients of terms in  these infinite series are  the functions 

of horizontal  coorinates  (x,y) and satisfy Helmholtz's 

1886 
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equations inherent to their own eigenvalues.  Hence, by Green's identity for- 

mula, these coefficients at any point (x,y) in fluid region are expressed by 

their boundary values and normal derivatives to the boundary.  Moreover, ow- 

ing to the singularity of Green functions on the boundary, the boundary valu- 

es and their normal derivatives of these coefficients are related by integral 

equations.  Then, dividing the boundary into small elements and taking the 

sum, these integral equations are transformed into linear summation equations, 

which relate the values and their normal derivatives of coefficients on the 

boundary. 

On the other hand, by the conditions of mechanical continuities of mass 

and energy flux through the boundary surface induced by fluid motions in out- 

er and inner regions, the values and normal derivatives of above coefficients 

for outer region are linearly related to those for inner region. 

Thus, we have two kinds of linear relations between the codfficients and 

their normal derivatives on the boundary and by solving these equations 

simnltaneously, we obtain the boundary values and derivatives of coefficients. 

Then, by Green's identity formula, the velocity potentials and so the fluid 

motion at any point (x,y) in both regions are completely obtained. 

As for the impermeable breakwater, the velocity potential in outer region 

is expressed by only two terms because of identical vanishing of scattering 

terms in infinite series and also normal derivatives of the coefficients 

vanish by the kinematical condition on the boundary.  Hence the coefficients 

are determined by only one integral equation, from which velocity potential 

is easily determined. 

I  Analysis for Permeable Breakwater 

A sinuoidal plane wave of frequency G( = 2TT/T : T is wave period) is assum- 

ed to incident to a permeable breakwater of arbitrary shape at constant water 

depth h.-  As shown in Fig.l, the origine of cooridinate system is fixed at 

still water surface, x and y axes are taken in horizont, and z axis is ver- 

tically upwards.  The cross-section of breakwater is indicated by a closed 

curve D, which shows the boundary between outer and inner fluid regions. 

Fluid motion* in outer region I is assumed to be small amplitude wave motion 

in ideal, imcompressible fluid, and the one in inner region II to be Darcy's 

flow in porous material of void V with fluid resistance proportion is u. 
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Then, fluid motions in both regions have velocity potential ;J) (x,y, z) exp (-iat) 

and wave function satisfies the following Laplace's equation. 

2     2     2 
3 $   9 $   3 * 

+     +     = 0 (1.1) 
3x"   3yz   9zz 

The general solution of Eq.(l.l) which satisfy free surface and bottom 

boundary conditions and radiation condition is expressed as follows: 

g"0 cosh k{z+h)   M   . ,      cos k (z+h) 
tl(K,y,z)=--[{f0(x,y)+f1(K,y)}^^rTir- +n£l f<n)(x,y) __"__] (1.2) 

which is given by c.=   ^„cos[k(x cosw+ y sinu>)+at], where w is the incident 

angle with > axis. k and k  are roots of the following equation. 

kh tanh kh =-k htan k h = a2h/g (1.3) n      n        ^ 

f (x,y)corresponds to the incident wave potential and is expressed by the 

real part of the following equation. 

fn(x,y) = -i exp[-ik(x cos w + y sinw)] (1.4) 

f,(x,y) and f„  (x,y) are unknown functions which satisfy the following 

Helmholtz's equations. 

,2f     2 2 (n)   ,.2 (n) 
9  1   d     1 2          d f2 2 2 fn) —--A + —-x± +  kzfn - 0 ,   §— + -—%  kzf^nj= 0 (1.5) 
_ 2    „2 1      '2 *   „2 n2 

3x    3y 3 x 3 y 

(ii) Wave function ©„(x,y,z) in region II 

Fluid motion in permeable material with void V and resistance coefficients 

is determined by wave function <E> .  Fluid velocity components u. (i=l,2,3) 

and pressure intensity p are given as follows: 

pA =i^(l + iyV/o) *2e"
10t  -gz (1.6) 

UAi 

And $ (x,y,z) which satisifies free surface and bottom boundary condition 

is expressed as follows: 
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950        , ,      cosh k (z+h) 
4>2(x,y,z) =  —  ?,      f3

lS) (x,y) ^  (1.7) 
°        s = l cosh k h s 

where k  are the complex roots of the following equation. 

Esh tanh kgh = (l+iyv/o) a2h/g      ,(s=l,2,3,4, ) (1.8) 

-(s) 
"3 

2 (s)    2 (s) 
°  3 3     -2  (q)    +  ^  +kZ   f\S>    =   0 (1.9) 
Zx 3y       S 

(iii)  Respresentation of f-, , f^  , f_.   by means of Green's identity formula 

Indicating the point on the boundary D by (£,n) and the point in fluid 

region I and II by (x,y), the distance between them is 

r(x,y:£,n) = r(£,n:x,y) =/(x-5)2 + (y-n)2 (1.10) 

Green functions which are particular solutions of Eq.(1.5) and (1.9) with sin- 
(2) 

gularities of order log r when r tends to zero and satisfy Sommerfeld's 

radiation condition when r tends to infinity are -y^l      (kr) for f , -K.(k r)/n 

for f'n> and - i-H*1' (k r) for f's) , where H*1' and K. are Hankel function of 
2 2 0s        3 0        0 

the first kind and modified Bessel function of order zero, respectively. 

Then, following to Green's identity formula, f (x,y), f'  (x,y) and f'S (x,y) 

are represented by their values f (£,n), f'n (£,n), f'  (F,,n) and their nor- 

mal derivatives f,(F,,n) = 3 f. (£ , n )/k3\>, f'n'(f,,n) =3f 's) (F,, n) /k3u , 
-(s) (sT 12 3 
f\      (£<n) =  3f.i  (F,,n)/k3v  on the boundary D as follows: 

f-^x.y) = - \   lD[fl<e,n>l^<"l HQ1]  <kr) > " '"I^O1' (kr) '^l'5'"' lds    (1-lD 

f^n) (x,y)=-i \n[f,
n> (e,n)|^(-K0(knr)/ir)- (-kKQ(knr)/Ti)f;5

n) (£,n)]ds   (1.12) 

Ho' f-lS) (x,y)= i fn[f^
S) (Cfn)|^(-| H^X) (kgr))-(-| kH^

1' (ksr))f^
s) {£, n) ] ds (1. 13) 

wherevis outward normal to the boundary and integral is the line integral 

taken in counter-clockwise direction along the boundary D. 

Taking the limit when point (x,y) tends to any point (^',r\')   on the 
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boundary, Eq.(l.ll) (1.12) (1.13) give the following integral equations. 

fj_(5 \n')= -\Dt
ii^^)^l'-^lio1)  (^RD-t-IkH^1' (kRnr^t^nHds      (1.14) 

fj"' (£\n '»=-jD
[f2n) (e.n)|^-(-K0(knR)/7r)-(-kK0(knR)A)f2(5,n)]ds  (1.15) 

fl3
s) (S'.n')=]D[f3

S) ^'nlf^-f-fHo11 (£s
R))-("5"kHd1) (ES

R>,!38) (£'n']ds (1-16) 

where  R = y {$ '-£) +   (n '-n ) 

(iv)  Tramsform of line integral to summation 

Dividing the boundary curve D into small N segments S. (j=l,2,3,..N) 

by N points and indicating the central point of each segment by (E, . ,n .) , the 

line integral along D is replaced by summation as follow, for example: 

[Dfl<^n)^(4H^)(kR))dS = ^ fl(5,n) JAs.fv(-iH<
1>(kR..))ds      (1.17) 

/       2 2 
where  R. . -  (£.-£.)  + (n . —n.)   and (£.,n.) is any fixed point correspond- 

ing to (£ ' ,n* ) . 

Thus,Eq. (1.14) {1.15) (1.16) are written by the following summation equa- 

tions . 
N   _ 

f (i) + Z    {   A  f (j)-A  f (j)} = 0 (1.18) 
-1        "i = l    -*--) -1-       •*- J    •*- 

f'n) (i) + l    { B.(n) f<n)(j) - B<n)f<n)(j)} = 0 (1.19) 

f <s> (i) -  z { E<s)f's) (j) - E.(s)f <s> (j) } = 0 (1.20) 

where f^fj), f^jl,  etc. represent f1(£.,nj>> ^'S-i'il.;'  etc..and 

Ai: 'fAS.'-W'^ij'"18    •    5ii =   lASj!v
(4Ho11(kRij»>ds 

^j^Ls^-^o'Vi:'^'^      '      ^   =     fASj^
(-K0(knRij»/lr)ds 
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?{.s) =   \    (-ikH*1' (k R. .) )ds   ,  E!S) = I   l-t-i-H*1' (k R. .) Ids (1.21) 
l]   JAS-;  2  0    s l] l]    JAS.3V  2 0    s 13 JJ      -      "    " "J iJ    '00j" 

(v)  Mechanical continuity conditions along boundary D 

Mass and energy flux induced by fluid motions in inner and outer regions 

should be continuous through the immersed surface of breakwater.  These con- 

ditions are satisfied by the continuities of fluid velocities normal to the 

boundary D and of the fluid pressure intensities at the boundary.  Fluid 

pressure in outer and inner regions p, and p9 are given as follows   : 

/r   •A /     ,-iat        . .   1+iyV/o . ,     ,-iat   n „., P-^/Z   =   i$1(x,y,z)e ,     p2/C =  io—^—£— <t>2(x,y,z)e       (1.22) 

Therefore, the continuity conditions are expressed as follows: 

3*1(e/n,z)/3v = 3<J>2(^,n,z}/9v , * (£,n,z) = 1+^v/q $2(^,n,z)   (1.23) 

Substituting Eq.(1.2) and (1.7) into above equations, we obtain 

, . ,  , .        . .     cos k (z+h)       , .     coshk (z+h) 
/? it      \ J.? ic      \iCosh k z+h     °? ^ n     ,     n        » sis) , s 

n=l n    s=l coshk h s 
 (1.24) 

,.,,., . cos   k   (z+h) 
rjr   ir     \ . *   /r     ,iCosh  k(z+h)    ,     2?   ^ (n) _     . n 
{fo(e'n)+fi'e'n)}—55shkh      +    E.f2     (^n)--5~E-H = 

n=l n 

.,.,,, ,   . cosh  k   (z+h) 1+iuV/o       »     _   s) ,        , s ,,   _,.,  y T.    t      (t;, n) =        (1.25) 
s = l cosh  k  h s 

Multiplying each term of above equations by cosh k(z+h) and cos k (z+h), 

and integrating from z=-h to z = 0, we have next relations. 

f (5,n) = -[fn(C.n) + £- E — y] (1.26) 
1 °        N0 s=l l-{\s/\0)2 

(n)        S  oo S  (5'l) 
f<n) (?,n) = -|- l    -~ j d-27' 

n s=l 1+U +A ) s  n 
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f<s)(E,n) 

0  s=l  l-(xs/A0) 

-f(n)(5,n)   =-|_    S     "f^(€'n'2 (1.29, 
^ %   s=l   1+(A   /A   p s     n 

<x =   i-(l + iuv/a),        $=   iuv/a   ,   A   =  kh,     A     =kh,        A     =  k  h 
a Onn'ss 

N0=i(l + 2AQ/sinh2A0) , Nn=|(l + 2An/sin2An) , ffl (? ,n ) =3 f Q (£ ,n ) A3v    (1.30) 

(vi)  Determination of f,, f. '   ^-i       etc. on the boundary D 

Eq. (1.18) (1.19) (1.20)and (1.26) (1.27) (1.28) . (1.29) are the relations to 

determine f. , f.        ,  on the boundary. 

Prom Eq. (1.20), f's)(£.,n.) is expressed by f's) (£ . , n . ) as follows: 

~(s) ...   v », (s) ^ (s) , ..  ,    „ (s)     1    v   (s) . (s) t\      (I  = I   M..f, (j)   where M. .  = . , .   E y,  .     A. . ,, ,n . 
3       . , x]  3   J        i]    A (s)  , , 'kj       ki (1.31) 

(s)    (s) where A(s) is the matrix by E.. ,  A'   is the determinant, given by removing 
1-' k+i 

the "k"th row and the "i"th column from A (S) and then multiplying(-1)    and 

Y,(s)=6. . + A.(s>, &..   is Kronecker's delta,i.e. S , = 0(k^j) : =l(k=j). 

Substituting Eq. (1.26) (1.29) into Eq. (1.18) (1.19) , and then eliminating 
- (s) (s) f~  by Eq. (1.31), we have next linear simultaneous equations in term of f. 

[f \s>  (i) +  I A..f's,(j)- A... I   M^'f <s) (k) ] 

(1.32) 

s=l 1-(A /An)
2  3 3=1 ^ 

3 ^' k=l jk  3 

s  0 

N 

= " No[fo(i) +    .EAjVj)-AijVj)1 

?   * ?[f'
S,(i) +   X 5'"'f'S)(j) - B.("'  Z M'^f'S,(k)l 

s=l 1+(A /A )2  3 ]=1 1D  3 ln  k=l ^  3 

s  n 

= 0       , (n=l,2,3, ) 

Above equations are applied to i=l,2,3,...N. If we take n ans s to n* 
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(s) and s*,respectively, we have (n*+l)N equations for s*Nunknown f^  . There- 
(s) fore, taking s*=n*+l, all of f    (s=l,2...s*) are determined by solving 

Eq.(1.32) and then f ^s) , f,, ^i'*^ '   ^2^    aT°   obtained hY   Eq . (1. 31) {1. 26 ) 

(1.27) (1.28) (1.29) respectively. 

(vii)  Determination of f, (x,y) , f   (x,y) and f   (x,y) 

f <x,y),f,»  Cx,y) and f^s (x,y) at any point of fluid region are calcu- 

lated by Eq. (1.10) (1.12) (1.13) as follows: 

f1(x,y,=-iJi[Axjf(j,-Ax.f,j,],  ^'(Ml^li^l"'.^^^"'!))] 

D = l 

where A . , A ...... are those which are given in Eq.(1.21) by replacing 

(?i/ni) by (x,y). 

Thus, wave function $, (x,y, z) and $„(x,y,z) are completely determined and 

the fluid motions are fully made clear. 

(viii)  Numerical evalulation 

(4) A. . and A. . in Eq. (1.21) are calculated numerically, after Lee(1971) , 
ID      i: 

in the following way. 

/77TT2~    77     7T 

hh = i(5j+r
5j-i' Anj = I'VI'VI' 

Noting that when kr tends to zero, 

H^1' (kr) '= l + 2i(log^ + r)/TT  ,   H^1' (kr) = -l\ ~ 

Y=0. 577216  (Eluer's constant) 

for j^i, we obtain 

A. . = -^H'1' (kR. . )kAS . l]    2 0     i]'   ] 

A;J = ib,1  (kR. .) (-J—^kAn. - -J—-kA5.) 

(1.34) 

for j-i 

rj   2"1  v^ij' v R. . """j    R. . ""sj' 
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x kAS. 
A. .   = -(y-l+log—3—- -  iir/2) 

11 TT      ' ^4 ' 

A. .   =~!5  n     -5     n   ) .   AS. 
n     2TT   ^S   SS     SS   S   1        1 

where           r      -r r      -r r -r 
f     =     i + l     i-l            r       =  6 r   J-+1   ^ -     i     i-1 
^s              2AS. '    Ss        AS.,,+AS.+AS.    , liS.    n+AS. AS.+AS.    J 

l l + l         l         1-1         l + l         l l         l-l 

(1.37) 

(1.38) 

1i+l",1i-l „        _ 6 ^ni+l"ni 
's 2AS. 'ss        AS.    ,+AS.+AS.       'AS.    ,+AS. 

l l+l l l-l l+l 1 

Similary,   other   terms   in  Eq.(1.21)   are   as   follows: 

B!"'    =   --K„(k   R. .)kAS.       , B!
1
?'    =   ifY-l+log-S-r-^kAS. 

l] ir   0      n   13 : 11 TT ^4 l 

_ /    \          i                             ^ -~i • 1 '~ri • 
B.ln)    =   -K, (k   R. .) (-J i-k   An . i i-k   A£ .) 
l]           TT   1     n   l]        R. .      n     : R. .      n     i                                                            ,.    ... 

lj             J lj             J             _                                            (1.39) 

E.(S)    =   ~  H*1' (k   R. .)    kAS.       ,   E.(?'=   -   (Y-l+log-^—i-iir/2)kAS. 
lj 2     0s   l] j 11        IT ^4 l 

E-       = ^r H'
1
' (k R. .) (-3—i k  An . J—- k  A5 .) (1.40) 

l] 2      0s   i]        R. .        si R. •        s     y 

B..   and  E..      are   the   same   as   A...     And   fn(j)   and   fn(j)   are   as   follows: 

fn(j)   =  -iexp{-ik (£; .cosw +  n.sina))} 
U                                           3 J (1.41) 

b£, .sinw- An .cosw 
^   M1    =   - -  exp{-ik (E, . cosw   +   n-sinw)} ASj —    — j —   -j- 

For the existence of wave function $1 and <!>-, infinite series in the 

righthand sides of Eq. (1.2) and (1.7) must be uniformly convergent in x,y,z. 

It is difficult for the authors to prove the convergence but it is estimated 

in the following way. 

For large value of n in Eq. (1.2) , we have 

-.2 . .  '  cos k (z+h)       , , 
k h H  mr ±  5-H   and f   f^n}  (x,y) -r\ - = Z   f\n)  (x,y)cos k z (1.42) n        mi  g n  2     J   cos k h       n  2     J n 
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Above series is convergent for 0>z>-h, if series  £ f?  (x,y) is convergent. 

While, sequence  B .  and  B in Eq.(1.33) are monotonic decrease for in- 
XD        *3 „  (n) 

creasing n at any point (x,y), so that if the series I   f_  (Ei,n) and 

? f~  (£,n) converges, series f   fin (x,y) also converges.  Similarly,if 

series f,   f'S (C,n) converges, series  ? f   (x,y)- cosh k (z+h)/cosh k h So S   i                                                 s                s 
also converges. 

(m"2 -     s.  "2h  Vy   1     +   i(slt__l a!h) (1.44) 
n 2o.2h/g g      a      ST. STT      g 

for   large   n   and   s.      Therefore,   in   Eq.(1.27) 

f-lS) ^'H) 0„      2.    OT  m f{S) <C,n) (1-45) 
r   f 3 ^   _   2a   o_h   9?   °? 3 
ns^Tril/7/-,,2* 2     g     ris      2      2 , n . I     p V     2,, 

N   {1+(A   /A    )    } IT ^ n   -s   + 2i—?   i—  0"   h/g 
rt 

Above series are convergent, if series t   f_  (E ,n) converges, and then 
-  (n) s  3 

I f   (£,n) converges. 

Moreover, from Eq.(1.40), E!
S:>
<<E.

(S)
 and E.(S)<<E:S  for large s. 

^ ij    n       13    n 
Therefore, Eq. (1.20) approaches to the following equation for large s. 

(l-i<f )f<s)(i) + E<ff<s)(i) = 0  , 

from which , . 
1-E(s) 

f'S) (i) = ~— f <s) (i) (1.46) 
E !S' 
11 

~ (s) (s) 
where E..  is indepentent on s and E. .  is approximated as follows: 

, ,    kAS. STlAS . 

EH'    '=   T-   l~1+i(-^   -n/2)) (1'47) 

(s) «> - fs) 
E..  increases with increasing s, so that from Eq.(1.46), T,   f0  (5,n) con- 
1 °°  (s) ° 

verges, if E f-.  (£,n) converges. 
s  J 

Thus, if | f's) (£,n) converges, X f 's) (£,n), S f*n) (£,n) and • f'n) (C,n) 

are convergent, and wave cunctions <l>    (x,y,z) and 0 (x,y,z) exist. But it is 

difficult to prove mathematically the convergency of 7   f *  (£,n) and is esti- 

mated numerically, as shown in later example. 

In practical calculations, infinite series are replaced by finite series, 
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Hence, the accuracy of calculation should be tested by the agreement of both 

sides of Eq.(1.24) (1.25) for any value of z at any point (£,n). 

(x)  Wave height distribution and wave forces to breakwater 

Wave profiles CT and ?   at any point in outer and inner regions are 

given by following equations. 

~~l0t    ,  CIZ « iC0^2(x,y,z}e~
:Lat (1.48) 

And  the ratios of wave height in both regions to incident wave height 

K.   and K,   are calculated as follows: 
d        d 

K^1) = |f0(x,y)+f1(x,y)+  ?f<
n)(x,y)| ,K^2)= |i±MX/2 I   f<S>(x,y)|<1.49) 

Wave forces F  and F  to breakwater in positive x and y directions are x      y J 

calculated as follows: 

±  e-iatAlUiuVA)2       ;       E   £3S>(J'     kAn. (1.50) 
pg^t/ ^      V       s=l j=lAQ{As)^     J 

^v   =  .  -iat A aiiiiV/a^   "   ?f3!lii>    ?i (1.51) 

II  Analysis for Impermeable Breakwater 

For impermeable breakwater, the scattering terms f^  (x,y) in Eq.(1.2) 

vanish identically and wave function $,(x,y,z) becomes simple as follows: 

* /     \     0 fr ,   \ , r:   ,        , i cosh k(z+h) ,„ , , ^(x^z) = -^  {f0(x,y) + f^x^))  cosh kh— (2.1) 

On the boundary D, fluid velocity normal to D should vanish, so that 

9*1(C,n/z)/3v = 0  , and so   Sf^CnJ/av = -9fQ{?,n)/3v (2.2) 

Substituting this relation into Eq.(1.14), we have next integral 
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equation to determine f (£,n) 

f1(5',n') + fDf1(5,n)§v(-|
Ho1> l*R>>ds = -JD'"!1

^
1
' (kR) ) f 0 (S,n)ds   (2.3) 

from which, f  is determined by the following linear equations. 

N N 
f, (i) +  I A..f.(j) = -  I A..f„(j)    ,   (i=l,2,3, N) (2.4) 
1      j=l ^   x j=l 1J 

And the first equation in Eq.(1.33), f,(x,y) and hence * (x,y,z) are 

determined. 

Distribution of wave height ratios and wave forces to breakwater are 

calculated by the following equations. 

Kd = |fQ(x,y) + f-^x.y) | (2.5) 

F 2   .   N 
"2   = -ie~10t — -Aj. 1    [fQ(x,y) + f1(x,y)]kAnj 

PIZQ^ 9  AQ
J j = l 

F        -• t  2h      N 

Z_ =  ie l0t 5LJ1  i   i    [f (X,y) + f (x,y)]kA5, 

(2.6) 

III Numerical calculation 

Here, breakwaters of elliptic and rectangular shape, where x and y radii 

are 2a and 2b, and x-side and y-side are 2a and 2b, respectively, calculate 

the case when a/b=0.2, b/h=2.5, for wave Of a h/g=0.5, kh=0.772(kb=l.93). 

In general, it is desired to make distance As . between successive cal- 
3 

culation points in the boundary be shorter than about one eighth of wave 

length.  Hence, in these calculations, twenty claculation points are distri- 

buted along the boundary as shown in Fig.2 where the largest distance be- 

tween successive points is about 0.13L(L:wave length). 

(i)  Convergence of the series 

As an example, taking n* =3,s*=4, the numerical values of f,(j),f^  (j) 
(s) 

and f   (3) at every calculation points are shown in Table-1 for elliptic 
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2 
breakwater of V=0.5, uV/a=1.0 for wave of a   h/g=0.5, w=0°- (For the case of 

a»=0°, values at symmetrical points with respect to x axis are the same, so 

that, values at j=11^19 are the same as those at j-1^9, respectively.) 

From the results, it is found that the convergence of the series dis- 

cussed in Il(vii) is satisfactory and n*=3,s*=4 are sufficient for practical 

calculation of this case. 

(ii)  Exactness of calculation 

The exactness of calculation are determined numerically by testing how 

accurately the continuity conditions Eg. (1.24) and (1.25) are satisfied. 

Table-2 sho\7S the numerical comparisons of both sides of Eq.(1.24) and(1.25) 

at depth of z/h= 0,-0.2,-0.4,..., -1.0 at point j =10 andl5 in above case. 

From the results, it is found that the exactness of calculation is sufficient. 

(iii)  Wave height distribution 

Fig.3^6 are calculated wave height distributions by Eg. (1.49) for perme- 

able breakwater with V=0.5, gV/a =1.0 and by Eg.(2.5) for impermeable break- 

water, where the former are shown by broken curves and latter by full curves. 
2 

Fig. 7^10 are those for the case when b/h=2.5(kb=l.93), a/b=0.5, a h/g= 

0.5 (kh=0.772) and V=0.5, uV/a = 1.0. 

From these distributions, it can be seen that: 

(a) The differences between rectangular and elliptic breakwater arise from 

the apexes of rectangle and clearly appear for co=0° and almost disappear 

for OJ=90°. 

(b) The longer becomes the breakwater, the more clearly appears the standing 

wave in front of breakwater, for u)=0° in case of b/h=1.0, the standing wave 

almost disappears. 

(c) The wave height in front of permeable breakwater is always smaller than 

that of impermeable one.  And wave height behind permeable breakwater is 

smaller than the one behind impermeable breakwater for the case of short 

breakwater but is adverse for the case of long breakwater.  This is due to 

fact that for short breakwater, waves behind it are mainly diffracted waves 

and behind permeable breakwater they are smaller than those behind impermeable 

one, and for long breakwater, waves behind permeable one aremainly transmitted 

waves through breakwater but those behind impermeable one are mainly diffract- 

ed waves and become smaller for longer breakwater. 
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(iv)  Wave Forces 

Calculated wave forces by (1.50) , (1.51) and(2.6) are as shown in Table-3. 

(v)  Comparisons with experiments 

For comparisons of analysis with experiments, rectangular and elliptic 

breakwater models are placed in wave channel of length 25m, width lm and 

depth 0.6m with flap-type wave generator as shown in Fig.11. 

Impermeable models are made of concrete and permeable models are of wire 

screen filled by small concrete blocks, of which the average void is 0.40, 

and b/h=1.0, a/b=0.5. The water depth is 20cm, wave period is kept constant 

as 1.28 sec.(a2h/g=0.5) 

Considering the effect of reflection by channel walls, wave height dis- 

tributions are calculated, taking V=0.50, U/o=2.0, for the boundary conditions 

as shown in fig.11, that is, at imaginary boundary W„ and W. far from break- 

water waves progess from right to left without reflection waves and at 

channel walls W1 and W_, normal velocity of fluid motion vanishes. 

And under the same conditions, wave heights are measured. The results of 

calculations and experiments are shown in Fig. 12^15, where left and right 

parts are by calculations and experiments, respectively.  From these figures, 

it is found that results of calculation agree fairly well with those of 

experiments. 

IV  Conclusions 

In above calculations, we assumed V=0.5, y/C=2.0 and found that theory 

and experiments are in good argument.  In this analysis V and y/o are inter- 

preted as virtual quantities related to void and fluid resistance of break- 

water .  Hence they are not necessarily the same as the actual values, but 

are to be selected so as to obtain agreement of theory and experiments. 

The method of analysis described in this paper can be applied to the cal- 

culations not only for elliptical and rectangular shapes but also for arbi- 

trary shapes.  And the same principle is avaiable to the analysis of permeable 

quay wall, and also of fixed semi-immersed, of submerged cylinders. 
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Table 1 

Successive values of f., f^  , and fjs) for a2h/g = 0.5 

j fl f2(l) f2(2) f2(3) 

20 -0.5171 -0.191H 0.0105 +0.0168i -0.0376 + 0.019U -0.0002 -O.OOOli 
1 -0.3172 -0.0438i 0.0066 +0.017H -0.0027 +0.0043i -0.0010 +0.0006i 
2 -0.2138 +0.0105i -0.0230 -0.0074i 0.0007 +0.0049i 0.0010 +0.00201 
3 -0.0780 -0.0137i -0.0127 -O.OOlOi 0.0018 +0.0037i 0.0012 +0.0017i 
4 -0.0101 -0.0317i -0.1112 -0.0012i 0.0018 +0.0029i 0.0011 +0.0014i 
5 0.0504 -0.0589i -0.0123 -0.0032i 0.0016 +0..0027i 0.0011 +0.0012i 
6 0.1107 -0.0934i -0.0166 -0.0069i 0.0015 +0.0032i 0.0013 +0.0013i 
7 0.1550 -0.1113i -0.0259 -0.0146i 0.0009 +0.0044i 0.0016 +0.0013i 
8 0.2485 -0.1828i -0.0974 -0.0710i -0.0150 +0.0123i 0.0028 +0.0011i 
9 0.3379 -0.2024i 0.0195 +0.0155i -0.0161 +0.0127i 0.0029 -0.0005i 

10 0.4492 -0.2315i 0.0357 +0.0003i 0.0094 -0.0042i 0.0060 -0.0044i 

j f3(l) f3(2) f3(3) f3(4) 

20 0.1560 -0.0287i 0.0022 -0.0157i -0.0060 +0.0101i -0.0004 -0.0017i 
1 0.2331 -0.0647i -0.0029 -0.0227i -0.0021 -0.0042i -0.0012 -0.00221 
2 0.2640 -0.0971i -0.0203 -0.0247i -0.0020 -O.OOSOi -0.0008 -0.0024i 

3 0.2834 -0.1605i -0.0233 -0.0273i -0.0038 -0.00601 -0.0016 -0.0027i 
4 0.2917 -0.1939i -0.0267 -0.0285i -0.0049 -0.0063i -0.0021 -0.0028i 

5 0.2937 -0.2299i -0.0315 -0.0286i -0,0059 -0.0062i -0.0025 -0.0028i 

6 0.2927 -0.2677i -0.0377 -0.0282i -0.0068 -0.0058i -0.0029 -0.00271 
7 0.2916 -0.29481 -0.0450 -0.0275i -0.0073 -0.0050i -0.0031 -0.0026i 
8 0.2821 -0.3610i -0.0848 -0.0223i -0.0108 +0.0026i -0.0034 -0.0023i 
9 0.2825 -0.3998i -0.0377 -0.02961 -0.0122 +0.0013i -0.0043 -0.0033i 

10 0.2775 -0.4542i -0.0431 -0.0366i -0.0117 -0.00901 -0.0037 -0.0049i 
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Table 2 

Numerical check on the boundary conditions 

(i)  Continuity of fluid pressure 

j z/h Region I Region II 

10 0.0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

0.3821 +0.2298i 
0.3716 +0.1859i 
0.3795 +0.1442i 
0.3542 +0.1264i 
0.2944 +0.1348i 
0.2637 +0.1432i 

0.3755 +0.2317i 
0.3738 +0.1823i 
0.3786 +0.1464i 
0.3525 +0.126H 
0.2950 +0.1338i 
0.2628 +0.1447i 

15 0.0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

1.0487 -0.0582i 
0.9485 -0.0562i 
0.8825 -0.0552i 
0.8428 -0.0469i 
0.8209 -0.0415i 
0.8131 -0.0402i 

1.0421 -0.0282i 
0.9479 -0.0659i 
0.8828 -0.0483i 
0.8428 -0.0477i 
0.8207 -0.0443i 
0.8134 -0.0360i 

(ii)  Continuity of fluid velocity 

10 0.0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

-0.0746 +0.0076i 
-0.0362 +0.0688i 
-0.0154 +0.25791 
-0.1214 +0.5515i 
-0.3093 +0.8383i 
-0.4047 +0.9596i 

-0.0750 +0.0052i 
-0.0362 +0.0670i 
-0.0153 +0.2575i 
-0.1214 +0.5515i 
-0.3094 +0.8386i 
-0.4047 +0.9592i 

15 0.0 
-0.2 
-0.4 
-0.6 
-0.8 
-1.0 

0.0415 -0.0359i 
0.0630 +0.0020i 
0.0725 +0.0372i 
0.0326 +0.0200i 
0.0087 +0.01041 
0.0112 +0.0177i 

0.0428 -0.0349i 
0.0625 +0.0018i 
0.0748 +0.0373i 
0.0326 +0.0199i 
0.0085 +0.0104i 
0.0115 +0.0177i 
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Table   3 

Calculated  Results   for Wave  Forces 

Shape Ellipse Rectangle Remarks 

Cross-sec- 
tion Area 

Trab 4ab 

Angle of ,, 
Incident 

0° 45° 90° 0° 45° 90° 

c >2h/g = = 0.5 ,  kb = 1.93 

pgs0h 

a/b= 
0.2 

a/b= 
0.5 

9.146 

4.208 

8.562 
6.184 

5.37-! 

2.427 

5.074 
3.626 

0.0 

0.0 

0.0 
0.0 

9.641 

4.802 

9.184 
6.956 

5.447 

2.561 

5.564 
3.784 

0.0 

0.0 

0.0 
0.0 

Imperm. 

Perm. 

Imperm. 
Perm. 

pgcQh 

a/b= 
0.2 

0.0 1.371 1.508 0.0 1.644 1.417 
0.0 1.280 1.411 0.0 1.736 1.604 

a/b= 
0.5 

0.0 3.210 3.6 73 0.0 3.973 3.466 
0.0 2.894 3.273 0.0 3.433 3.403 

Imperm. 
Perm. 
Imperm. 
Perm. 

ff h/g  =1.0 kb   =   3.00 

pgcQh 

a/b= 
0.2 

a/b= 
0.5 

6.431 
4.033 
6.571 
5.023 

2.773 0.0 
1.595 0.0 
2.418 0.0 

321 0.0 

6.774 
4.546 
6.952 
5.651 

2.534 0.0 
1.400 0.0 
2.175 0.0 
1.247 0.0 

Imperm. 
Perm. 
Imperm. 
Perm. 

pgc0h 

a/b= 
0.2 

0.0 1.14E 0.687   0.0 1.122 0.479 
0.0 1.002 0.552   0.0 1.103 0.40^ 

a/b= 
0.5 

0.0 2.560 1.797 
0.0 2.082 1.412 

0.0 2.752 2.893 
0.0 2.117 1.948 

Imperm. 
Perm. 
Imperm. 
Perm. 
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