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ABSTRACT 

This paper deals with the estimation of total wave force on a vertical 
circular cylindrical pile.  Firstly, finite amplitude wave theories such as 
those of Stokes waves and cnoidal waves are recalculated by the Stokes second 
definition of wave celerity and the applicability of the theories for wave crest 
height above the still water level, wave celerity and horizontal water particle 
velocity is briefly discussed.  Secondly, the drag and inertia coefficients are 
estimated respectively from the results of experiments for total wave force by 
the authors and by other researchers, based on the Morison wave force equation 
applying the theories and characteristics of the coefficients are considered 
in relation to the wave characteristics and pile dimension.  Lastly, the appli- 
cability of the wave force equation proposed is investigated in comparison with 
experimental and theoretical results for time variation of total wave force and 
maximum total wave force. 

INTRODUCTION 

It is needless to say that accurate estimation of wave force on ocean 
structures in the design is of very importance.  In present state, the two 
methods as a practical approach are usually used for the estimation of wave 
force acting on a rigid circular cylindrical pile by nonbreaking waves.  The 
one is based on the theory of wave diffraction (MacCamy-Fuchs, 1954 and Yama- 
guchi-Tsuchiya, 1974) of which solution is obtained from the boundary value 
problem under the assumption of inviscid fluid and irrotational motion.  The 
other is the so-called Morison wave force equation (Morison, 1950) which ex- 
presses each component of wave force divided into the drag force and the inertia 
force with characteristics of incident waves, assuming that the wave motion is 
not essentially disturbed by the existence of the pile. 

It is important factors in calculating the wave force by the Morison wave 
force equation to estimate accurately the wave crest height above the still 
water level, water particle velocity and water particle acceleration and to 
select properly the drag and inertia coefficients. 

In this paper, from this point of view, some examinations are made. 
Based on the finite amplitude wave theories and the wave-pile characteristics, 
a relation between the drag and inertia coefficients estimated from many exper- 
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imental results is established as well as the applicability of the theories to 
the wave force equation.  Also, the validity of the wave force equation proposed 
is examined comparing the theoretical results of total wave force with the ex- 
perimental ones.  In this investigation, the total wave force on a pile by non- 
breaking finite amplitude waves is discussed under the assumption that the dia- 
meter of pile is small compared with the wave length and consequently the effect 
of wave diffraction by the pile on the total wave force can be neglected. 

FINITE AMPLITUDE WAVE THEORIES AND WAVE FORCE EQUATION 

(1)  Finite Amplitude Wave Theories (Tsuchiya-Yamaguchi, 1972)  For the 
estimation of wave force, there are many fruitful theories of finite amplitude 
waves such as Stokes waves and cnoidal waves.  The wave theories however have been 
derived by using either of two physical definitions of wave celerity (Stokes, 
1880). The one is the so-called Stokes first definition of wave celerity, which 
means that the average horizontal water particle velocity over a wave length is 
vanished, and it is given as 

\\c+u)dx 
„  

f dx 
0 

in which c is the wave celerity, L the wave length, u the horizontal water 
particle velocity and x the horizontal coordinate at the still water level. 
The other is the Stokes second definition, which is given as 

L y 
f f ( c+ u )dzdx 

c-   V-*  (2) 
f | dzdx 
o -h 

in which h is the depth of water, n the surface displacement from the still 
water level and z the vertical coordinate being taken positive upward from the 
still water level.  According to this definition, the average momemtum over a 
wave length is vanished by addition of a unform motion. 

Table 1 shows a classification of such wave theories by the definition of 
wave celerity.  For the analytical solution of Stokes waves, there are so many 
theories, but they all use the first definition.  On the contrary, for the 
cnoidal waves, there are three theories; the Chappelear theory is derived by the 
first definition and the others are done by the second one.  In this section, 
the Stokes wave theory by Skjelbreia and Hendrickson (1960) and the cnoidal 
wave theory by Chappelear (1962) are recalculated using the second definition. 

If the moving coordinate system with the wave celerity as shown in Fig. 1 
is used for an irrotational steady periodic waves and the dimensionless quanti- 
ties are defined by 

—  A0  —     _     — kj) 
0=—-, x=kx,  *=k*, v^~r 

€ X A 

Q=  
kQ     -_ _^_ -_ w 

X cX' cX 

.(3) 

the basic equation can be expressed as 

 (4) 

in which <|> the velocity potential, k the wave number, A a small expansion para- 

9 *  i?!± - 
dx2      3i* 
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Table 1 Classification of finite amplitude wave theories by 
the definition of wave celerity 

Wave Theory Definition of Wave Celerity 
The first definition The second definition 

Analytical solution Stokes (2nd approx., 1880) Authors (4th approx., 1972) 
(Stokes waves) Tanaka (3rd approx., 1953) 

De (5th approx., 1955) 
Skjelbreia (3rd approx., 1959) 
Skjelbreia & Hendrickson (5th 
approx., 1960) 
Bretschneider (5th approx., 
1960) 

Analytical solution Chappelear (3rd approx., 1962) Keulegan S Patterson (1st 
(Cnoidal waves) approx., 1940) 

Laitone (2nd approx., 1961) 
Authors (3rd approx., 1972) 

Numerical solution Chappelear (1961) von Schwind & Reid (1972) 
(Stokes waves) Dean (1965) 

meter which will be determined later, g the acceleration of gravity, Q the Ber- 
noulli constant, w the vertical water particle velocity and X the abscissa in the 
steady state coordinate system.  The dimensionless 
velocity potential $ is defined as 

.(5) 
dX • dz 

The boundary conditions at the bottom and at the 
water surface are given respectively as 

: = 0 

d$        d T, d r,   d <t>   _ 

3^       dX ax  dX 
•-If, 

.(6) 

.(7) 

-"§— Cf Kaxy 

/////////////////////////// 
Fig.   1    Definition sketch of + (iT^+(?] =o;    7=^ (8> 

coordinate system used 
The perturbation method is able to be applied in order to obtain the approx- 

imate solution, as a small parameter X  is included in the above equations. Accord- 
ing to the perturbation method of Skjelbreia and Hendrickson, the velocity potential 
in a series form satisfying the Laplace equation and the boundary condition at the 
bottom as well as the corresponding wave profile are assumed to the fourth order 
approximation as follows: 

0= (Am + U„+ X'A„, + i'^at)X+XA„ + ^„)cosh(4-M)sinX 

+ ( •».•)„+ ^'^2,)cosh2( *+Osin2X+ X2A„ cosh 3( h + ~i ) sin 3X + X* Att cosh 4 ( h+ ~z~ ) sin4X. • • (9) 

7, = cosX + ( XB„+X3B,t)cos2X + X*B„ cos3X + ,fs„ cos4X d0) 

in which A..   and B..   are the coefficients to be determined.     The first term in 
Eq.   (9)   being also    harmonic function is different from the assumption by Skjel- 
breia and   Hendrickson   as already pointed out by Stokes   (1880).     Furthermore,   the 
following equations are assumed for the Bernoulli constant and the wave celerity 
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Q=CZ+ X'C<    (11) 
?! = <( l + i'c,  ) (12) 

in which C. is the coefficient to be determined. 
1 

If Eqs. (9), (10), (11) and (12) are substituted into a set of the boundary 
condition at the free surface, Eqs. (7) and (8), the coefficients A  , B^ and C 
are determined from the grouped powers of A and sub-grouped powers  of  cos(nXT 
and sin(nX) according to the procedure of Skjelbreia and Hendrickson.  The coef- 
ficients are finally determined as 

<*oi -o,       As =0, -,   *»=- ( 5 cosh2 AA 4 1 ) cosha kn A„ 

8 sinh' kh 

3^02 

/(,.= 

8sinh'*A sinh" 

192 cosh* kh -424 cosh' kh - 312 cosh' kh + 480cosh" t* —17 

768 sinh   kh 

- 4 cosh2 kh+ 13 

A„ = 

Ssinh'fcA 64 sinh7 kh 

80 cosh* kh -816 cosh' kh + 1338 cosh' kh - 197 

1536 ( - 1 •+ 6 cosh2 kh ) sinh" kh 

(2cosh**A+l)cosh*A 

,(13) 

B„ = 

4 sinh* ** 

272cosh'iA- 504 cosh' kh - 192 cosh5 kh 4 322 cosh' kh + 21 cosh kh 
384 sinh' kh 

24 cosh* kh + 3 

64 sinh8 *A 

768cosh" *A - 448 cosh' 4A - 48 cosh' ** + 48cosh5 kh + 106 cosh" *A -21 cosh *A 

384 ( 6 cosh2 kh - 1 ) sinh' *4 

r»     .    un r        8 cosh' kh - 8 cosh' ** + 9    +2/1> 

^ 1 ,     sinh *A 

..(14) 

4 sinh kh cosh AA osh kh ...(15) 

4 cosh6 kh + 16 cosh* kh -38cosh2 kh 4 9 
Ct —    ———•    H 

64 sinh &A cosh M 

 4 cosh* kh + 5 

8 sinh3 M cosh H 
- y402 

2 sinh AA 

cosh AA 

sinh M 

.shM 
-4>* 

The above formulation by the authors coincides with the one by Skjelbreia and 
ickson, if the terms of A  and A  are vanished. 

Applying the Stokes second definition of wave celerity expressed by Eq. (2) 
iff icie 
cosh kh 

osh kh 

to determine the coefficients A_. and A  , the calculation finally yields 

*** = 

2 kh sinh kh 

4 cosh7 kh — 20 cosh5 kh + 16 cosh3 kh — 9 cosh *A 
-( 2 kh sinh kh >1 

.(16) 

32 kh sinh' fcA 

Therefore, the wave celerity and the horizontal and vertical water particle veloc- 
ities are written respectively as 
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tanh /ih 
(.1 + PC,) fjk 1 kh      -'"-"     (17) 

^=l?Am+X<A„+( W,+ J!4) cosh* (A+«)cos*X +2U>A„+ ^'^J cosh 2*( 4+O cos 2iX 

+ 3^^Mcosh3t(*+«)cos3WC   + 4 /)'/!„cosh4*( *+ ' )cos4*X (18) 

-=( /i^n+/t'/<ij)sinh*(A+J )sin*X+2(d"y<„+;*/<,4)sinh2*(A + « )sin2 4X 

-t 3j'.4„sinh3*(A+ ») sin 3 *X + 4 H'Au sinh 4* (A + « ) sin 4 AX     (19) 

ihe small parameter X is also expressed as 

2U+ /!»£„) = ^ (2°) 

in. which H is the wave height.  It is apparent from the definition of wave celerity 

that the wave celerity by both the definitions coincides in deep water waves. The 

horizontal water particle velocity corresponds to the one to be superposed the 

steady current of higher order term in the wave theory, in which the average 

mass transport vanishes, on the periodic motion of water particle. 

On the other hand, the Chappelear cnoidal wave theory by the first definition 

to the third approximation is transformed into the theory by the second definition, 

if only substituting the expressions for horizontal water particle velocity and 

surface profile into Eq. (2) through a tedious calculation.  The calculation 

yields 

^= = l+(i.+ t.*>S1) + [-ii.0«ic»+{5io/.sjc'+|-t„'*«(l + «')}S1    ~j 

+ j SLSL,K'+ 3L0V(1 + K')}S; —|rt0Vs1s,+ LWS'] 

(21) 

in which K is the modulus of Jacobian elliptic function, L and L the expansion 

parameters which are calculated from the following equation for the second approx- 

imation . 

..(22) 
y= *•/.„{ 1 +jL0( 10 + 7/c!) + 6t,} 

2is+i.<,(/t!+-|-) + t|{ —|-C 1 -6/C2-9/C')+2(1 + «:
2
)Y) + 6t„t,(i»+-^ ) + L\ = oj 

And S   ,   S     and S     are given as 

1  {•    .A«   .jy-J-d--') 
S'=T[sn(   2A >d       ^       K' 

LtL„. ./vSI, (^°x )(OC=-i— {(-8*«-7 /c'-8)-rr+4*,+ 3** + 8) 2ft 15^6 A 

.(23) 

in which K and E are the complete elliptic integrals of the first and the second 

kind respectively.  In the limiting case where K = 1, the cnoidal waves become 

the solitary wave and the wave celerity by both the definitions coincides as 
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vy« 5 
.(24) 

The other wave characteristics in the steady state are the same as those by the 
first definition. 

In addition, it is found that the expressions for wave characteristics of the 
second order approximate solution of cnoidal wave theory by Chappelear using the 
second definition agree exactly with those by Laitone (1965), if the expansion 

Fig. 2  Comparison for wave crest height above still water level 

parameters L and L  in the Chappelear theory are expanded into the power series 
of H/h and  the expression is rewritten into the power series of H/h to the 
second order of H/h (Yamaguchi-Tsuchiya, 1974). 
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Comparison for wave celerity(Experimental values shown were 
obtained by Iwagaki and Yamaguchi, 1967) 

Figs. 2, 3 and 4 show the comparisons between the theoretical curves and the 
experimental results for wave crest height above the still water level, wave 
celerity and vertical distribution of horizontal water particle velocity at phase 
of wave crest respectively, in which n0 is the wave crest height above the still 
water level and T the wave period.  In these figures, the notation S-l indicates 
the theoretical curves for the Airy waves, S-4-1 and S-4-2 those for the Stokes 
waves of the fourth order approximation by the first and the second definition, 
S-5-De for the Stokes waves of the fifth order approximation by De (1955), c-2-1, 
c-2-2, c-3-1 and c-3-2 for the Chappelear cnoidal waves of the second and the 
third approximation by both the definitions, and c-2-L for the cnoidal waves of 
the second approximation by the second definition which Laitone (1965) converted 
from the depth below the wave trough to the mean water depth, respectively.  The 
experimental results tend to agree more better with the theoretical curves by the 
second definition, although it is not capable of making clear enough which defini- 
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tion  in the wave theory is more  applicable for the estimation of horizontal 

water particle velocity, because of much scatter of the experimental values.  It 

is however concluded from many examples of the comparison that the fourth order 

approximate solution of Stokes waves and the second one of cnoidal waves calcu- 

lated using the second definition of wave celerity are more applicable for the 

estimation of wave characteristics. Therefore, these theories are used in the 
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Fig. 4 Comparison for vertical distribution of horizontal 

particle velocity at phase of wave crest 

calculation of wave force in this paper. 

(2)  Wave Force Equation With the frame of 

reference shown in Fig. 5, the horizontal wave 

force dF on  a segment dz of a pile can be 
expressed as 

dF P PC. r-CI}Au\u\dz 

the density of fluid. 

• (25) 

C the drag in which f 

coefficient, C  the inertia coefficient, du/dt 

the horizontal water particle acceleration, A 

the projected area perpendicular to the hori- 

zontal water particle velocity and V the dis- 

placed volume of the fluid.  For a vertical 

circular cylindrical pile of the diameter D, 

A and V are given by A = D and V = 7TD2/4 respectively 

Morison wave force equation (Morison, 1950).  The 

force and the second the inertia force.  Then 

by integrating Eq. (25) 

Fig. 5  Schematic diagram of wave 

force system used 

This is well-known as the 

first term indicates the drag 

the total wave force is obtained 

from the bottom to the water surface as 

[" -P-C PCK 
du 

•  (26) 

The horizontal water particle acceleration by the Stokes waves using the 
second definition at phase of x = 0 can be calculated by Eq. (18) as 

— = - c a [ { F, cosh k(h-\ T? ) -/'„ Ft cosh k ( h -| v ) ---*', F2 cosh 3 ft( h + V ) } sin ffH { 2*\ cosh 2ft { h \- v ) 

-2F0FtCOsh2k{k.\ V)-j*\2-\ /•,/•, cosh4A( A-t V ) } sin 2at -+ { 3*', cosh 3*( M V)~~^\^ 

cosh *( A-1  7i)} Sjn 3o*     | ^At\ cosh 4 A( A-| r1)-2FiF, cosh2*(A-| r/)    F?) sin 4 a/] (27) 
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in which 

F,  = X'Am+VAM f    F, = lAn+i>A„  , F, = -2U'A„+X'A„) , F,=    3^'A^ , Fi=   4 X'Att. . . {28) 

and a(=2ir/T) is the angular frequency. 

If the inertia coefficient is assumed to be constant over a water depth, the 
total inertia force F is expressed by substituting Eq. (25) into the second term 
of Eq. (26) and integrating it from the bottom to the water surface as 

F,=-pCuVc>[{F,smbk(h^ , ) -F0f, sinh k(h + V)  --Lf, F2 sinh 3*( A+ , ) } Sln at 

< {•f»sinh2t(A+7)  ~F„F2 sinh2k(h+7i) ---Ffk(h 1 r/) 

-~F,F,sinh4 k(h^rj)} sin 20' + {-f, sinh 3*( A+i? ) ~~^TF> F' sinh * < * + V ) } sin 3 a I 

•i  {F, sinh4i(« i 7/ ) - F, F, sjn„ 24 ( A+ 1) ) - f| k( A + 5 ) } sin 4 01 

.(29) 

The total drag force F can be computed by integrating the following equation 
according to the Simpson rule, as the mathematical formulation for the total drag 
force is difficult. 

FD^~CD  A[h  »l«|rf« 
.(30) 

After all, the total wave force F is given as the sum of the drag force by Eq. 
(30) and the inertia force by Eq. (29). 

F = FD + F,     (31) 
On the contrary,   if the second order approximate solution of cnoidal waves 

is used in place of the Stokes waves,   the total  inertia force can be written as 

Fl=~pCM V        jH *( l+-|-)snr<cnr<dnr< [L„K* + LZIC°(,1+IC*) +5L„L,/c*+2LS*' sn'r'    1 
\     (32) 

+i{i„vu+*2)-3i0Vs„*r<} (i+l^^rf^O-r)-^*'^?-'}]!' 

in which sn, en and dn are the Jacobian elliptic functions with a real period 
and 

j-=2L,+ L,(l + ic* )-/,„(* Sn
! r< + Ll + J- K ( 12 +23**+12*' ) +6*.„M 1 + K* )' 

-^-J-JU2 ( 1 \ ** ) sn2 r' — 6K?L„L, an'r'  + TL°'C' sn' f 

2K 
^=l+t»+(l-r){I.+ (2+iC'-x-)i| + 5i„tJ},  r=^" 

.(33) 

The total drag force can be obtained by the similar numerical integration to 
the case of the Stokes waves described already. 

(3)  Estimation of Drag and Inertia Coefficients If the drag and inertia 
coefficients are assumed to be constant over a wave period and the vertical 
direction in water depth, they can be estimated respectively by the following 
equations using the experimental results of the time variations of total wave 
force and the corresponding water surface displacement.  For the estimation of 
the drag coefficient, it can be expressed as 
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.(34) 
{p/2)A\^u\u\dz 

in which F  is the total wave force measured at phase of wave crest. 
Ho 

Using the finite amplitude wave theories, the inertia force can not be sepa- 
rated from the total wave force unlike the method of estimation by the small 
amplitude wave theory, because the phase of zero points in the time variations of 
water surface displacement and horizontal water particle velocities does not coin- 
cide each other and the phase of the latter changes slightly with a location in 
water.  Accordingly, for the estimation of the inertia coefficient, it can be 
expressed as 

>V=o-(^/2) CD A\\a\u\dz 
C

M ~   " —  (35) 
pV\    ( du/dt  )dz 

in which F _  is the total wave force measured at phase of zero point in the time 
variation   of water surface displacement. 

Furthermore, for the representation of the drag coefficient, the Keulegan- 
Carpenter number (1958) which shows unsteadiness of wave motion is taken in addi- 
tion to the wave Reynolds number.  The Reynolds number R and the Keulegan- 
Carpenter number KC are defined respectively as 

.(36) 

in which V is the kinematic viscosity and u  the averaged value of squared hori- 
zontal water particle velocity at phase of wave crest on an instantaneous water 
depth, which is also defined as 

u2 dz 
a" = }±  (37) 

M la 

CHARACTERISTICS OF DRAG AND INERTIA COEFFICIENTS 

(1)  Experimental Apparatus and Procedure The wave tank used in the experi- 
ment is 78 m long, 1.0 m wide and 1.5m deep which has the sloping model beach 
of 1/100, 45 m long. The experimental apparatus is composed of the measurement 
system of wave force and a test pile set on the rigid frame at the location of 
about 53 m distance from the wave generator. The measurement system of wave force 
is to measure total wave force from the difference of the strain at two points 
on a pile generated by an action of waves. In the experiment, time variations 
of total wave force on a pile and surface displacement were measured in the wide 
range of wave characteristics. The wave characteristics used in the experiment 
are tabulated in Table 2. The previous experimental and observed results in 
addition to the experimental result of the authors are considered, as their out- 
lines are shown in Table 3. 

(2)  Drag Coefficient Fig. 6 shows a relation between the drag coefficient 
and the wave Reynolds number. The coefficients were estimated by the fourth 
order approximate solution of Stokes waves as shown in Fig. 6 (a) and by the 
second approximate solution of cnoidal waves in Fig. 6 (b). In the figure, the 
experimental results by the authors, Goda, Burton et al., Jen and Ross and the 
observed ones by Morison et al. and Wiegel et al. are indicated.  In the 
results by Ross and Morison et al., the maximum wave force was given only. How- 
ever, the drag force was predominant taking into account of the wave-pile char- 
acteristics, so that the drag coefficient could be estimated from the maximum 
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Table 2 Wave characteristics used in experiment 

Wave period Depth of water T/gTH Diameter of Wave height 
T sec h cm pile D cm H cm 
1.5 55.6 6.30 14.0 9.3  -  37.5 
1.5 55.6 6.30 28.0 12.4  -  34.2 
2.0 55.6 8.40 14.0 7.8  -  40.9 
2.0 55.6 8.40 21.0 6.6  -  33.4 
2.0 55.6 8.40 28.0 6.9  -  40.7 
2.5 55.6 10.5 14.0 5.4  -  43.2 
2.5 55.6 10.5 21.0 5.6 -  36.6 
2.5 55.6 10.5 28.0 7.7  -  47.6 
3.0 55.6 12.6 7.0 4.9  -  44.2 
3.0 55.6 12.6 14.0 4.7   -   46.9 
3.0 55.6 12.6 21.0 4.5  -  37.4 
3.0 55.6 12.6 28.0 4.7   -   46.9 
2.5 27.8 14.8 7.0 5.3  -  23.6 
2.5 27.8 14.8 14.0 4.9   -   23.6 
3.0 27.8 17.8 7.0 4.2   -   21.2 
2.6 41.7 12.6 7.0 5.5   -   31.6 
1.8 14.0 12.6 7.0 5.0   -   12.7 

Table 3  Outline of previous results of experiment and 
observation of wave force on a pile 

Researcher Year Wave period 
T  sec 

Depth  Of 
water h cm 

Wave height 
H cm 

Diameter of 
pile D cm 

Wave Reynolds 
number RexlO- 

Morismi ct al, 1953 4.2  -13.3 914-   160.6 18.3-1 Ki.O 8.9 2.72-   20.4 

Ihi.-lcman el a!. 1955 1.0   ~ 1.49 30,5-   124 1 12.2-   256 1 27-15.2 0.48-     8.1 

W iegel  et  a). 1957 9.1   -18.6 1400.0 -1500.0 134.2 — 625.0 32.1 , 61.0 19.0—130.0 
Hoss 1959 3.75-16.0 153 0-   458.0 58.0-235.0 32.1 21.0-   86.0 
Goda 1964 1.37-7.96 100.0 ,    130.0 9.3-   80.1 7.6 , 14.0 1.43-   21.8 
,1 en 1967 0.91-5.30 91.4 2.1 -   18.3 15.2 0.38~    5.7 
Btirlon el al. 1970 0.81- 1.67 61.0 1.0—   25.4 9 4- 10.2 0.67-     5.1 

wave force. Also, the drag coefficients by the authors, Jen and Burton et al. 
are limited in the case where the drag force is more than about 15 % of the max- 
imum total wave force. The curves shown in the figure are the drag coefficient in 
a uniform flow by Vennard, Goldstein and Fage et al. respectively which differs 
each other corresponding to the extent of turbulence intensity near the critical 
Reynolds number.  There is hardly prominent difference on the whole trend between 
the results by the Stokes waves and those by the cnoidal waves.  It is found from 
the figure, in spite of large scatter of the results that the drag coefficient 
tends to decrease with the increase of the wave Reynolds number in the ranges of 
R < 2*105 and R > 10s.  Accordingly, the drag coefficient is considerably differ- 
ent at the same6 Reynolds number.  This may be not only due to the scatter caused 
by experimental error but also due to the dependence on the other parameter 
affecting the drag coefficient of a pile in wave motion, in addition to the wave 
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Reynolds number. 

Fig. 7 shows the similar 
results- to Fig. 6, in the case  i 
where the fourth order ap- 
proximate solution of the 
Stokes wave theory by the 
first definition and the 
Airy wave theory were used.     ' 
In this figure, the drag      g < 
coefficient C „, was obtained ^ 

D41 
by the Stokes wave theory and 
C , by the Airy wave theory. 
The drag coefficient estimated 
using the Stokes wave theory 
by the first definition becomes 
slightly smaller than the one 
by the second definition and 
there is little difference in  /C 
the relation with the wave 
Reynolds number.  On the 
contrary, the drag coefficient 
by the Airy wave theory is 
larger than the results by the 
finite amplitude wave theories 
and the range of scatter is 
wider, because the wave crest 
height above the still water 
level and the horizontal water 

w 
particle velocity are under-   ^ 
estimated. ^ 

The Keulegan-Carpenter 
number is well-known as one of 
the dimensionless pararmeters 
to be described the unsteadiness 
of wave motion. Figs. 8 and 9 
are the drag coefficient des- 
cribed in relation to the wave 
Reynolds number and the        ^ 
Keulegan-Carpenter number. 
The curve indicated by broken 
line was obtained being 
classified the data into some 
intervals of the wave Reynolds 
number and the Keulegan-Carpenter 
number and averaged.  Although 

— —-KCS 7 "'-- --„ 
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Fig. 8 

/0s to" 
Re 

(b) 

Relation between drag coefficient and 
wave Reynolds number with Keulegan- 
Carpenter number (1) 

the experimental values of drag coefficient are scattered as shown in Figs. 6 and 
7, the drag coefficient at a constant wave Reynolds number generally decreases 
with the increase of the Keulegan-Carpenter number.  It is supposed refering to 
the Bidde (1970) experiment that the reason can be explained as; the trend in the 
small value of the Keulegan-Carpenter number approaches the Vennard curve in a 
uniform flow with small turbulence intensity and the trend in large value corre- 
sponds to the Fage and Warsap curve in a uniform flow with large turbulence 
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intensity.  There is similar 
trend in the relation between 
the drag coefficient estimated 
by the cnoidal waves and the 
above parameters. 

(3)  Inertia Coefficient 
Fig. 10 is a relation between   * 
the inertia coefficient and    O 
the ratio of wave height to 
pile diameter.  The upper 
figure was obtained using the 
Stokes wave theory by the second 
definition and the lower by the 
cnoidal waves.  The curve  shows 
a general trend obtained by 
averaging experimental values.   ' 
The coefficient by both the 
theories tends to decrease 
slightly with the increase of 
the ratio, except for the observed 
values by Wiegel et al. (1957).  The 

2 

"^ 
i 

- ~~-~ ." 4^KKC< -J 
-V-^; "^ -   ^^x^ ..     v,. 

i. \ 
--„ s.. fc--\ \ 7<KC<I5    ~ Q-.'~  • ^ 

<>?-- )p<KC<40. 

A 
Faqe a Warsap        "^ sEr 

%<irKC}40\ 

Goldstein Vennard 

10 10° 10 

Pig. 9 Relation between drag coefficient 
and wave Reynolds number with 
Keulegan-Carpenter number (2) 

increase of the ratio means the increase of drag force in the total wave force. 
Therefore, this may be due to the vortex shedding behind the pile in the pre- 
dominant region of drag force, according to the Sarpkaya and Garrison (1963) 
study on the inertia coefficient of a pile in a unidirectional accelerated flow. 

Fig. 11 is also the similar relation.  The wave theories used in the esti- 
mation of the coefficient are the Stokes wave theory by the first definition of 
which result is shown in Fig. 11(a) and the Airy wave theory in Fig. 11(b), 
respectively.  It is clear from the comparison between Figs. 10 and 11 that there 
is hardly prominent influence of wave nonlinearity on the inertia coefficient, 
because the inertia coefficient is changed nothing but slightly larger than the 
one by the finite amplitude wave theories. 

TOTAL WAVE FORCE 

(1)  Time Variations of Total Wave Force  Keulegan and Carpenter (1958) 
estimated the phase variation of the drag and inertia coefficients from the 
results of experiment of wave force on a horizontal circular pile using the 
Airy wave theory.  In so far as the finite amplitude wave theories are used, 
however, such an analysis is so difficult that the effect of the phase variation 
of the coefficients on the time variation of total wave force is investigated 
from comparison between the theoretical curves and the experimental results of 
the time variation of total wave force.  In this case, the coefficients are 
assumed to be constant over a wave period. 

Some examples of the comparison are shown in Fig. 12 of which the upper 
figure is the corresponding time variation in the water surface displacement. 
In this figure,  the solid line indicates the theoretical total wave force by 
the Stokes waves, the two-dotted chain line the one by the cnoidal waves and 
the broken line and the one-dotted chain line indicate respectively the theore- 
tical drag and inertia force by the Stokes waves.  The coefficients in themselves 
estimated directly from the experimental results by the method mentioned previous- 
ly were used in the theoretical computation of total wave force.  The experimetal 
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Fig. 12  Time variations of water surface displacement and total 
wave force in comparison with theories 

time variation of total wave force and the corresponding water surface displace- 
ment agree well with the theoretical curves by the Stokes waves within the range 
of T/g/h < 12.6 and those by the cnoidal waves within the range of  T^gTh >_ 14.8. 
Prom the above consideration, it is expected that the phase variation of the 
coefficients has not so serious effect on the computed results of total wave force. 
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Fig. 13 is another comparison of the 
time variation of total wave force.  In this 
figure, the solid line indicates the theore- 
tical total wave force including the effect of 
the convective term in water particle acceler- 
ation and the broken line the one not including 
the convective term.  The influence of the 
convective term on the total wave force is 
only a few percent at most, but it would 
affect the maximum total wave force when the 
inertia force becomes predominant. 

(2)  Maximum Total Wave Force  The ap- 
plicability of the total wave force equation 
by finite amplitude wave theories to the 
estimation of maximum total wave force is 
investigated.  In this case, the wave theo- _     ~^s^g7h '103 
ries used are such as the Airy wave, Stokes y\ u/u-\AfL 
wave and cnoidal wave theories explained J    i_^ 
already. J      6 H/D=2-72 

Fig. 14 shows one of the comparisons,       "j£a ^^Q.5    Q\ 0.5        1-0  tsec 
where the abscisa gives the measured wave 
force or bottom moment and the ordinate is 
the computed one.  In this figure, the 
fourth order approximate solution of the 
Stokes waves by the second definition of 
wave celerity, the one by the first defini- 
tion and the cnoidal wave theory were used 
respectively with the constant drag and 
inertia coefficients. There is relatively 
good correspondence between them, except for 
the experimental values by Goda (1964), in 
which the computed results show larger values -'-5  so 
than the experimental ones, because the drag  Z^rtfo 
force is predominant in the most of his 
experiment and moreover the estimated drag 
coefficient is smaller than 1.0 in most 
cases. Taking into account of the poor 
correspondence between the theoretical 
results applying the Airy wave theory and 
the experimental ones, as shown in Fig. 15, 
the results mentioned above describe the 
good efficiency of the wave force equation applying the finite amplitude wave 
theories and the appropriateness of selected values of the coefficients in prac- 
tical purposes. 

The comparison in the case where both the drag and inertia coefficients were 
estimated respectively from the relations proposed by the authors is shown in 
Fig. 16.  Although there are some cases where the correspondence becomes poorer 
in comparison with Fig. 14, if the inertia coefficient is determined from the 
relations proposed, the mutual correspondence becomes better and the range of 
scatter narrower in general cases.  It may be worthwhile recommending from the 

Fig. 13 

TSg/n=i2-6 

h,H=i-79 

H/D=4.43 
i.O   ts*ci.5 

(c) 
Influence of convective 
term in water particle 
acceleration on total wave 
force 
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Fig. 14 Comparison between exper- 
imental and computed max- 
imum total wave forces (1) 

Kg   or   Mm  meo5 Kg rr 

Fig. 15 Comparison between experimental 
and computed maximum total wave 
forces (2) 

above consideration that the estimation of 
wave force on a pile by such a method is 
more hopeful. 

CONCLUSIONS 

The Stokes wave theory of the fourth 
order approximation by Skjelbreia and Hend- 
rickson and the cnoidal wave theory of the 
third approximation by Chappelear were re- 
calculated using the Stokes second defini- 
tion of wave celerity and it was found from 
the compariaon with the experimental results 
that these theories are more applicable for 
the estimation of wave characteristics. 

The theories were applied to the wave 
force equation by Morison and the drag and 
inertia coefficients were estimated from many 
experimental results including the previous 
studies of wave force on a pile. As a result, 
relations between the drag and inertia coef- 
ficients and the wave-pile characteristics 
were established respectively. 

It was shown that the wave force equation 
using either the Stokes wave theory or the 
cnoidal wave theory and the drag and inertia 
coefficients proposed, is very effective to 
estimate the maximum total wave force on a 
pile due to finite amplitude but nonbreaking 
waves. 
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Fig. 16 Comparison between experimental and computed maximum 
total wave forces (3) 

Although a practical method was proposed for the estimation of total wave 
force on a vertical circular cylindrical pile within the range of experiment, 
further investigations should be carried out for the range of higher wave 
Reynolds number. 
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