
CHAPTER 36 

WATER WAVES ON A BILINEAR SHEAR CURRENT 

by 

Robert A. Dalrymple 

Abstract 

A water wave theory is presented to describe waves propagating on a 
bilinear shear current flowing in the direction of the waves.  The theory 
is derived assuming an ideal fluid in which a current exists, having a 
vertical velocity profile which varies linearly from a mean water level 
velocity of Ug, an interfacial velocity Uj at depth, d, and a bottom 
velocity Uj$.  The theory is developed first for small amplitude waves 
and then extended to any arbitrary order by a numerical perturbation 
technique for symmetric waves. For measured waves, an irregular form 
of the theory is presented to provide a representation of these waves 
for analysis. 

Introduction 

In the design of offshore structures, it is necessary to use water 
wave theories that incorporate into their formulation a mean current, as 
currents are always present under design conditions.  In the past, several 
techniques have been tried to incorporate the current. First, a constant 
current, having the same velocity over the depth and flowing in the direc- 
tion of the wave, was assumed as, for instance, in the Stream Function 
wave theory (Dean, 1965). Recently, Dalrymple (1974) developed the linear 
shear current theory, which extended the Stream Function wave theory by 
allowing the inclusion of a current which varied linearly over the depth. 
This model could be carried to any order, thus extending the analyses 
of Biesel (1950) and Tsao (1959).  (See also Dalrymple, 1973.) 

In this paper, a better model is proposed, which fits an ambient current 
with a velocity profile which varies linearly over the depth from a mean 
water level velocity of Ug to an interfacial velocity, Ui at some depth,d. 
From Uj, the velocity again varies linearly to the bottom velocity, Ug.  By 
including the interfacial velocity, the designer is allowed more flexibility 
in modeling the design current.  This model, the bilinear shear current theory, 
is developed first for small amplitude symmetric waves and then for finite 
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amplitude waves; in either case, the waves are characterized by the wave height, 
H, the wave period, T, the water depth, h, and the current parameters (Ug, Uj, 
d, Uj). A final form of the theory is presented for the representation of 
measured wave data, which is characterized by the measured, digitized, free 
surface elevations and the current parameters. 

Mathematical Formulation of the Boundary Value Problem 

Several assumptions must be made a priori to enable the formulation of 
a boundary value problem.  First, the waves are assumed to be long crested, 
which makes the problem two-dimensional and, secondly, the waves propagate 
without change in form.  With this last assumption, the coordinate system 
may be translated with the wave celerity, C, thus rendering the wave motion 
steady in time.  Next the fluid is assumed incompressible, or mathematically, 

3(U + u - C)   3v  - 
3x       3y  U (1) 

where U is the ambient current and (u,v) are the horizontal and vertical 
wave-induced water particle motions in the (x,y) directions. A stream 
function, t|/(x,y) may now be defined by 

it 
3y 

3i|< _ 

3x 

U + u 

(2) 

v 

Lastly, the current is assumed to be well-established and the effect 
of viscosity is neglected.  The applicable equations of motion then are the 
Euler equations, Lamb (1945). 

CD + u - C) 
3(U + "-C> + v HV + n-C)=  _ 1 |£ 

3x 3y        p  3x 

(D + U_C) £ + vf^=-± £-, (4) 

Cross-differentiating to eliminate the pressure, p, and the acceleration 
due to gravity, g, and substituting the stream function yields 

-|JCV2*)+i£<V2*>-0 (5) 
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where V is the two-dimensional Laplacian operator. This equation requires 
that the fluid vorticity, V2ijj, be constant along a streamline, therefore, 

the equation may be integrated to yield 

»• = £(*) (6) 

where f(M is the vorticity distribution function. The classical theories of 
Airy (1845) and Stokes (1847) correspond to the irrotational case, f(i|0 = 0 
everywhere. In this paper, f (i|i) is assumed to be a constant in each of the 
two fluid regions depicted in Figure 1. 

The theoretical form of the ambient shear current is expressed as 

u(y) 
UB+(UI-UB>S>, for-h<y<-d+?(x) 

US + (US " vHh*  for ~d + C(x) - y -n(x) 

(7) 

Here, C(x) and n(x) are the displacements of the interface and the free 
surface due to the passage of the wave. 

Substituting U(y) into Equation 6 results in two differential equations: 

(8) 

where L is the wave length. The subscripts on the stream functions denote 
the fluid regions for which they are applicable; ty^,  the lower region and 
i|)2> the surface region. 

To fully prescribe the boundary value problems for i|i^, I(>2> boundary condi- 
tions must be specified. At the horizontal bottom, no vertical flow is allowed, 

v\ = - furuB for' 
-h <_ y < -d +• 5(x) 

h-d 0 <_ x < L 

2 v\ = - [Vui) for. 
-d + C(x)  < y < TI(X) 

d 0 < x < L 

3x 
0 on y = -h (9) 

For periodic waves, the stream function must be periodic over a wave length. 

<P± (x,y) = ^(x+L.y) , i - 1, 2. (10) 

At the free surface, the pressure must be a constant. To mathematically 
express this condition, the Bernoulli equation, which is valid along a stream- 
line, is used: 
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+ (U + u - C)2 + v2 + £_ = ( }> a constant. 
2g        pg (11) 

The boundary condition, called the Dynamic Free Surface Boundary Condition 
(DFSBC), then is expressed on the free surface streamline as 

n + 
3*2} 2 

3JT 
!!ai2 

3y 
= Q, a constant on y = n(x) (12) 

2g 

Also on the free surface, it is specified that the presence of the wave does 
not change the mean water level; that is, ri(x) must have a zero mean. 

i f n« ) dx (13) 

For small amplitude waves, it is convenient to use an alternative form of the 
condition, called the Kinematic Free Surface Boundary Condition (KFSBC), which 
requires the free surface to be a streamline, 

ii in. _ ii 
3y 3x ~ 3x on y n(x) (14) 

Note that this requirement is true by definition when using a stream function 
representation of the fluid flow. 

Across the interface between the two fluid regions, the velocities and 
pressures must be continuous. From the Bernoulli equation applied to the 
uppermost streamline in Region 1 and the lowermost streamline in Region 2, the 
pressures across the interface will be continuous if the horizontal and vertical 
velocities are continuous. Therefore, the interfacial boundary conditions may 
be specified as 

-3+i 

i*i 
3x 

-8+2 

3y 

3+2 
Sx 

' on y = -d + c(x) for all x (15) 

Finally, it is required that the interfacial displacement have a zero mean 

5(x) dx = 0 (16) 
1 f L Jo 

For a small amplitude wave, it is again convenient to use the alternative 
condition 
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" 3? ta-ta  "7"-4 + tW (17) 

Small Amplitude Bilinear Shear Current Theory 

For small waves, all nonlinear terms in the boundary conditions are 
linearized using the rationale that terms of 0(H/L) are small, therefore, terms 
of 0(CH/L>2) are negligible. 

The free surface and interfacial displacements are assumed to be sinusoidal 
in X and given by 

n(x) = — sin kx 

S(x) = -r sin kx 

(18) 

where k is the wave number (k = 2TT/I.) . 

The stream functions are assumed to be of the following form 
2 

r|i (x.y) = -(U -C)y - (U.-U ) (hy 2) + D sinh k(h+y) sin kx      (19) 
(h-d) 
2 

*2 (x>y> = -(Ug-Oy - (Dg-Wj.) |j +  (A sinh ky + B cosh ky) sin kx  (20) 

These stream functions satisfy the periodicity requirements and the bottom 
boundary condition. The coefficients, A, B, and D must now be found to satisfy 
the remaining boundary conditions. 

Using the KFSBC, Equation 14, and retaining only the linear terms. 

B = (Us-C) | (21) 

The DFSBC must be satisfied at the free surface.  In a linear analysis, 
the DFSBC is expanded in a Taylor Series about y = 0 and analytically 
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continued up to y = r\.    Keeping only the first term, 

3x m ay 
2g 

y + m+m 
2g 

on y = 0 

Substituting for IJJ. and retaining only the linear terms, 

A = H (g + (Us-C)(Ug-UI)/d) 
2    (us-c)k 

(2 ) 

(23) 

in order that Q be a constant. 

At the interface, the linear kinematic condition can be written as 

8*! 

*r= (urc) Tx   on y (24) 

2sinh k£ 
(25) 

The requirement that the vertical velocities be continuous across the 
interface yields 

-A sinh kd + B cosh kd 
sinh kl 

(26) 

The last boundary condition to be satisfied is the equality of the horizontal 
velocities across the interface, 

(UI V ^ - Dk cosh U = (US~V \ -  (Ak cosh kd - Bk sinh kd)   (27) 
/ d 

Substituting for -j,  D, and B in terms of A yields, after some algebra, 
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[' (W - (urV" 
d i  j (ut-c) + k coth kt CDS-C)' g+(Vc)(Vui tanh kd) 

k 

= g + CUs-C)(Us-U][)/d - (Us-C) k tanh kd. (28) 

This is the dispersion relationship which relates the wave number, k, to the 
given characteristics of the wave and current. 

The final forms of the stream functions are 

2 
^(x.y) = -(UB-C)y - (Uj-tyChy + *j)/£ + | KUg-C) cosh kd - (g + (Ug-OOJg-U^/d) 

(Us-C)k 

sinh kd] tlnTT^ ^  - «9) 
(U.-UT) ,  „p (g + '(U„-C)(U -U )/d)      -, 

f rVc) cosh ky +  (u .c)i' —  Slnh k^| i|)2(x,y) = -(Ds-C)y —|j- 7 + •C) cosh ky + 

• sin kx 

sinh ky| 

(30) 

The small amplitude form of the bilinear shear current theory, Equations 
(27), (28), and (29), generalized the work of a number of previous investigators. 
For example, Sir G. I. Taylor (1955), investigating wave breaking by bubble 
breakwaters in infinitely deep water, treated the case for Ug = Uj =0 and 
h ->- -<». Thompson (1949), earlier treated the case of a shear current in the 
lower layer. Binnie and Cloughley (1971) investigated the problem of stationary 
waves (C=0) on the same current profile, i.e., Ug = Uj. All of the results of 
these earlier investigators are a special case of the bilinear shear current 
theory, as, in fact, is the wave propagating in still water. 

Finite Amplitude Bilinear Shear Current Theory 

To extend the bilinear shear current theory to large waves, that is, when 
(H/L) is not necessarily small, all the nonlinear terms in the boundary condi- 
tions must be retained and, further, the free surface conditions must be applied 
directly on the free surface.  To do this efficiently, some of the boundary 
conditions are specified in a least squares form.  The boundary conditions 
are thus rewritten as:        /. 

(Q(x) - 

where Q 

Q)2 dx 
rL/2 

Q(x) dx on y 
Jo 

(31) 
n(x) 
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and 

L J, 

•L/2 
n(x) dx 

E3 = n(0) - n q> - H 

E - 2-  f^2 f 
3*2  3*j_ • 

3y   3y 

2 fL/2  [3*2  ^ 

5 ~ L j     |.3x   3x 

2 fL/2 E6  L L  5(X) dX 

2 

dx 

dx 

(32) 

(33) 

(34) 

(35) 

(36) 

The error terms E., E , and E are the mean square error to the DFSBC and the 
interfacial conditions. The E-, Ej and Eg terms are the constraint terms on 
the solution, stating that the mean water levelremain unchanged, the wave 
height be specified as H, and the interface not be displaced by the wave. For 
an exact solution to the boundary value problem then, all the E^ (1=1,6) would 
be zero. Note also that the symmetry of the wave has been used to reduce the 
range of the integration to only L/2. 

It is convenient to define an objective function, OF, which must be 
minimized towards zero, using a Lagrange multiplier approach.  (See, for 
example, Hildebrand, 1965). 

OF El + X1E2 + X2E3 + E4 + E5 + X3E6 
(37) 

where the X^ (1=1,3) are the Lagrange multipliers. Again, if OF.is zero, 
or very small, the problem is solved. 

The stream function for each region is assumed to be given by a series 
expansion of the following form 

1>±  (x,y) = - (UB-C)y - (UI-UB)(hy + y
2/2)/(h-d) + 

• sinh k (h+y) cos k x 
n n 

where k = 2(n - (NN+1)) ir/L 

NN + M +1 

i 
NN + 2 

X(n) 

(38) 

NN-1 
*2 <x>y> = "(Us-C)y -(Ug-Uj.)/ + I        (X(n) sinh fe=il2Z + x(n+1) cos h <n~j->*?) 

    n = 3,5 2d 

(n-l)irx (39) 
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The parameter, NN,is related to the order of the wave theory; NN=2* 
order +2.  These stream functions satisfy the governing differential equations, 
(8),and the periodicityand bottom boundary conditions exactly.  The X(n) are 
unknown constant coefficients, which then must be chosen to reduce OF towards 
zero.  The other unknowns are the wave length, L, and the value of the free 
surface and interface streamlines,  t|)-(x,n) and t|i„(x, -d+5). 

The free surface and interface displacements are obtained by solving (39) 
by substituting the appropriate value of the streamline. 

To solve for the unknowns, a trial set of X(n) are necessary. These can 
be obtained by neglecting the shear current in the upper layer, keeping 
only the Ug term, assuming a first order wave, setting il^te'l) = 0 and using 
the wave length obtained from (28). The trial values of X(3) and X(4) are 
then obtained from (39), by examining the wave crest, (y = H/2, X = 0) and the 
wave trough, (y = -H/2, x = L/2).  The remaining X(n) are set to zero. 

With these trial X(n), the value of OF is quite large.  An iterative numer- 
ical perturbation technique is thus used to minimize OF with respect to the 
X(n).  To facilitate this, the objective function is quasi-linearized by expand- 
ing all terms of OF at iteration (j +1) in a first order Taylor series in 
X"" (n) at iteration (j) where X"(n) are small changes in the X(n). 

N   [NN-2]   . 

0F^+1 = OF^ +     I V !$& X-(n) (40) 
n = 1 

Next, 0FJ   is minimized with respect to the X(n) and the Lagrange multipliers. 
This results in (3NN+6)/2 equations for the same number of unknowns.  By 
solving these equations by matrix techniques for the X'(n), new values of the 
X(n) are obtained. 

j+l    i j 
XCn) = X(n) + a X'(n) (41) 

Substituting these new values into OF results in a smaller error. This proce- 
dure is then iterated until OF is acceptably small.  Typically this requires 
about twenty iterations.  Note that a in (41) is, in general, near one; 
however, for near breaking waves, an instability results if a is not less than 
one-half. 

Analysis of a Measured Wave Propagating on a Bilinear Shear Current 

The bilinear current wave theory may also be modified for use in the 
analysis of measured wave data where the free surface displacement and the 
current is known and can be approximated by a bilinear shear current. The 
governing equations and the boundary conditions at the interface are the 
same as before.  The kinematic free surface condition is modified so as 
to ensure the predicted free surface displacement, n  , at each digitized 

P-i 
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time point, i, corresponds to the measured free surface displacement, r)n.. 
There are assumed to be I data points corresponding to the total free surface 
profile. 

The stream functions for the two regions are 

,,2,,,  4NN+5 2mn (h+Y) 
*i(x,y) - -(UR-C)y - (UR-U ) ^VJ'-,1*        I        X(n) sinh ^  
1 B       B X   (h~d)   n=3SN+5 L 

2irm t 
• cos (—j"- + X(3mn + 3)) (42) 

*2(x,y) - -(Ug-C)y - (Ug-UI)y
2/2d +   £ [j(3n+l) sinh ^^- + X(3n+2) cosh ^~pQ 

n-1,2 •. 

• cos p2I£ + X(3n+3)j (43) 

where mn=n - (3NN+4) and NN is now the order of the wave theory. The unknowns 
again are the X(n), and L, T, 1(12(x,n), >|>2(x> -d+C)> which are defined as 
X(l), X(2), X(3) and X(3NN+4) for convenience. 

The stream functions are periodic in L, 1(1 satisfies the bottom boundary 
condition, and a phase angle, X(3n+3), necessary to fit an irregular water 
surface, is introduced. 

To determine the X(n) which best satisfies the remaining boundary condi- 
tions, an objective function is defined: 

1  1 v    -2  1 5 f-3*2    3V!2  1 V  f3*9  ^l2  lr F • T £ (vQ) + i Jj w + irji+ T Ji M" n?]l 
+ IJ/V^P 

+ fL L
   io 

S(x)  dx (44) 

Here the integral form for least squares is replaced by- a summation over the 
I data points. Again, if OF is equal to zero, the boundary value problem 
would be solved exactly. The numerical perturbation procedure is exactly 
the same as in the previous case, given a trial set of X(n) , obtained as 
before, a better set of coefficients is found by minimizing 0FJ"""1 in its 
quasi-linearized form with respect to all the X(n) , and solving for the 
X'(n) which are added to the X(n)J to obtain the X(n)3+1 . This procedure 
is repeated until OJ is acceptably small. 

In this application it is assumed that only wave length and the coeffi- 
cients are affected by the region below the interface; therefore, in the 
least squares procedure, the wave period, T, and the NN phase angles are 
determined solely by the fit to the free surface conditions. 
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Results and Comparisons with Previous Theories 

Due to the lack of laboratory or field data for the empirical verification 
of either form of the bilinear shear current theory, analytic validity 
must be used to verify the theories. As an example, a shallow water wave 
was generated propagating on a bilinear shear current flowing against the 
wave direction. In Table 1, the errors to the boundary condition at the free 
surface and the interface are given as well as the characteristic values of 
the wave and current. The maximum error occurs in the mean displacement of 
the interface, with an error, in this case, of 0.0689 ft. (0.021m), which is 
acceptably small. More iterations or terms in the series solution reduces 
the error further, thus substantiating the validity of the solution. 

Table 1. Dimensionless Errors to Boundary Conditions of a Shallow Water 
Wave Propagating Against a Bilinear Shear Current 

Given Data:  H = 6.29 ft. (1.92m), T = 10 sec, h = 10.0 ft. (3.05m), 

Ug = -l.Ofps (-0.305m/sec), U = -0.2fps (-0.06m/sec.) 

at d = 5.0 ft. (1.52m), Ug = O.Ofps. 

Twelfth order wave theory with 12 iterations, with resulting 
wave length of 201.59 ft. (61.44m). 

Ej/h 

(Eq.31) 

E2/h 

(Eq.32) 

E3/h 

(Eq.33) 

E4/C
2 

(Eq.34) 

E5/C
2 

(Eq.35) 

E6/h 

(Eq.36) 

2.44 x 10~6 2.37 x 10~3 1.62 x 10"3 5.30 x 10"6 1.57 x 10~6 6.89 x 10~3 

To illustrate the necessity of an adequate representation of both the wave 
and the current, a comparison was made between the bilinear shear current, 
the linear shear current and the Stream Function wave theories. For 
each theory, a 50-foot (15.2m) high wave was generated in 100 feet (30.48m) 
of water with a 3.0fps (1.9m/sec.) mean water level current. The difference 
between a constant current (Stream Function) velocity profile and the bilinear 
velocity profile (UJ=UB=0 and d=25 feet (7.62m)) under the wave crest is quite 
large and would obviously result in a vast disparity in wave forces. The linear 
shear current theory is shown in both its linear and finite amplitude form. 
The finite amplitude theory compares more favorably with the bilinear theory 
than does the Stream Function as it is a better model to the bilinear current. 
The linear theory results in quite large errors as it is unable to represent 
the wave profile correctly. These data are shown in Figure 2. 

Finally, the irregular form of the bilinear theory was compared with the 
irregular forms of the linear shear current theory (Dalrymple, 1974) and 
the Stream Function theory (Dean, 1965). The measured wave was taken from 
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Dean (1965), his Figure 5, and represents a wave 51  reet (11.89m) in height 
with a 14-second period propagating in 98 feet (29.9m) of water. For the 
Stream Function theory, no current was assumed, for the linear shear current 
theory, Us=2.0fps (.61m/sec), Ui*UB=0, and d=25 feet (7.62m).  The repre- 
sentation of the free surface and the fits to the boundary conditions were 
approximately the same in magnitude for all of the wave models; however, 
the differences in the predicted currents under the wave crest are quite 
significant. Also, the wave lengths of the predicted waves varies with the 
velocity profile as is shown at the top of Figure 3. With the exception 
of the small amplitude wave theory, the bilinear shear current has the 
shortest wave length; it also has the less current over the water depth. 
The more current over the water depth, the longer the wave {or the more 
the influence of the current on the wave). 

Conclusions 

Three representations of water waves propagating on a bilinear shear 
current flowing in the direction of the wave have been presented. As has 
been shown the models are analytically valid. The empirical validity awaits 
adequate field or laboratory studies. 

The importance of including the correct form of the ambient current is 
to be emphasized. There are large disparities in maximum velocities and 
wave length for the same waves propagating on different currents, which would 
be greatly enhanced in wave force calculations (as the drag force is propor- 
tional to (U + u)/U + u/). 
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