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ABSTRACT 

This study deals with the interaction of linear, plane 
water waves with stationary groups of rigid, vertical, circular 
cylinders under conditions in which the inertial forces on the 
cylinders dominate over the drag forces.  A direct matrix solu- 
tion as well as multiple scattering as suggested by Twersky 
(1952) are used to obtain the velocity potential in the vicinity 
of the cylinders.  The groups may consist of a number of cylin- 
ders having any geometric arrangement, may have Dirichlet, 
Neumann, or mixed boundary conditions, and need not have identi- 
cal diameters.  The study represents an extension of the single- 
cylinder case presented by MacCamy and Fuchs in 1954. 

Basic scattering coefficients for 192 different arrange- 
ments of two cylinders are obtained with the aid of a Bessel 
coordinate transformation and a matrix inversion procedure.  The 
resulting potential function is then applied to calculate force 
components in the direction of wave advance and orthogonal to 
it.  For the cases considered the former departs as much as 65% 
from the force on a single cylinder and the mass coefficient is 
found to range from 1.19 to 3.38 - a not insignificant depar- 
ture from the often used value of 2.0.  Furthermore the ortho- 
gonal force may be as large as 67% of the single-cylinder force. 

INTRODUCTION 

As off-shore construction continues to expand around the 
world, the need for an improved understanding of the effects of 
water waves on various structures in the sea becomes increas- 
ingly evident.  Basic to many such problems is the fundamental 
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one involving plane, periodic waves and vertical, circular cyl- 
inders, since many such structures include one or more cylindri- 
cal legs. 

In the present study a general approach to the problem of 
describing the interaction of linear, plane waves with station- 
ary groups of rigid, vertical circular cylinders is examined. 
In particular cylinders located in intermediate or deep water 
and having relatively large diameters (when compared with wave 
height) are considered in as much as they are representative of 
a type of off-shore construction that has received much atten- 
tion recently. 

Dean and Harleman (see Ippen (1966)) demonstrate that as 
the ratio of wave height to cylinder diameter, H/D, diminishes 
and the ratio of water depth to wave length, h/L, grows, the 
ratio of inertial force to drag force as described by the 
Morison Equation (Morison, et al (1950)) increases.  For exam- 
ple, if H/D = 1.00 and h/L = 0.40, the inertial force will be 
ten times as large as the drag force.  Many off-shore struc- 
tures, and in particular those considered in the present study 
are therefore subject primarily to inertial forces with drag 
effect considered negligible. 

Under these circumstances classical diffraction theory, 
which presupposes a frictionless fluid and therefore neglects 
drag seems to be ideally suited to the solution of problems 
involving the interaction of plane waves with large cylinders 
in deep or intermediate-depth water.  MacCamy and Fuchs (1954) 
were the first investigators to apply diffraction theory to this 
interaction problem.  Their study of the diffraction of periodic 
plane waves about a single circular cylinder led to a new 
approach to the problem of predicting wave forces on structures. 

The present study is an attempt to extend the work of 
MacCamy and Fuchs to a consideration of wave interaction with 
more than one vertical cylinder.  One approach to the solution 
of such problems is multiple scattering as suggested by 
Twersky (1952).  A direct matrix method appears to offer more 
rapid and reliable solutions and is therefore emphasized herein. 

THEORETICAL ANALYSIS 

Problem Statement.  The problem under consideration is the inter- 
action between incoming plane water waves and an arbitrary col- 
lection of vertical circular cylinders located in the path of 
the waves.  The following conditions are assumed to prevail: 

1. The waves are linear (small amplitude theory), and are not 
breaking. 

2. The bottom is horizontal and impermeable with a depth suffi- 
cient for deep water or intermediate depth wave conditions. 
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3. The cylinders arc circular, rigid, vertical, stationary, 
impermeable and have a relatively large diameter with 
respect to the wave height. 

4. Drag effects are negligible (i.e. the water behaves as an 
ideal fluid). 

A general procedure for determining the velocity potential 
for any number of cylinders is outlined first and then the 
specific case of two cylinders, Fig. 1, is analyzed more com- 
pletely.  Details of the analytical procedure are omitted 
herein, but are described by Spring (1973) . 

Field Point, 

The direction of wave 
advance is shown by n 

Figure 1.  Definition Sketch for Cylinder "o" and Cylinder "s" 

The approaching plane waves are conveniently expressed in 
terms of cylindrical coordinates since circular cylinders are 
under study.  Thus in terms of the coordinate center "s" the 
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incoming wave may be written (see Twersky (1952) and MacCamy 
and Fuchs (1954) 

0in(rs,es) = -Re[f(z,t) exp(ikros cos(8os-a)) 

CO 

•  V Jn(krs) exp(in(es-a+ir/2))j (1) 

where the symbols are as defined in Fig. 1, Jn(krs) is the 
Bessel function of the first kind, of order "n" and 

f(Z/t) = |H cosh[k(h+2)]  -igt ( 
2a   cosh kh 

where    g = the acceleration due to gravity 

H = the wave height 

h = the depth of water from the still water 
level to the bottom 

k =  the wave number,   2ir/L 
L = the wave length 

T = the period 

z = the vertical coordinate, measured positive 
upward from the still water level 

a  = the frequency, 2TT/T 

The waves scattered by the cylinders have as yet undeter- 
mined amplitude but must vanish at large distances from the 
cylinders due to circular dispersion.  Also the waves must be 
outgoing rather than incoming.  Thirdly, the scattered wave 
expression must be rather general to provide enough flexibility 
to account for the non-symmetrical scattering of the waves from 
the cylinder or cylinders.  With negative sign on the time expo- 
nential, the Hankel function of the first kind (see MacCamy and 
Fuchs (1954), 

Hp
1(kr) = J (kr) + iY (kr) (3) 

will adequately express the radial dependence of the scattered 
waves.  Since there will be no need for any Hankel function of 
the second kind (which describes incoming circular waves), the 
superscript on Hp1(kr) will be dropped and it will be understood 
that H (kr) = Hankel function of the first kind with argument kr. 

The scattered wave from the "sth" cylinder will then be 
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'sc^s'V = Re f(z,t)  V A^ Hn(krs) elnes 

n=-°» 

and for the cylinder located at "o" 

(4) 

3  (r ,6 ) = Re sc o o f(z,t)  y J°H (kr ) e1 me. (5) 

where the An's are complex constants (as yet unknown) of the 
form a + ib , with appropriate superscript. 

Since linear waves (small amplitude wave theory) are being 
considered, the velocity potential at any field point "p" may 
now be represented by superposing the various wave components to 
give 

0 = Re 
P 

f (z,t)|exp(ikros cos(9  -a)) 

^>  -Jn(krs) exp(in(es-a+ir/2)) 

I AJ H (kr.) n  n   3 
ine. 

e   3 (6) 

where the summation term on j accounts for the potential of the 
scattered waves from all cylinders present (Q being the number 
of such cylinders)• 

The potential function described by Eq. 6 is difficult to 
handle since each scattered wave is expressed in terms of a dif- 
ferent coordinate center.  There is however, a Bessel "addition 
theorem" or coordinate transformation available to express all 
wave components in terms of one selected coordinate center (see 
Watson (1966) pp. 359-61, or Abramowitz and Stegun (1965) p.363). 

Referring to Fig. 2, the Bessel coordinate transformation 
of c

v(w) (which may be any one of the cylinder functions - J,Y, 
H1, H2 or a derivative or linear combination thereof) from 
coordinate center 1 to a new coordinate center 2 is given by 
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C„(w) ^  =      T Cv+m(Z) am   (z) e*• (7) I 

with the restriction that |z e   |<|z| 

It should be noted that the restriction is lifted if v is an 
integer or zero and the only functions involved are of the first 
kind. 

1 

Figure 2.  Definition Sketch for Bessel Coordinate Transformation 

Direct Solution Versus Multiple Scattering.  The final step in 
the derivation of the velocity potential is the application of 
the reflection or Neumann boundary conditions at the surface of 
the rigid, impermeable circular cylinders.  These conditions are 
given by 

30 
^£= 0 @ rs = a (8) 

s 

for each cylinder and must be applied to evaluate the coeffici- 
ents AJ in Eq. (6).  In the instance of water waves scattered by 
impermeable vertical cylinders, the Neumann condition is applied 
on each cylinder.  It should be noted however, that the method 
does not require all boundary conditions to be of the same type. 

The fundamental difference between the direct approach used 
herein and the procedure suggested by Twersky (1952) is in the 
method of application of the cylinder boundary conditions.  In 
the "direct" approach the boundary conditions on all cylinders 
are applied simultaneously and all unknowns are obtained by means 
of a single matrix inversion of a set of simultaneous equations. 
The number of equations increases with the number of cylinders 
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involved in the problem (except for such special cases as an 
infinite row of cylinders of the same size and spacing); and 
with the number of terms taken in the summations.  The practical 
limit on the method is therefore the limit of the matrix size 
which can reasonably be handled by the digital computer available. 

In contrast, the multiple scattering approach takes one cyl- 
inder at a time and sequentially solves for the scattering coef- 
ficients.  The sum of the multiple scattering coefficients for a 
particular cylinder approaches the direct solution if enough 
orders of scattering are considered. 

The Two-Cylinder Problem.  The general method described above 
wxll be applied in this section to the case of two cylinders as 
shown on Fig. 1.  The two-cylinder case is used as an illustra- 
tion of the techniques involved.  Three, four, six, or more cyl- 
inders could likewise be considered.  On the other hand it 
should be noted that the size, orientation and spacing of the 
cylinders and the direction of wave approach are all arbitrary 
and can be selected later to make computations for a particular 
situation. 

The velocity potential at any field point "p" in terms of 
cylinder "s" may be formed by superposing the velocity poten- 
tials for the incoming plane wave, the scattered wave from cyl- 
inder "s" and the scattered wave from cylinder "o" as suggested 
by Eq. (6).  The Bessel coordinate transformation from "o" to 
"s" and the cylinder boundary on "s" are then applied and the 
resulting complex expressions are separated into real and imag- 
inary parts, while noting that A=a+ib, H=J+iY and H' = 
J' + iV.  This results in two sets of equations in the four 
sets of unknowns a , b , a , b , as follows: 

P  P  P  P 

-JImt
ka

s>   cos[(kros   cos(9os-a>)   -  m(-a+Tr/2)j 

+   (as  J'    (ka   )   - bs     Y'    (ka   )) -m -m       s -m     -m       s 

-     X   J;{kas}[(an Jn«(klos'   "  bn U'kloS»   cos <ne
OS  + m9so» 

'(bn  Jn«(kIos'   +  an  Yn+ra
(klos"   sin(n9os  + meso>]    =   °   •        (9a> 

and 
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-JlmCkas)   sin[^(kros  cos   (&os~a))   - m(-a+ir/2)J 

+   (bs     J1    (ka  )   +  as     Y'    (ka  )) -m     -m       s -m     -m       s 

+      Z   ^^s't^n Jn+m(klos'   +  < VmftloS"   cos ^9os + m9so' 

+   (a°  J   ,    (kl     )   -  b° Y   u   (kl     ))   sin(n6       + m6     )1   =  0 (9b) n    n+m       os n     n+m       os os so J 

where m =  0,+l,±2,     

In similar fashion the Bessel coordinate transformation from 
"s" to "o" and boundary condition on cylinder "o" are applied, 
producing two more equation sets in the same four sets of 
unknowns as, b , a , b , as follows 

P  P  P  P 

-J' (ka ) cos[-m(-a+ir/2)] + (a°  J' (ka ) - b° Y" (ka )) -mo'    L        J     -m -mv o    -m -m  o" 

+  Z Jm(kao' [<an Jn+ra
(kloS» - bn ^«klos" COs!n9So 

+ m9os> 

n=-°° 

-(bs ,r   (kl  )+aSY , (kl  )) sin(n9  + me  )1 = 0       (10a) n  n+m   os   n n+m   os so     os J 

J' (ka ) sin[-m(-a+TT/2)l + (b°  J' (ka ) + a°  Y' (ka )) -m  o'    [        'J     -nt -m  o    -m -m  o' 

and 

+ Z Jm(kao> [<bn J: n+m<klos> + < Yn+m(klos)) cos<neso + m9os> 

+ as .7   (kl  ) -bs Y , (kl  )) sin(n9   + ra9  )] = 0     (10b) n  n+m  os   n  n+m  os        so    os J 

In order to reduce the coefficients and the equations to a 
finite number, m and n are given a range of —M to +M where the 
value of M required to maintain a specified precision increases 
with increasing ka  and ka  and decreasing kl  .  For the two- 

s       o OS cylinder problem this will therefore result in 8M+4 equations 
and unknowns. 

Once the coefficients have been computed the final velocity 
potential is obtained.  In functional form, therefore, 
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0 = f(z) 2,   (fra cos(m9+at) + g  sin(m9+at)) (11) 

m 

where f  and g  are functions of r, and 
m    ^m ' 

f/,, _ gH cosh[k(h+z)] 
K   '        2   cosh kh 

Pressure on the Cylinder Face.  The pressure field may be deter- 
mined with the aid of the generalized Bernoulli Equation 

§| + gZ + £+ | (V0)
2 = 0 (12) 

Neglecting the kinetic energy and considering only the dynamic 
pressure, P,, one obtains 

P-, = - || = pa f (z)  >  (f  sin(me+at) -g cos(me+at))  (13) 

For the pressure on a cylinder face f  and g must be evaluated 
at the appropriate radial distance.  m     m 

Horizontal Force Components on the Cylinder Face.  By integrating 
the dynamic pressure over the entire cylinder face the horizontal 
force is obtained.  In general functional form the force compo- 
nents may be expressed as follows: 

Fx = "iP2' f(z) Rx cos(at+<5x) (14a) 

and 

F  = 2|££ f(z) R  cos(at+6 ) (14b) 

where R , R , 6  and S     are amplitudes and phase angles which 
depend on kas, Ka0, IC1QS, and Sos. 

ANALYSIS OF THE DATA 

Computer Procedure.  It is readily apparent that the solution of 
Eqs. (9) and (10) by matrix inversion requires the services of 
high speed computers.  In this case the UNIVAC 1108 of the Madison 
Academic Computing Center and the Datacraft 6024 of the Engineer- 
ing Computing Laboratory, both at the University of Wisconsin- 
Madison, were employed.  The flow diagram describing the program 
for the solution of the two-cylinder problem is presented in Fig. 3. 
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Specify cylinder size parameters, ka-i and ka.2, 
and cylinder separation parameter klos. 

Calculate Bessel functions of the 1st and 2nd 
kinds and their derivatives on ka^, ka2, and 

os • kln 

Specify horizontal angle 9 

Calculate matrix elements (coefficients of 
the unknowns an and bn). 

Matrix subroutine solves for the scattering 

Calculate multiple scattering coefficients 
up to 9th order.  Compare summation of the 
first nine orders with the an and bn 

obtained above. 

Use scattering coefficients to verify cylinder 
boundary conditions on the cylinder faces, 
r = a , and r = a . 
11'     2   2 

Calculate the pressure modulus and phase on 
both cylinder faces at 20° increments and the 
ratio to single cylinder pressure. 

Calculate horizontal force components (modulus 
and phased ratio to single cylinder force, 
and C . 

Specify new angle 0O3 

Specify new cylinder separation klQS 

Figure 3.    Computer Flow Diagram: Two Cylinders 
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Calculations were aimed at the determination of the pressure 
distribution on the faces of the cylinders and the horizontal 
force components per unit depth.  Pressures and forces were also 
calculated for the single isolated cylinder case of MacCamy and 
Fuchs (1954).  Thus the pressures and forces which are presented 
herein are expressed as ratios to the single cylinder pressures 
and forces.  These ratios clearly reveal the effect that the 
presence of the auxiliary cylinder has on the cylinder of interest. 

All calculations were accomplished in non-dimensional form in 
terms of the parameters describing wave length and cylinder size, 
spacing, and orientation:  kai, ka2, kl0s, and 6os (where a±  and 
a, are the radii of cylinders 1 and 2 respectively). 

The Two-Cylinder Solution.  The primary objectives in studying 
the two-cylinder case are to illustrate the technique involved, to 
compare the direct method with the multiple scattering approach, 
and to lay the groundwork for future extensions.  Thus the full 
range of cylinder sizes and spacings is not considered here. 

Two series of calculations were made, both with the incident 
waves moving in the positive "x" direction (a = 0°).  In the first 
series the two cylinders were of equal size, ka^ = ka2 = 0.40. 
The horizontal spacing between cylinders, klos, was varied from 
0.80 (cylinders touching) to 9.5 (approximately 1.5 wavelengths 
apart) in twenty steps, and the angular position of the second 
cylinder, 9os, was varied from 0° to 90° in steps of 30°.  Thus 
eighty combinations of angle and distance were considered. 

In the second series cylinders of unequal size (ka^ = 0.40, 
ka2 = 0.60) were considered.  The parameter klos was varied 
between 1.00 and 8.0 while the angular position of the second 
cylinder was varied between 0° (cylinder one leading) and 180° 
(cylinder two leading) in steps of 30°, providing 112 different 
locations of cylinder two in relation to cylinder one.  For each 
of these situations the following items were calculated: 

1. Basic scattering coefficients, by both the direct method and 
the multiple scattering approach. 

2. Pressure amplitude and phase angles at 20° increments 
around the cylinder. 

3. Ratio of pressure amplitude to the pressure amplitude on an 
isolated cylinder at 20° increments around the cylinder. 

4. Force components in the two horizontal directions. 

5. Ratio of force to that of a single cylinder (x-component only). 

6. Equivalent mass coefficient (x-component) as defined by 
Morigon, et al (1950). 
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Horizontal Force Components.  Amplitudes and phase angles of the 
horizontal force components (Rx, Ry, <$x, 6y as given in Eqs. 
(14)) were calculated along with the ratio to the force on a 
single cylinder (x-component only).  Typical results for two 
equal diameter cylinders and two unequal diameter cylinders are 
in Tables 1 and 2, respectively.  Furthermore force ratios for 
the same two cases are shown graphically as follows: 

Figure 4:  e   =0° and 180°    Figure 6:  9   = 60° and 120° os ^        os 

Figure 5:  9     30° and 150°   Figure 7:  9   = 90° 3        os * os 

The force ratios for both equal- and unequal-size cylinders 
appear in each figure for easy comparison.  Moreover in Fig. 7 
force ratios for an infinite row of cylinders (ka = 0.400, 9  = 
±90°) are included. s 

The orthogonal or y~component of force was also calculated 
(see Tables 1 and 2), and in one case rose to 67 percent of the 
x-component force (ka^ = 0.400, ka2 = 0.600, klos = 1.00, 9os = 
30°).  Although the effect on the maximum resultant was gener- 
ally less than 10 percent, partly due to the phase differences 
between the x and y components, in one case the maximum resul- 
tant was increased by 50 percent.  From a design point of view, 
either static or dynamic, both force components may be significant. 

The Mass Coefficient.  The force ratio mentioned above and in 
Tables 1 and 2 can also be interpreted as the ratio of the mass 
coefficient for one of two cylinders to the mass coefficient of a 
single isolated cylinder.  Therefore independent calculation of 
the latter using the equations derived by MacCamy and Fuchs 
(1954) , permits determination of the former.  Such values of Cm 

are also included in Tables 1 and 2. 

It is of interest to note that Cm may differ significantly 
from 2.0.  In the limited range of this study Cm varies from 
1.192 to 3.380 as shown in Table 2. 

General Observations.  The following general observations can be 
made about the cases studied: 

1. The force ratios are periodic in the spacing parameter klos, 
with attenuated amplitude, not unlike that of Bessel functions. 

2. The effect of a neighboring cylinder on the force of the first 
cylinder is very significant with as much as a 59 percent 
increase for two cylinders of equal size at 9os = 90° and in 
contact; and up to 42 percent decrease in the instance of two 
unequal cylinders at 9os = 0° and in contact. 

3. Cylinders lined up in the direction of wave advance generally 
exhibit greater variation in the x-component of force than do 
cylinders lined up orthogonal to the wave advance vector. 
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Single Isolated Cylinder Pressure and Force.  By way of verifica- 
tion, the pressure amplitudes for single, isolated cylinders with 
ka = .5 and ka = 1.0 were checked against those published by 
Wiener (1947) for sound diffraction by a single rigid cylinder. 
Agreement to the 4th decimal place was obtained. 

CONCLUSIONS 

1. A means of calculating the pressures and forces on a cluster 
of vertical circular cylinders is developed.  The method 
employs diffraction theory, but avoids multiple scattering 
techniques, in favor of a direct, matrix solution. 

2. Theoretical calculations for the force in the direction of 
wave advance reveal as much as a 60% departure from the force 
on a single isolated cylinder in the instance of two equal- 
diameter cylinders and as much as a 65% departure for two 
cylinders of unequal diameter.  The force on a given cylinder 
is thus significantly affected by the presence of neighboring 
cylinders.  The mass coefficient, CM, is found to range from 
1.19 to 3.38, significant departures from the often assumed 
value of 2.0 

3. The component of force perpendicular to the direction of wave 
advance is found to be very significant when the cylinders 
are close together, rising in one case to 67% of the force 
component in the direction of wave advance.  Although the 
effect on the maximum resultant is generally less than 10%, in 
one case a 50% increase is found.  Both force components may 
be significant for design of cylinders used for offshore tower 
supports. 

4. The method is not restricted to water waves, but can also be 
applied to other cases of scalar scattering in acoustics or 
electromagnetics. 
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