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ABSTRACT

This study deals with the interaction of linear, plane
water waves with stationary groups of rigid, vertical, circular
cylinders under conditions in which the inertial forces on the
cylinders dominate over the drag forces. A direct matrix solu-~
tion as well as multiple scattering as suggested by Twersky
(1952) are used to obtain the velocity potential in the vicinity
of the cylinders. The groups may consist of a number of cylin-
ders having any geometric arrangement, may have Dirichlet,
Neumann, or mixed boundary conditions, and need not have identi-
cal diameters. The study represents an extension of the single-
cylinder case presented by MacCamy and Fuchs in 1954.

Basic scattering coefficients for 192 different arrange-
ments of two cylinders are obtained with the aid of a Bessel
coordinate transformation and a matrix inversion procedure. The
resulting potential function is then applied to calculate force
components in the direction of wave advance and orthogonal to
it. For the cases considered the former departs as much as 65%
from the force on a single cylinder and the mass coefficient is
found to range from 1.19 to 3.38 - a not insignificant depar-
ture from the often used value of 2.0. Furthermore the ortho-
gonal force may be as large as 67% of the single-cylinder force.

INTRODUCTION
As off-shore construction continues to expand around the
world, the need for an improved understanding of the effects of

water waves on various structures in the sea becomes increas-
ingly evident. Basic to many such problems is the fundamental
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one involving plane, periodic waves and vertical, circular cyl-
inders, since many such structures include one or more cylindri-
cal legs.

In the present study a general approach to the problem of
describing the interaction of linear, plane waves with station-
ary groups of rigid, vertical circular cylinders is examined.
In particular cylinders located in intermediate or deep water
and having relatively large diameters (when compared with wave
height) are considered in as much as they are representative of
a type of off-shore construction that has received much atten-
tion recently.

Dean and Harleman (see Ippen (1966)) demonstrate that as
the ratio of wave height to cylinder diameter, H/D, diminishes
and the ratio of water depth to wave length, h/L, grows, the
ratio of inertial force to drag force as described by the
Morison Equation (Morison, et al (1950)) increases. For exam-
ple, if H/D = 1.00 and h/L = 0.40, the inertial force will be
ten times as large as the drag force. Many off-shore struc~
tures, and in particular those considered in the present study
are therefore subject primarily to inertial forces with drag
effect considered negligible.

Under these circumstances classical diffraction theory,
which presupposes a frictionless fluid and therefore neglects
drag seems to be ideally suited to the solution of problems
involving the interaction of plane waves with large cylinders
in deep or intermediate-depth water. MacCamy and Fuchs (1954)
were the first investigators to apply diffraction theory to this
interaction problem. Their study of the diffraction of periodic
plane waves about a single circular cylinder led to a new
approach to the problem of predicting wave forces on structures.

The present study is an attempt to extend the work of
MacCamy and Fuchs to a consideration of wave interaction with
more than one vertical cylinder. One approach to the solution
of such problems is multiple scattering as suggested by
Twersky (1952). A direct matrix method appears to offer more
rapid and reliable solutions and is therefore emphasized herein.

THEORETICAL ANALYSIS

Problem Statement. The problem under consideration is the inter
action between incoming plane water waves and an arbitrary col-
lection of vertical circular cylinders located in the path of
the waves. The following conditions are assumed to prevail:

1. The waves are linear (small amplitude theory), and are not
breaking.

2. The bottom is horizontal and impermeable with a depth suffi-
cient for deep water or intermediate depth wave conditions.
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3. The cylinders are circular, rigid, vertical, stationary,
impermeable and have a relatively large diameter with
respect to the wave height.

4. Drag effects are negligible (i.e. the water behaves as an
ideal fluid).

A general procedure for determining the velocity potential
for any number of cylinders is outlined first and then the
specific case of two cylinders, Fig. 1, is analyzed more com-
pletely. Details of the analytical procedure are omitted
herein, but are described by Spring (1973).
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The direction of wave
advance is shown by n

Figure 1. Definition Sketch for Cylinder "o" and Cylinder "s"

The approaching plane waves are conveniently expressed in
terms of cylindrical coordinates since circular cylinders are
under study. Thus in terms of the coordinate center "s" the
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incoming wave may be written (see Twersky (1952) and MacCamy
and Fuchs (1954)

gin(rs’es) = —Re[f(z,t) exp(ikrOS cos(eos—a))
E: .Jn(krs) exp(in(es—a+v/2))] (1)
N==

where the symbols are as defined in Fig. 1, J,(krg) is the
Bessel function of the first kind, of order "n“ and

where g = the acceleration due to gravity

=y
I

the wave height

=)
I

the depth of water from the still water
level to the bottom

= the wave number, 271/L
the wave length
= the period

N 2 R
il

= the vertical coordinate, measured positive
upward from the still water level

¢ = the frequency, 21/T

The waves scattered by the cylinders have as yet undeter-—
mined amplitude but must vanish at large distances from the
cylinders due to circular dispersion. Also the waves must be
outgoing rather than incoming. Thirdly, the scattered wave
expression must be rather general to provide enough flexibility
to account for the non-symmetrical scattering of the waves from
the cylinder or c¢ylinders. With negative sign on the time expo-
nential, the Hankel function of the first kind (see MacCamy and
Fuchs (1954),

1 .
(kr) = Jp(kr) + 1Yp(kr) (3)

will adequately express the radial dependence of the scattered
waves. Since there will be no need for any Hankel function of
the second kind (whlch describes incoming circular waves), the
superscript on Hgl(kr) will be dropped and it will be understood
that Hp(kr) = Hankel function of the first kind with argument kr.

The scattered wave from the "sth" cylinder will then be
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[

B (ry,0,) = Re[f(z,t) 2 a5 H_(kr,) eines:l (4)
N —oo

and for the cylinder located at "o

-]

B (r,,8,) = Re|f(z,t) }: A0 B (kr,) eineo] (5)
-0

where the Ap's are complex constants (as yet unknown) of the
form &, + ibn, with appropriate superscript.

Since linear waves (small amplitude wave theory) are being
considered, the velocity potential at any field point "p" may
now be represented by superposing the various wave components to
give

cos(eos~a))

gp = Re{%(z,t)[exp(ikros

-]

: Ez —Jn(krs) exp(in(es—a+ﬁ/2))
Nn=-—x

[

0
+ Z z aJ Hy (k) o118y ]:l (6)
j=1 .

n=-—-o

where the summation term on j accounts for the potential of the
scattered waves from all cylinders present (Q being the number
of such cylinders).

The potential function described by Eq. 6 is difficult to
handle since each scattered wave is expressed in terms of a dif-
ferent coordinate center. There is however, a Bessel "addition
theorem" or coordinate transformation available to express all
wave components in terms of one selected coordinate center (see
Watson (1966) pp. 359-61, or Abramowitz and Stegun (1965) p.363).

Referring to Fig. 2, the Bessel coordinate transformation
of C, (%) (which may be any one of the cylinder functions - J,Y,
Hl, 52 or a derivative or linear combination thereof) from
coordinate center 1 to a new coordinate center 2 is given by
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)

c, () SHIVY Z Cosn (B T (2) o Fimd (7)

m==2

with the restriction that [z eii¢[<[Z[

It should be noted that the restriction is lifted if v is an
integer or zero and the only functions involved are of the first
kind.

Figure 2. Definition Sketch for Bessel Coordinate Transformation

Direct Solution Versus Multiple Scattering. The final step in
the derivation of the velocity potential is the application of
the reflection or Neumann boundary conditions at the surface of
the rigid, impermeable circular cylinders. These conditions are
given by
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for each cylinder and must be applied to evaluate the coeffici-
ents A) in Eg. (6). In the instance of water waves scattered by
impermeable vertical cylinders, the Neumann condition is applied
on each cylinder. It should be noted however, that the method
does not require all boundary conditions to be of the same type.

The fundamental difference between the direct approach used
herein and the procedure suggested by Twersky (1952) is in the
method of application of the cylinder boundary conditions. In
the "direct" approach the boundary conditions on all cylinders
are applied simultaneously and all unknowns are obtained by means
of a single matrix inversion of a set of simultaneous equations.
The number of equations increases with the number of cylinders



1834 COASTAL ENGINEERING

involved in the problem (except for such special cases as an
infinite row of cylinders of the same size and spacing); and

with the number of terms taken in the summations. The practical
limit on the method is therefore the limit of the matrix size
which can reasonably be handled by the digital computer available.

In contrast, the multiple scattering approach takes one cyl-
inder at a time and sequentially solves for the scattering coef-
ficients. The sum of the multiple scattering coefficients for a
particular cylinder approaches the direct solution if enough
orders of scattering are considered.

The Two-Cylinder Problem. The general method described above
will be applied in this section to the case of two cylinders as
shown on Fig. 1. The two-cylinder case is used as an illustra-
tion of the techniques involved. Three, four, six, or more cyl-
inders could likewise be considered. On the other hand it
should be noted that the size, orientation and spacing of the
cylinders and the direction of wave approach are all arbitrary
and can be selected later to make computations for a particular
situation.

The velocity potential at any field point "p" in terms of
cylinder "s" may be formed by superposing the velocity poten-
tials for the incoming plane wave, the scattered wave from cyl-
inder "s" and the scattered wave from cylinder "o" as suggested
by Eqg. (6). The Bessel coordinate transformation from “"o" to
"s" and the cylinder boundary on "s" are then applied and the
resulting complex expressions are separated into real and imag-
inary parts, while noting that A = a + ib, H = J + i¥ and H' =
J' + iY'. This resultg in_two_sets of eqguations in the four

sets of unknowns a~, b_, a_, b_, as follows:
b p P b

—I i kag) cos[(kros cos (8, -a)) - m(—a+w/2)]

S

S S

+ (aZ 3! (ka ) - bI Y! (ka))

[ o (o]
+ Z Jm(kas)[(an T mKlog) = bp Y. (K1 ) cos(ne__ + me_)

s (o]
n=—o

o o :
(bn Jn+m(klos) +oa) Yn+m(klos)) 51n(neos + mesoﬂ =0 . (9a)

and
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—JL(kay) sin[(kros cos (eos~a)) - m(—a+ﬂ/2)]
S v E 1
+ (b2 J_m(kas) +aZ Y! (ka)))

@

. o o
+ :E: Jm(kas)[(brl Jn+m(klos) +oag Yn+m(klos)) cos(neos + meso)
n:—.oo
o o . _
+ (an Jn+m(klos) - bn Yn+m(klos)) s1n(neos + meso)] =0 (9b)

where m = 0,%1,%2, .....

In similar fashion the Bessel coordinate transformation from
"s" to "o" and boundary condition on cylinder "o" are applied,
producing two moreoequation sets in the same four sets of
unknowns ap, bp’ ap, bp’ as follows
—_ L} —_ —_ o L} - o} L
J_m(kao) cos[ m( a+ﬂ/2ﬂ + a7l (ka)) bZ ¥l (ka)))

@

s s
+ 5; JI;‘(kao)[(an Jn+m(klos) - bn Yn+m(klos)) cos(neso + meos)
n=-
s s . _
_(bn Jn+m(klos)+anyn+m(klos)) s1n(neso + meos)] =0 (102)

and

-3t (xa ) sin[—m(—a+n/2)] + 02 I (ka) + a® ¥ (ka))

' ] s
+ EE Jm(kao)[(brl Jn+m(klos) +oag Yn+m(klos)) cos(neso + meos)
Nn=-w
s s . B
+ an Jn+m(klos) ~bn Yn+m(klos)) sln(neso + mGOS)] = 0 (10b)

In order to reduce the coefficients and the equations to a
finite number, m and n are given a range of ~-M to +M where the
value of M required to maintain a specified precision increases
with increasing ka_ and ka _and decreasing kl__. For the two-
cylinder problem tRis will®therefore result iR~ 8M+4 equations
and unknowns.

Once the coefficients have been computed the final velocity
potential is obtained. In functional form, therefore,
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3 = f(z) E; (f, cos(md+ot) + g sin(mB+ot)) (11)
m
where fm and g, are functions of r, and

£(z) = %E coshlk (h+2z)]

cosh kh

Pressure on the Cylinder Face. The pressure field may be deter—
mined with the aid of the generalized Bernoulli Equation

—g%+gz+%+%(\7¢)2=0 (12)

Neglecting the kinetic energy and considering only the dynamic
pressure, Pd’ one obtains

Pd = - %% = po £(2) E: (fm sin(m®+ot) ~“In cos{m®+gt)) (13)

m

For the pressure on a cylinder face f_ and 9, must be evaluated
at the appropriate radial distance.

Horizontal Force Components on the Cylinder Face. By integrating
the dynamic pressure over the entire cylinder face the horizontal
force is obtained. In general functional form the force compo-
nents may be expressed as follows:

_ THpo
Fx = f(z) RX cos(0t+5X) (14a)
and
F, = TS £ (2) R, cos(ot+s ) (14b)

where R_, R, 8  and § are amplitudes and phase angles which
&n Kdg, K b4

depend on ki sr Kag, klosr and 9 s-

ANALYSIS OF THE DATA

Computer Procedure. It is readily apparent that the solution of
Egs. (9) and (10) by matrix inversion requires the services of

high speed computers. In this case the UNIVAC 1108 of the Madison
Academic Computing Center and the Datacraft 6024 of the Engineer-
ing Computing Laboratory, both at the University of Wisconsin-
Madison, were employed. The flow diagram describing the program
for the solution of the two-cylinder problem is presented in Fig. 3.
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Specify cylinder size parameters, ka; and kaj,
and cylinder separation parameter klgg.

]

Calculate Bessel functions of the lst and 2nd
kinds and their derivatives on kay, kaj, and
klyg-

Specify horizontal angle PN

Calculate matrix elements (coefficients of
1

the unknowns a, and b,).

Matrix subroutine solves for the scattering

coefficients a, and by.

Calculate multiple scattering cocfficients
up to 9th order. Compare summation of the
first nine orders with the ap and by
obtained above,.

Use scattering coefficients to verify cylinder
boundary conditions on the cylinder faces,

r, = a and r = a

1 1’ 2 2"
Calculate the pressure modulus and phase on
both cylinder faces at 20° increments and the
ratio to single cylinder pressure,

|

Calculate horizontal force components {(modulus
and phase) ratio to single cylinder force,

1
and Cm'

Specify new angle Q.4

Specify new cylinder separation kl

Figure 3. Computer Flow Diagram: Two Cylinders
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Calculations were aimed at the determination of the pressure
distribution on the faces of the cylinders and the horizontal
force components per unit depth. Pressures and forces were also
calculated for the single isolated cylinder case of MacCamy and
Fuchs (1954). Thus the pressures and forces which are presented
herein are expressed as ratios to the single cylinder pressures
and forces. These ratios clearly reveal the effect that the
presence of the auxiliary cylinder has on the cylinder of interest.

All calculations were accomplished in non-dimensional form in
terms of the parameters describing wave length and cylinder size,
spacing, and orientation: kaj, kaz, klpgs, and 8gpg (where aj and
a, are the radii of cylinders 1 and 2 respectively).

The Two-Cylinder Solution. The primary objectives in studying

the two-cylinder case are to illustrate the technique involved, to
compare the direct method with the multiple scattering approach,
and to lay the groundwork for future extensions. Thus the full
range of cylinder sizes and spacings is not considered here.

Two series of calculations were made, both with the incident
waves moving in the positive "x" direction (a = 0°). 1In the first
series the two cylinders were of equal size, kaj = kajy = 0.40.

The horizontal spacing between cylinders, klpg, was varied from
0.80 (cylinders touching) to 9.5 {approximately 1.5 wavelengths
apart) in twenty steps, and the angular position of the second

cylinder, 6,5, was varied from 0° to 90° in steps of 30°. Thus
elghty combinations of angle and distance were considered.

In the second series cylinders of unequal size (kaj; = 0.40,
kag = 0.60) were considered. The parameter kl,g was vakied
between 1.00 and 8.0 while the angular position of the second
cylinder was varied between 0° (cylinder one leading) and 180°
(cylinder two leading) in steps of 30°, providing 112 different
locations of cylinder two in relation to cylinder one. For each
of these situations the following items were calculated:

1. Basic scattering coefficients, by both the direct method and
the multiple scattering approach.

2. Pressure amplitude and phase angles at 20° increments
around the cylinder.

3. Ratio of pressure amplitude to the pressure amplitude on an
isolated cylinder at 20° increments around the cylinder.

4. Force components in the two horizontal directions.
5. Ratio of force to that of a single cylinder (x-component only).

6. Equivalent mass coefficient (x-component) as defined by
Morigon, et al (1950).
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Horizontal Force Components. Amplitudes and phase angles of the
horizontal force components (Ry, Ry, Sxr éy as given in Egs.
(14)) were calculated along with tKe ratio to the force on a
single cylinder (x-component only). Typical results for two
equal diameter cylinders and two unequal diameter cylinders are
in Tables 1 and 2, respectively. Furthermore force ratios for
the same two cases are shown graphically as follows:

i

Figure 4: @ 0° and 180° Figure 6: © = 60° and 120°

os [e}-3

it

Figure 5: © 30° and 150° Figure 7: © = 90°

os os

The force ratios for both equal- and unegual-size cylinders

appear in each figure for easy comparison. Moreover in Fig. 7

force ratios for an infinite row of cylinders (ka = 0.400, © =
ht : os

+90°) are included.

The orthogonal or y-~component of force was also calculated
(see Tables 1 and 2), and in one case rose to 67 percent of the
x~component force (kal = 0.400, kap = 0.600, klog = 1.00, 855 =
30°). BAlthough the effect on the maximum resultant was gener-
ally less than 10 percent, partly due to the phase differences
between the x and y components, in one case the maximum resul-
tant was increased by 50 percent. From a design point of view,
either static or dynamic, both force components may be significant.

The Mass Coefficient. The force ratio mentioned above and in
Tables 1 and 2 can also be interpreted as the ratio of the mass
coefficient for one of two cylinders to the mass coefficient of a
single isolated cylinder. Therefore independent calculation of
the latter using the equations derived by MacCamy and Fuchs
(1954) , permits determination of the former. Such values of Cp
are also included in Tables 1 and 2.

It is of interest to note that Cp may differ significantly
from 2.0. In the limited range of this study Cp varies from
1.192 to 3.380 as shown in Table 2.

General Observations. The following general observations can be
made about the cases studied:

1. The force ratios are periodic in the spacing parameter klgg,
with attenuated amplitude, not unlike that of Bessel functions.

2. The effect of a neighboring cylinder on the force of the first
cylinder is very significant with as much as a 59 percent
increase for two cylinders of equal size at 855 = 90° and in
contact; and up to 42 percent decrease in the instance of two
unequal cylinders at 855 = 0° and in contact.

3. Cylinders lined up in the direction of wave advance generally
exhibit greater variation in the x—component of force than do
cylinders lined up orthogonal to the wave advance vector.
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Single Isolated Cylinder Pressure and Force. By way of verifica-
tion, the pressure amplitudes for single, isolated cylinders with
ka = .5 and ka = 1.0 were checked against those published by
Wiener (1947) for sound diffraction by a single rigid cylinder.
Agreement to the 4th decimal place was obtained.

CONCLUSTIONS

1. A means of calculating the pressures and forces on a cluster
of vertical circular cylinders is developed. The method
employs diffraction theory, but avoids multiple scattering
techniques, in favor of a direct, matrix solution.

2. Theoretical calculations for the force in the direction of
wave advance reveal as much as a 60% departure from the force
on a single isolated cylinder in the instance of two equal-
diameter cylinders and as much as a 65% departure for two
cylinders of unequal diameter. The force on a given cylinder
is thus significantly affected by the presence of neighboring
cylinders. The mass coefficient, Cy, is found to range from
1.19 to 3.38, significant departures from the often assumed
value of 2.0

3. The component of force perpendicular to the direction of wave
advance is found to be very significant when the cylinders
are close together, rising in one case to 67% of the force
component in the direction of wave advance. Although the
effect on the maximum resultant is generally less than 10%, in
one case a 50% increase is found. Both force components may
be significant for design of cylinders used for offshore tower
supports.

4. The method is not restricted to water waves, but can also be
applied to other cases of scalar scattering in acoustics or
electromagnetics.
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