
CHAPTER 15 

OPTIMAL DESIGN FOR WAVE SPECTRUM ESTIMATES 

M. A. Tayfun, C. Y. Yang, and G. C. Hsiao 

ABSTRACT 

Non-stationarity in an actual wave field restricts the application of the existing 
methods of estimating spectra.  Despite the enormous amount of research work in the 
past, an analyst today is still faced with the lack of a unique procedure capable of 
providing a spectrum estimate which can be considered as the most accurate for the 
wave data collected under conditions where the stationarity assumption is in doubt. 
In this paper a generalized method is presented for estimating one dimensional frequency 
spectrum considering the non-stationarity.  The generalized method and the associated 
design relations provide an effective measure for assessing the statistical quality 
of spectrum estimates, and a natural criterion as to how to select an optimal sample 
size.  Concepts are illustrated by actual wave data analysis* and the validity of the 
procedure is demonstrated by simulation.  In a simple manner, all concepts and methods 
developed for the non-stationary frequency spectrum apply to the wave number 
spectrum with spatial inhomogeneity.  For simplicity, the presentation here will be 
primarily directed to the frequency spectrum. 

INTRODUCTION 

The computation of one dimensional frequency or wave number spectra is of fund- 
amental importance in a statistical description of the ocean surface. However, the 
applicability of the existing methods [Blackman and Tukey, 1959; Hinich and Clay, 1968; 
Jenkins and Watts, 1969; Otnes and Enochson, 1972] is restricted by the basic 
assumption of stationarity or homogeneity.  This constraint is violated in many cases 
of considerable interest such as the storm-generated waves, and the shallow water waves 
undergoing spatial modifications due to bottom friction, refraction and shoaling.  The 
results given by Ploeg [1972] clearly Indicate that, during the history of a atorm 
generated wave field, major spectral components change in magnitude as much as 200% 
within twelve minutes.  In the absence of a physically meaningful spectral theory for 
non-stationary processes, the selection of a sample size consistent with stationarity 
or spatial homogeneity becomes a major concern.  In the time domain this selection is 
limited to 15-20 minutes [Harris, 1972; Borgman, 1972], based on the general experience 
in wave analysis but without a formal criterion.  Tayfun et al. [1972] have shown that, 
even in a seemingly stationary wave field, significant differences in magnitude and 
shape exist between the stationary and non-stationary spectral estimates computed from 
the same set of data at various times.  Realistic wave fields have a general time- 
dependent character, and a sweeping assumption of stationarity cannot be justified 
for a wave field on a visual or, an intuitive basis.  The selection of a sample size 
in space is even more subjective and ambiguous due to the lack of experience [Schule 
et al., 1971; Collins, 1972],  
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Having limitations on the available sample size for spectral analysis presents 
serxous difficulties in the description of the statistical qualxty of spectrum estimates, 
and, therefore, in establishing a uniquely determined design rationale for estimating 
a spectrum which can be considered as the most accurate available from the data.  The 
basic criteria for the statistical quality of a spectral estimate are its bias (or 
resolution) and variability (or stability). Bias is a measure of how well an estimate 
approximates the true spectrum  Variability is a consistency description for spectral 
estimates. The former arises as a direct consequence of the imperfections of various 
lag windows or spectral filters, and the latter essentially as a result of employing 
a single sample record  A good quality estimate is therefore characterized by 
negligible bias (or high resolution) and low variability (or high stability).  In the 
present state of the art variability of estimates is described in terms of probability 
confidence intervals in analogy with the properties of a chi-square variate.  This 
analogy has proven satisfactory under fairly general conditions [Borgman, 1972]. 
However, since chi-square confidence intervals are constructed with reference to the 
spectral estimates themselves, the requirement that an estimate have negligible bias 
is clearly of paramount importance in this approach.  With no limitation on the sample 
size and in the absence of periodic components, it is in principle possible to construct 
spectrum estimates with negligible bias by taking larger sample sizes.  In this case 
a variability criterion based on the chi-square confidence intervals alone constitutes 
an adequately simple design criterion for spectrum estimations.  On the other hand, 
with limitations placed on the sample size on account of either computational 
practicality or non-stationary conditions, spectrum estimates should realistically be 
expected to have bias as well as variability errors.  In such cases a spectral design 
in terms of the chi-square confidence intervals alone cannot be justified, and a 
more effective design criterion based on the optimal balance between bias and variability 
errors is required. 

The purpose of this study is, therefore, to present a generalized method and an 
optimal design rationale for wave spectrum estimations under realistic conditions in 
an objective manner.  The approach is based on the non-stationary spectral theory 
developed by Priestley [1965, 1966, 1967] from a smooth extension of the classical 
stationary concepts.  Previous work in this area [Brown, 1967, Tayfun et al., 1972] 
indicated the applicability of this concept to ocean waves.  Further investigations 
of the non-stationary spectral theory reveals that a generalized approach and a uniquely 
determined design rationale for estimating spectra are possible based on an optimization 
of the statistical errors concisely contained in a relative mean-square error criterion. 
This criterion consists of bias of estimates in both time and frequency domains (or, 
space and wave number domains) as well as variability, and, therefore, provides an 
effective measure to describe the overall statistical quality of spectrum estimates. 
A minimization of the relative mean-square error expressed as a function of a general 
filter or, lag window characteristics and various wave field parameters yields a unique 
set of design relations in terms of shapes and parameters of filters and the sample 
size.  The general concept and the associated design relations are presented primarily 
in physical terms and emphasis is placed on the application to ocean waves. 

GENERALIZED SPECTRAL REPRESENTATION OF NON-STATIONARY PROCESSES 

In a random wave field the surface oscillations from the mean water level observed 
at a fixed position is a one-dimensional zero-mean random process.  If the wave field 
is stationary, this process admits a stochastic Fourier representation of the form 



282 COASTAL ENGINEERING 

/ 
n(t) -      /   eltot dZ(u) (1) 

where i = /-l , Z(co) is a zero-mean random process continuously indexed with respect 
to a frequency parameter a) and with orthogonal increments such that, for a non-negative 
even function S(w), 

<dZ(to)dZ(o>!)> =) v,  SJ i 

where the overbar denotes the complex conjugate. 

The mean energy per unit horizontal area of wave motion is proportional to the mean- 
square of the surface oscillations given, using (1) and (2), by 

<|n(t)|2> = / S(o))d(o 

The function S(w) is recognized as the two-sided energy spectral density of the wave 
process.  Replacing the time t with a spatial variable x and the frequency u with the 
wave number k in the preceding equations yields the representation of a homogeneous wave 
field with the wave number spectral density S(k). 

The general representation (1) is in an abstract form in which neither an explicit 
probability structure nor any specific physical considerations are taken into account. 
It simply states that the process r\(t)  may be regarded as a superposition of many 
harmonic components with different frequencies and time-independent random amplitudes 
dZ(w).  Realizing that n(t) is real and negative frequencies have no physical meaning, 
the representation (1) can be rewritten as 

/• n(t) = / {coswt dV^u) + sinut dV^w)} (3) 

where 

dV.,(<i)) = dZ(u>) - dZ(-w) 

dV2(w)   = l{dZ(w) + dZ(-<u)} 

are mutually orthogonal processes both real and such that 

<|dV  (u)|2> = <|dV2Cw)|2> - 2 <|dZ(u)|2> = 2S(w)du 

Furthermore,   if the processes V1   and V„ are chosen so  that 

1/2 
dV.du)  = 2{S(w)dio} cos* x to 

(4) 

1/2 
dV.(io)  = -2{S(w)du>} sin* 

Z 0) 

(5) 
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in which tf^ are independent random variables identically and uniformly distributed in the 
interval [0,2ir], it is seen that (1) reduces to 

n(t) = vT1  / cos (tut + 4> ) /2S(w)doj' (6) 
/ 

The above form of (1) corresponds to Pierson's [Pierson and Marks, 1952] well-known 
stationary Gaussian model where the quantity 2S(w) is the one-sided energy spectral 

density. 

When the wave field is non-stationary the process n(t) can be represented in the 
generalized form [Priestley 1965, 1966, 1967, 1973], 

n(t) =  / A(t,u>) e1Wt dZ(o>) (7) / A(t,u 

where the new quantity A(t,u)) is a deterministic modulating function of time and 
frequency. Equation (7) states that n(t) is the superposition of many harmonic components 
with different frequencies and time-dependent random amplitudes {A(t,w)dZ(to) }.  In the 
limiting case when A(t,ti))-KL, equation (7) reduces to (1) for the stationary wave process. 

The mean-square of the process n(t) is readily obtained, using (2) and (7), as 

<|n(t)|2> = I    |A(t,u)|2 S(u)dw (8) 

Hence, the non-stationary spectral density of the wave process is given by 

S(t,u) = |A(t,w)|2 S(w) (9) 

As in the stationary case,  equation  (7)   for the non-stationary wave process n(t) 
may be rewritten in the form [Brown,  1967], 

n(t)  = /T1     /   cos(wt + <f> )   /2S(t»oj)doi ' (10) 

ESTIMATION OF NON-STATIONARY SPECTRA 

Having developed the above theoretical basis, the attention may now be focused 
on the main problem which is to estimate, for a given wave record n(t), the non- 
stationary spectral density S(t,tu).  This estimation is based on a filtering technique 
with two fundamental concepts [Priestley 1965, 1966, 1967]. One is the concept of 
resonance.  It is well-known in system response theory that when a disturbance is applied 
to a linear system whose natural frequency is to, the output response will be primarily 
in the neighborhood of that frequency to.  In this manner, when the sample record n(t) 
(disturbance) is passed through a linear filter (system) with a central frequency to, 
the output is a record with Fourier components primarily around to.  The second concept 
concerns the time lag between the input and output records.  The response of a system 
to an impulsive disturbance usually lasts for a short time.  Quantitatively, this system 
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behavior is described by the width of its system impulse response function.  For a 
system or filter with a narrow impulse response function, the output record at any 
instant t for a general input sample record depends only on that part of the input 
sample in the immediate neighborhood of t.  In applying the above two concepts in the 
filtering technique, one may conclude that when n(t) is passed through a filter with a 
narrow frequency response centered around at, the output will be a record whose frequency 
composition is primarily around OJ, and whose magnitude at each instant relates only to 
those of the input sample n(t) in the neighborhood of the same time.  To put these ideas 
in a mathematical form, let g(t) be the narrow impulse response function of a filter 
with a natural frequency centered around w = 0.  Assume further that g(t) is a con- 
tinuous function identically zero for values |tj>_ h, where h is a positive constant 
(width parameter), and that it is normalized so that 

h 
2*    f   |g(u)|2 du = 1 

-h 

Then, the function g(t)exp(-iwt) corresponds to the impulse response function of a filter 
which has the same form as that of g(t) but whose natural frequency is shifted to the 
central frequency w. The output record 

h 

U(t,o>) - yg(u)n(t-u) e"1UU du (11) 

-h 

represents at each time t that part of the sample n(t) in the neighborhood of frequency 
to. Now, if one further processes the output record U(t,u) by a squaring and an 
averaging (or weighting) operations over the neighboring values in time, the end result 
is the mean-square in the vicinity of frequency w and time t.  This is identical with 
the definition of power spectrum density with the addition of a time trend.  To 
formalize the squaring and averaging operations in a mathematical form, let w(t) be a 
non-negative weighting function identically zero for values |t|_> T', where Tf is a 
positive width parameter, and properly normalized so that 

T* 
f w(u) du = 1 

-T' 

The estimated non-stationary spectral density at frequency w and time t is 

T* 

S(t,w) « f    w(u) |U(t-u,w)|2 du (12) 

-T* 

It is evident from (11) and (12) that the minimum sample length that is required in 
this procedure is 

T .  = 2(h + T') (13) 
min 

In the filtering process (11), it is required that the impulse response function 
g(t)exp(-iwt) be narrow (small h) so that the output retains the Instantaneous behavior 
of the input sample n(t).  In the mean time it is required that the output record 
U(t,w) consist of primarily components with frequencies in the neighborhood of w.  Since 
the frequency composition of the output record through the filtering process is directly 
related to the frequency response function of the filter in the sense that a narrow 
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frequency response function provides an output with high frequency concentration around 
tit, it is evident that a filter which has both a narrow frequency response function and 
a narrow impulse response function is required.  In other words, the function g(t) 
is required to have high "resolving" powers over both frequency and time domains. 
Unfortunately, the two requirements are conflicting because the impulse and frequency 
response functions are a Fourier transform pair, and, therefore, if one is narrow, the 
other must be wide. This leads to the problem of an optimal choice for g and its 
width h so that both criteria are satisfied to a certain degree.  These characteristics 
are quite unlike those of a filter in the stationary analysis where there is no inherent 
requirement on the local time, and the filter is required to be narrow in the frequency 
domain only. 

In the selection of the weighting function w(t) it is required that its effective 
width T' be much wider than the width h of g(t) so that whereas g(t) operates on the 
input sample record locally in time, w(t) will do so over a substantially larger time 
interval to provide a sufficient averaging or smoothing effect.  On the other hand 
smoothing over a very large interval in time introduces a smudging error and, therefore, 
decreases the resolution of the estimates S over time.  Consequently, the selection of 
the weighting function w(t) and its width T* should be made on the basis of a trade off 
between the two conflicting requirements, a satisfactory resolution in time and an 
adequate stability for the estimates S(tAt,to). 

OPTIMAL DESIGN RELATIONS 

In general, the estimate S will have errors on account of the imperfections of the 
filter and weighting functions g(t) and w(t), the non-stationarity in the wave process, 
and the analysis of only one sample or one realization.  The imperfections of g and w , 
and the non-stationarity of a wave process introduce bias or resolution errors to the 
estimate S over both time and frequency. The consequence of using only one sample is 
reflected in the variability or stability errors. The overall statistical quality of 
the spectral estimates of the form (12) is characterized by the relative mean-square 
error function defined, at a prescribed time t and frequency w, by 

» _ <{S-S}2>  bias2{S> , var{S> ,-.* M ^ ^ + —g^— , (14) 

where bias {S} • <§> - S, and var{S} = <S2> - <S>2.  The function M depends on the 
functional forms of g(t) and w(t), the parameters h and T', and spectral bandwidth 
characteristics in time and frequency associated with the wave process [see, e.g., 
Priestley, 1966].  In an implicit manner, the functional form of M can be written concisely 
in the form 

M M{C,h,T,,Bo(t,oj), Bf(t,u)}, (15) 

where C - (Cgi,Cg2»Cwi,CW2) denotes a set of coefficients which determine the characteristic 
shapes of g(t) and w(t), and B0(t,oi) and Bf(t,w) are defined as bandwidth parameters 
of the theoretical spectral density S(t,co) regarded as a distribution over time and 
frequency, respectively.  These parameters are given by 

1/2 1/2 

Vtl0> =   azsfltz and      Bf(t'u)=   SW5P (16) 
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The spectral bandwidth over frequency Bf(t,w) with the dimension (time)  is a 
well-known concept (with an exclusion of time dependency) in the stationary analysis. 
It is a measure of the shape of S(t,to) as a function of frequency,  A small value 
Bf(t,iL)) indicates a highly peaked spectral density over frequency.  The spectral band- 
width B0(t,w) with the dimension (time) is similarly defined, and it provides the 
measure for the temporal variation of the spectral density S(t,oj).  Therefore, this 
parameter reflects the non-stationarity in a wave process. The smaller B0(t,co) is, 
the stronger is the non-stationarity.  In the limiting case, when S(t,«)->-S(oj), corres- 
ponding to a stationary process, B0(t,w)-*^

!>. 

Insomuch as the-mean-square error M reflects the overall errors associated with 
the imperfections of g(t) and w(t), and the parameters h and T1, the optimal procedure 
must be based on those parameters that minimize the error M for a given wave process 
characterized by the bandwidth parameters B0(t,w) and Bj:(t,w). This approach yields 
a set of unique optimal design relations in terms of the minimum estimation error for 
a given wave situation, the optimal shapes g(t) and w(t), the parameters h and T', and 
the optimal sample size [see Appendix 1 for derivations].  These design relations in 
general have a time and frequency dependent nature. However, of the various possible 
choices of the optimal design criterion, that which minimizes the maximum possible error 
over the ranges of both the frequency and the time of Interest provides the simplest 
one amenable to practical computations.  Specifically denoting the optimal values by 
the subscript zero, these relations are summarized as follows. 

2/3 

| VVwlC„2 | (1?) 

is the minimal estimation error, where B0 and Bf denote respectively the values B0(t,a>) 
and Bjr(t,w) which minimize the product {B0(t,o))B^(t,ai)}, i.e., 

B B, =  mm  {B0(t ,a>)Bf (t,w) } (18) 

u 

where the selected wave record covers the interval (T-,T„).  The optimal values of the 
parameters h and T' are given respectively by 

\-{t)  if   ^     v-l/l (19) 

with the ratio 

"C2, C2 poi - rc*i c*i    i1/3 

k'J'LBS^vJ (20) 

The optimal sample size (Tmin)0 is obtained from (13) using the above values of h and T' . 
In the preceding results, the constants Cwi = /0.2 , C„2 ~ 6ir/5, C~X = ir//3 , and 
Cg2 - .1528 relate to the optimal weighting and filter functions given by 

w(t) = (3/4To') {l-(t/T0')
2} ;  |t|<To' (21) 

and 

-1/2 ,   , 
g(t)  =  (67tho) fl + cos(irt/h0)}   ;   |t|^hQ (22) 
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corresponding, respectively, to the Parzen and Hanning windows m the stationary spectral 
theory [Jenkins and Watts, 1969]. 

The salient features of the optimal design relations can be pointed out as follows: 

(1) The minimal error MQ consists of bias and variability errors in a one to two 
ratio.  This is a consequence of the fact that bias errors are more sensitive to changes 
in the design parameters h and T1 as compared to variability errors. Hence, the proper 
balance between bias and variability should be maintained in this estimation procedure 
in contrast with the general tendency in the routinely used procedures such as the 
autocorrelation and the Fast Fourier Transform techniques to disregard bias errors 
completely and to base the spectral design purely on a variability criterion. 

(2) In the limiting case of a homogeneous process; i.e., as B0-*>°, it is readily 
seen that MQ-H), hQ and T0*-x», as the ratio (ho/To

f)*>0.  The spectral estimates with the 
asymptotic property (MQ-K)) are referred to as consistent estimates in the classical 
spectral theory.  The results in this particular limiting case are very much in accord 
with the general character of the conventional analysis.  Therefore, there is, in 
principle, no bounded optimal spectral design relations in the homogeneous case.  How- 
ever, from a practical point of view, the limiting form of the design relations implies 
that in such cases one should take longer sample sizes, while decreasing the ratio 
(ho/To1), until the spectral estimates attain a consistent, or simply convergent behavior. 

(3) One particularly interesting feature about the time and frequency independent 
design relations is that, given a record length T, they provide the functions g(t) and 
w(t) with constant width parameters hQ and T0', and therefore require a fixed minimum 
record length (TminJo to construct spectral estimates which are, in statistical quality, 
at least equal to or better than the estimate characterized by the maximum MQ. 

(4) It is recalled from the definitions (16) that B0(t,w) and Bf(t,w) relate 
inversely to the second partial derivatives of a spectral density over time and frequency, 
respectively. Hence, being derived from the minimal product B0(t,co)Bf (t ,u>) , the 
parameters B0 and Bf are associated with the narrowest peaks and valleys in a spectrum 
in time and frequency. Moreover, it is the simultaneous occurence of these peaks and/or 
valleys over both time and frequency, as evidenced by the product BQBf in (18), which 
characterizes the maximum error MQ.  Therefore, the dimensionless product B0Bf serves 
as an overall measure of significant spectral characteristics of a wave process m the 
sense that the larger this product is, the more accurate the estimation procedure becomes. 
On the other hand, it is realized that a background knowledge on the parameters BQ and 
Bf is required before one can proceed to compute the spectral density in a given realistic 
situation.  These parameters must be estimated approximately either on a valid 
theoretical basis, or from "pilot" estimates of a spectral density 

DIGITAL COMPUTATIONS 

In digital computations of the non-stationary spectrum of a wave process rj(t), the 
optimal design relations remain invariant provided that a few simple modifications are 
made in the estimation procedure as follows.  Consider a wave record n(t) digitally 
sampled at intervals of At so that one has a sequence ni,i12»   » where r\n ~  n(nAt). 
To make sure that no errors will be introduced in the digital computation due to aliasing 
errors, assume that the interval At is at most equal to the Nyquist interval.  Under 
this assumption it is convenient to regard the sequence {tin} as if It consisted of points 
at unit time Intervals. This is equivalent to transforming the original frequency 
scale into a standarized dimensionless frequency to* = wAt defined m the interval (-IT,if). 
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Consequently, the estimated spectral density, say S(j(n,aj*), of the discrete sequence 
{%} and that of the actual wave process n(nAt) are related to one another in the 
form 

S(nAt, u*/At) = At S^n.w*), |u*|<ir (23) 

where 

M 

Sd(n,w*)  =1   5]   IVj^l2 <2« 

and 

N -ijoi* (25) 

j—H 
U>*)  = S     gj   Vj  e 

are the discrete time analogues of (11) and (12), with g * g(jAt) and WJ - w(jAt) 
derived from the continuous time versions g(t) and w(t).-' The integer width parameters 
N and M are now interpreted as the largest integers smaller than (h0/At) and (T0'/At), 
respectively, where hQ and T0' are as previously defined as in (19). Hence, it follows 
from (21) and (22) that 

-1/2 
g. = (6TTN)    {1+ cos(jir/N)} ; j = -N,... ,-1,0,1,... ,N (26) 

and for M »1 

w = (3/410 {1 - (j/M)2} ; j = -M,...,-1,0,1,...,M (27) 

It is evident that the optimal length of the sequence {r\n}  *s now given by 2(N + M). 

ILLUSTRATIVE APPLICATIONS 

EXAMPLE 1: A Storm Generated Non-stationary Wave Field.  A significant application 
of the proposed spectral estimation procedure and the associated optimal design relations 
is in the analysis of storm generated extreme waves. A particularly Interesting analysis 
of such a non-stationary wave field has been illustrated by J. Ploeg [1972] in terms 
of the time history of one dimensional frequency spectra collected on Lake Ontario 
during a storm on October 24-25, 1971.  The reference covers about 13 hours of the storm 
with approximately 200 sequential spectral analyses performed through the Fast Fourier 
Transform technique using 16 minute overlapping segments, with the starting points 
approximately 4 minutes apart. With a proper caution to the non-stationary effect, Ploeg 
presents the results of Lake Ontario study in three figures [Figures 7 through 9 - 
J. Ploeg, 1972], and draws various conclusions as follows.  The spectral history of the 
storm-generated wave field [Figure 7 - Ploeg] shows the familiar build-up with the 
peak of the spectrum density continuously shifting to the lower frequencies, while 
[Figure 8 - Ploeg] the higher frequency spectral components reach saturation and remain 
essentially stationary. The non-stationarity of the wave process at lower frequency 
spectral components, in particular at the peak spectral component is clearly observed. 
The time history of the spectral peak frequency [Figure 9 - Ploeg] shows a tendency to 
jump between discrete frequencies, while shifting towards lower values in a manner 
consistent with the shifting of the entire spectral density function to lower frequencies 
as the wave field builds up, with the higher frequency components remaining saturated. 
There is no physical explanation offered for the jumps of the spectral peak frequency. 
It is quite plausible that this effect is due to the "overshoot" effect observed in the 
typical growth of a spectral component [Barnett and Sutherland, 1968; Plate, 1971]. 
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It xs of interest to apply the optimal design relations to such non-stationary 
wave records. However, before one can proceed to do so, it is necessary to know the 
spectral bandwidth parameters B0 and Bf of the wave field.  Hence, the first step is 
to estimate these parameters on a theoretical basis and/or from pilot estimates of the 
spectral density.  In the particular case of a storm generated wave field, a theoretical 
basis is provided by the concept of equilibrium range [Phillips, 1965] which asserts 
that the spectral growth of a wave component is limited by breaking. Neglecting the 
overshoot effect, and for the general case of finite fetch, and variable wind conditions, 
the concept requires that the spectral density function S(t,oj) have the form 

S(t,w) = 3 g2oT5 ;  w >_ u>*(t) (28) 

where g is a dimensionless constant dependent in general on wind speed and fetch 
[Strekalov, et al., 1972], g is the gravitational acceleration, and co*(t) denote the 
time-dependent spectral peak frequency.  In other words, us*(t) provides the required 
time-dependency, and, therefore, (dui*/dt) relates in a fairly simple manner to the 
rate at which the front face of the spectrum builds up as a result of the net rate of 
energy input between the generative wind and the dissipative breaking and friction 
effects. Hence, from (16), and (28), it follows that 

and 

B  (t,w) 

(29) 

"I    r, i2      &   r1/2 

^r 16 Lad -u HP I        '   w ~~ "*(t) (30) 
°° ; otherwise 

The minimum of the product of the above two parameters as defined by equation (18) 
is then 

.  min  {B0(t,w)Bf(t,w)}  ;  w - w*(t) 
I  T < t <-T 

B B =    ^ - 2 (3D 
of otherwise 

The spectral bandwidths B0 and Bf must be estimated numerically on the basis of 
the preceding guideline (31) and from pilot estimates of the time history of the spectral 
peak frequency to*.  Such pilot estimates can be obtained in a heuristic fashion either 
through conventional techniques by using overlapping segments of a sample or, through 
the generalized filter method described in this paper in an iterative manner [see, 
e.g., Tayfun et al., 1972].  The time history of the spectral peak frequency w*(t) 
obtained by Ploeg has been reproduced in part in the lower part of Figure 1 here.  This 
data is associated with the extreme wind-wave conditions and, for the purpose of 
illustrating the optimal design considerations, is used here as the pilot estimates. 
The spectral bandwidth characteristics computed numerically on the basis of these pilot 
estimates and the relation (31) are likewise presented in Figure 1.  Table 1 summarizes 
the optimal design considerations and the expected quality of spectral estimates in 
various intervals (T-L^) =< (1800, 1900), (1900, 2000), and (2000, 2100).  The design 
relations in each of the preceding intervals are based on the peak spectral component 
in the neighborhood of an instant where non-stationarity is the most stringent, indicated 
by the vertical dashed lines A, B, and C, respectively (Figure 1). 

EXAMPLE 2: A Spatially Inhomogeneous Wave Field.  As an example of a spatially 
inhomogeneous wave process, consider a unidirectional wave field where waves in a fully 
developed state at deep water propogate towards the shore into intermediate and shallow 
water regions over a variable depth topography with a mean slope s.  Assuming no 
dissipative effects and no wind-generation, the wave field is stationary in time, but 
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Time Interval 
(hrs) (sec) 

Bf 
(sec~l) 

BoBf Quality, M 

(%) 
ho 

(sec) 
T * 

(sec) 
Sample Size,(Tmln)0 

(sec) 

1800 - 1900 500 .20 100 <_ 3.12 29 358 774 

1900 - 2000 170 .22 37 < 6.4 22 145 334 

200p - 2100 280 .20 56 <. 4.9 25 223 496 

TABLE 1.  Optimal spectral design considerations in a storm-generated wave field. 

inhomogeneous in space due to wave shoaling. Using a reference frame with a positive 
x-axis extending from the deepwater surface toward the shore, the rate of change of 
energy spectral density along a way ray (the x-axis) is [Collins, 1972] 

d{cS(x,k)}/dx = 0, (32) 

where S(x,k) and c = co/k are respectively the inhomogeneous spectral density and the phase 
speed.  It is noted that the frequency of a wave component is conserved whereas the 
corresponding wave number is depth-dependent.  Based on this result and from an integration 
of (32) between two points, one at deep water denoted by the subscript zero (xQ = 0), 
and the other towards the shore at a location x where the water depth is D = D(x), it 
follows that 

S(x,k) = k k "1 S (k ). (33) 
o   o o 

Using the relation between the shallow water wave number k and deep water k , 

k = k tanh kD (34) 

equation (33) can be written in the form 

S(x,k) = coth kD S (k ). (35) 

A comparison of (35) with (9) indicates that the function coth kD corresponds to the 
squared modulating function |A|

2
 in the general definition of an inhomogeneous spectrum 

density. 

The spatial and wave number bandwidth parameters B0(x,k) and Bf(x,k), respectively, 
are derived from (16) and (33) (see Appendix 2). The dimensionless forms of these 
parameters and the spectral product {B0(x,k)Bf(x,k)} are presented in Figure 2 as 
functions of the dimensionless depth kD.  For a given mean slope s, for all wave numbers 
k >_ k*(the spectral peak wave number), and in the region of interest «> > D(x) >^ D, it is 
seen from Figure 2 that 

B =   lim   [B (x,k)]  and 
0   kD(x)-*k*D ° 

lim   [B (x,k)] 
kD(x)->k*D 

(36) 

In deep water, D •+• °°, and BQ -*- =°, as the wave field becomes spatially homogeneous, 
shallow water with small k*D values 

iT. 
(37) 

Hence, in this region the spatial inhomogeneity of the wave process is proportional 
directly to the local slope s, and inversely to the depth D as intuitively expected, 
similar argument for the wave number spectral bandwidth Bf indicates that, as D •> °°, 
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Bf •* (^o /2vT")» the spectral bandwidth, at deep water.  Moreover this limiting value is 
an upper bound, and Bf monotonically decreases as the water depth becomes shallower 
In other words, the spectral density S(x,k) becomes increasingly peaked.  In general then, 
since the product B0Bf decreases as the slope s becomes larger and/or the depth D becomes 
shallower, the estimation procedure is expected to be increasingly less accurate.  To 
illustrate the effect of variations in the bottom slope s, consider the density S(x,k) 
at a location with depth D = 10 ft , deep water spectral peak wave number k0 = 0.076 
(ft-1). Hence, it follows from (34) that k*D = 1.0. The dimensionless values B0,Bf, and 
therefore the product B0Bf are obtained from Figure 2 by using kD(x) = k* D = 1.0.  For 
mean bottom slope s (1/120, 1/90, 1/60, 1/30), the optimal design parameters are 
summarized in Table 2.  It is seen that as the slope increases, the wave process becomes 
more inhomogeneous, the available sample size is increasingly limited, and the expected 
quality of estimates rapidly diminishes.  It should be emphasized that this is true 
for the spectral estimates m the vicinity of the peak wave number ko = 0.1 (ft"~l) at 
depth D - 10 ft where the spatial inhomogeneity is the most stringent.  The accuracy 
of estimates corresponding to other wave numbers at the same depth, and of all estimates 
at depths larger than D = 10 ft will be equal to or better than MQ. 

Slope,s 
(f?) (ft"1) 

B0Bf Quality,M 

(» 
ho 
(ft) 

To' 
(ft) 

Sample Size, (Tmln)Q 

1/120 1400 0.0154 21.6 < 14 250 1450 3400 

1/90 1050 0.0154 16.2 < 18 240 1280 3020 

1/60 700 0.0154 10.8 < 24 220 830 2100 

1/30 350 0.0154 5.4 S   37 200 460 1320 

TABLE 2  Optimal spectral design considerations in a shoaling wave field. 

The preceding discussion provides a simple theoretical basis to investigate the 
validity of the proposed e&timation procedure and the associated design relations.  With 
this purpose in mind, consider the case with variable depth profile illustrated in 
Figure 3, and assume that the fully developed deep water conditions can be characterized 
in terms of a Pierson-Moskowitz spectrum [Pierson and Moskowitz, 1964] given in the wave 
number domain by 

Mk~>   =  °'5  a V3  exp{-Yg2(v k.)"-4}, (38) 

where a(= 8.1 x 10~3) and Y(= 0.74) are dimensionless constants, v is the wind speed, 
with the spectral peak wave number k*  given by 

k*  = <0.52Y)
1/2 (g/v2) (39) 

The inhomogeneous wave number spectral density S(x,k) at a given depth D(x) = D is 
readily obtained from (33) and (38).  For the profile shown in Figure 3 with 
k0 = 0.076 (ft"-'-) (i.e., v K 18 ft. sec~l), the theoretical forms of the inhomogeneous 
density S(x,k) at locations (1,2,3) corresponding to the values D = 50, 20, and 10 (ft) 
are plotted in Figure 3.  The spectral density S(x,k) at D = 50(ft ) is not influenced 
by shoaling effects, and, therefore, is the same as the deep water density S0(k0).  As 
the depth gets shallower at locations 2 and 3, the deep water spectral components are 
modified from lower wave numbers to the higher In a non-uniform manner as the form of 
the spectral density S(x,k) becomes increasingly more peaked. 

With the foregoing theoretical results on inhomogeneous spectra, it is then possible 
to generate realization of inhomogeneous wave series by a Gaussian wave surface model 
and a simulation technique (see Appendix 3).  Finally the optimal estimation procedure 
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is applied to the simulated wave series to obtain wave spectra.  The estimated spectra 
obtained through (23), (24), and (25), and based on the required design relations in 
Table 2 corresponding to s = 1/90 and D = 10 (ft), are presented in Figure 3 for com- 
parison with the theoretical forms. It is seen that, although the accuracy in the 
vicinity o£ a spectral peak, in particular at D = 10 (ft), is relatively poor as expected, 
the estimates in general agree very favorably with the theoretical forms.  Thus the 
validity of the spectral design considerations is demonstrated. 

SUMMARY AND CONCLUSIONS 

A generalized procedure was described for estimating one dimensional non-stationary 
frequency spectra or inhomogeneous wave number spectra.  In constrast to the auto- 
correlation approach, the procedure is based on a direct filter method which carries a 
simple physical interpretation and is therefore convenient to apply to actual wave fields. 

The optimal design relations for the estimation procedure are constructed on the 
basis of a simple objective design criterion to minimize the overall statistical 
estimation errors which arise as a result of the imperfections of the filter and the 
weighting functions. Prior to the application of the estimation procedure, various 
spectral characteristics of the sampled wave field in time-frequency or space-wave 
number have to be estimated on the basis of a valid theoretical guideline and/or from 
pilot estimates of spectra. One of these characteristics, Bf, the spectral bandwidth 
in frequency is a familiar concept in the stationary analysis.  The spectral bandwidth, 
B0, in time or space is defined similarly and provides a measure for the inherent non- 
stationarity in a wave record. The spectral product B0B.£ is the most significant quantity 
for assessing the feasibility of the proposed estimation procedure m a given situation 
in the sense that the larger this product is, the more feasible it is to achieve accurate 
spectrum estimates.  In the limiting case as B0Bf -*• <*> (i.e., as BQ -*• °°) corresponding 
to a dominantly stationary wave process, the procedure reduces to the stationary analysis 
accordingly. 

Two illustrative examples are given.  The first example is for the non-stationary 
storm wave records from Lake Ontario, October 24-25, 1971, by which the use of the 
estimation procedure is demonstrated.  The second example is for the analysis of 
inhomogeneous wave number spectra of digitally simulated wave records in a shoaling wave 
field.  By the second example, the validity of the design criterion and the estimation 
procedure is demonstrated through a comparison between theoretical and estimated spectra. 

APPENDIX 1: DERIVATION OF OPTIMAL DESIGN RELATIONS 

The relative mean-square error (14) is approximately given by [Priestley, 1969] 

M - (1/4) {B2/B2(t,<o) + B2/B2(tfW)}
2 + CCT1)'1 / \vU)\^  u        (MO) 

where r(to) is the Fourier transform of the filter g(t), and 

Br = | / a)2|r(w)|2 dio }U2 (A41) 

Bw= {/  t2 w(t) dt f/2 (M2) 
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T' 
c _  lim    | 2irT'f  w2(t) dt \ (A43) 

T -»• « _T, 

The error M is the sum of the squared bxas of an estimate S(t,w) over both the time 
and frequency, and its variance, corresponding respectively to the first and second 
group of terms in (A40).  Utilizing the normality properties of the functions g(t) and 
w(t), two characteristic functions, G(u) and W(u), may be defined such that 

G(u) = h1/2 g(uh)  ;  |u| < 1 (A44) 

W(u) = T' w(uT')   ;  |u| < 1 (A45) 

By virtue of the above definitions, it is easily shown that 

Br = h"
1 I 2TT f       |dG/du|2 du V  2 d2f h_1 C 1 (A46) 

2 | 1-y 
f | r | ^dui = h {4ir f f  G(u+y)G(u) du  dy \ 
-°°         l  J0 ' -1            '    ' 

1 \ lo 
B = T' | j*  u2W(u) du 1    def T' C 

(A47) 

(A48) 

1 . 
C = 2TT f   W2(u) du  = Cw2 (A49) 

The error M given by (A40) can now be rewritten in terms of the parameters h, T', and 
the set of coefficients C* =   (cgl» cg2» Cwl* ^2)* which depend only on the characteristic 
functions, in the form 

M * (1/4) JC^ (T')2 B-2(tf(o) + C^ h-2 Bj2(t,w)|
2 + Cg2Cw2 h(T') (A50) 

An optimization of the preceding expression with respect to h and T' yields the 
following 

Mo=3    [{CwlCw2CglV/{2Vt'u)Bf(t,w)}]2 (A5" 

denotes the minimal estimation error M consisting of the bias and variability errors 
in a one to two ratio, and corresponding to the optimal values of h and T' given by 

1/4 
hQ = (3/Mo)   {Cgl/Bf(t,M)} (A52) 

1/4 
To' = (Mo/3)   {Bott.o))/^} (A53) 

Moreover, an examination of MQ indicates that the conditions 

min {CwlC 2> and  min {CglCg2} (A54) 
W(u) G(u) 

constitute two formal optimality criteria for choosing and possibly constructing the 
characteristic functions, W(u) and G(u), respectively. One such possibility is to 
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expand W(u) and G(u) in series (e.g. Fourier series or Legendre functions) with unknown 
coefficients, and to determine these coefficients through (A54).  In particular, by 
letting W(u) = 2 A^PiCu), m which A^ and Pi denote, respectively, the unknown 
coefficients and Legendre functions of the first kind, it is easily verified that a 
unique solution to the first functional m (A54) is obtained, with AQ = 1/2, A2 = 1/2, 
and Aj = 0 for i jl 0,2, as 

W(u) = (3/4) (1 - u2) l»l <1 (A55) 

Therefore, C,,^ = /0.2, C„2 •» 6ir/5, and the minimal product {C^C,^} = 1.686.  Interest- 
ingly, (A55) corresponds to the well-known Parzen window in the stationary analysis 
[Jenkins and Watts, 1969]. 

The problem of finding a unique optimal G(u) in a similar manner becomes cumbersome 
due to the more complicate nature of the second functional m (A54).  Nonetheless, the 
criterion in (A54) serves as a figure of merit for choosing an optimal form G(u) from 
the collection of spectral windows in the stationary analysis. Table 3 compares the 
relevant properties of most of the well-known window shapes consistent with the class of 
functions {G(u)}. Among the four different functions examined, the optimal one is the 
Hanning window given by 

G(u) = (6ir)-1/2 (1 + COSUTT)  ;  |u| < 1 (A56) 

Filter G(u) V Cg2 °glCg2 

(6TT)~   '     (1 + COSTTU) ir//3~ .1528 .2778 

(2rr)-^ cos H (iru) lr/2 .1875 .2946 

(.it/A)h a -   |u|) /r .1725 .2988 

{15/(32T)}
JS
 (1 - u2) /(572) .1926 .3045 

TABLE 3. Properties of spectral windows. 

The optimal weighting function w(t) and the filter g(t) are now readily obtained from 
(A55) and (A56), and by using the definitions (A45) and (A44), respectively. 

It is noted that the optimal design relations developed above depend on time t 
and frequency w through the bandwidth parameters B0(t,w) and Bf(t,w). However, con- 
sidering a slightly different design criterion to minimize the maximum possible mean- 
square error over both the time and frequency, i.e., 

min ^ [ max M{C,h,T' ,B0(t,n))Bf (t,u)) } ] 
h,T', C  t,o) 

(A57) 

provides the time- and frequency-independent design relations which are the simplest 
for practical estimations of ocean wave spectra. These are readily included in the 
above optimal design relations, and they correspond to replacing the product 
{B0(t,w)Bf(t,u)} in (A51) with 

B0B oDf min  {B0(t,u)Bf(t,ii))} 
Tl itiT2 

(A58) 

where the selected record covers the interval (T^,T2), and interchanging Bf(t,w) and 
B0(t,(u) in (A52) and (A53), respectively, with their corresponding values Bf and B0 
which realize (A58). 
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APPENDIX 2:     SPECTRAL BANDWIDTHS IN SHOALING WAVES 

From (16)  and (33),  the spatial bandwidth parameter Is 

B  (x,k) =  (D/ZFsMl +(slnh 2kD/2kD)}        {1 +(3 + cosh 2kD)(sinh 2kD) (AkD)-1}""5      (A59) 
o 

Similarly,  from (16)  and (33),  the spectral bandwidth Bj(x,k)  is given by 

Bf(x,k)=|2D2csch2kD[l-k So1(dS0/dk0)tanh kD] +   SQ
1(d2S0/dk2) 

(tanh kD + kD sech2kD)2|~% (A60) 

Assuming that  the deep water wave field is in a fully developed state,   the wave number 
spectral density S0(k0)  can be expressed by using again the concept of equilibrium range, 
this  time,  in the form 

S   (k ) =  (B/2) k -3    ,    k   > k* (A61) o    o o o —    o 

where k* is the spectral peak, wave number, Hence, using (A61) in (A60), Bf(x,k) is 
rewritten in an approximate but more tractable form as 

Bf(x,k)^(k/2/3){(l/3)(kD/sinhkD)
2 + [1 +(2kD/sinh2kD)]2}"^       (A62) 

The dimensionless forms of B0(x,k) and Bf(x,k) given by (A59) and (A62), and the 
product {B0(x,k)Bf(x,k)} are illustrated in Figure 2 as functions of the dimensionless 
depth kD.  By definition and from Figure 2, it follows that 

B B =  min {B0(x,k)Bf(x,k)} =   lim      {B0(x,k)B (x,k))    (A63) 
0    k,D(x) kD(x)+k*D 

APPENDIX 3:     SIMULATION OF AN INHOMOGENEOUS WAVE SERIES 

If the deep water wave field characterized by the spectral density S0(k0)  xs 
assumed to be Gaussian* within the constraints of the linear wave theory and outside of 
the breaker zone,   the surface oscillations n(x,t)   admit    the pseudo-integral 
rep res en tation 

n(x,t)  = /2-1    f    cos  (kx - cot + <j>k)  /S(x,k)dk I (A64) 
o 

as an inhomogeneous Gaussian process. In the above representatxon ^ are independent 
random phases uniformly distributed in the interval [0,2TT] as in (6)„ w2= gk tanh kD(x), 
with D(x) and S(x,k) denoting, respectively, the variable depth profile and the 
associated one-sided inhomogeneous spectral density whose theoretical forms at various 
depths are illustrated in Figure 3.  The representation (A64) characterizes the wave 
process completely as a bivariate random process stationary in time t, and inhomogeneous 
in space x.  Moreover, it provides a convenient basis to digitally simulate samples of 
the surface as a bivariate (time-space) series n(nfix,mAt) (n = 1,2,...; m - 1,2...)* 
where Ax and At denote respectively suitably chosen spatial and temporal sampling 
intervals, or, as a stationary univariate time &eries n(x, mAt) (m = 1,2,...) at a 
specified location x, or, as an inhomogeneous space series n(nAx, t) (n = 1,2,...) at a 
prescribed time t [see, e.g., Shinozuka and Jan; 1971].  The space series nfcAx, t) 
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corresponds to a digitized stereophotographic or laser profile of the surface. In this 
instance, the reference time value t is immaterial as the process n(x,t) is stationary. 
In particular, choosing t = 0 for convenience, and denoting the wave number interval 
outside of which S(x,k) is of insignificant magnitude by [k^, kR], such a space series 
is readily obtained from a digital analogue of (A64) by 

J u 
n(nAx) = y/21   Z cos(k.nAx + <f»fc ) {S(nAx, k )AkK (A65) 

J-l 
Kr 

C^L + 3^k) (j = 1,2,...,J) with J = (kjj - k^/Ak corresponds to a proper 
discretization of the wave number k, <J>kj (j = 1,2,..,J) the associated random phases, 
and El = (kj + Skj), where Skj is a small random wave number introduced to avoid the 
periodicity of the simulated series, and is uniformly distributed in the interval 
[-(Akf/2), (Ak*/2)3 with Ak1 chosen such that Ak >>Ak.  A sample space series n(tiAx) 
of the wave process investigated here was simulated in the described manner implementing 
(A65) with Ax = 4 (ft), kL = 0.01, kR = 0.41, Ak = 0.01, Ak' - 0.002, and J = 40, with 
the sample extending from the deep water reference (x0 =* 0, corresponding to n = 1) 
towards the shore up to x = 5400 (ft) (corresponding €o  n » 1350), satisfactorily 
covering and well over the region of interest where 50 > D(x) j> 10 (ft). 
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FIG. 1. Time Histories of Spectral Bandwidths and Spectral 
Peak Frequency 
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FIG. 2, Spectral Bandwidths in a Unidirectional Shoaling 
Wave Field 
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