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TSUNAMI GENERATION AND PROPAGATION 
by 

Joseph L. Hammack,  Jr.1  and Fredric Raichlen 

ABSTRACT 

A linear theory is presented for waves generated by an arbitrary bed 
deformation {in space and time) for a two-dimensional and a three -dimensional 
fluid domain of uniform depth.    The resulting wave profile near the source is 
computed for both the two and three-dimensional models for a specific class of 
bed deformations; experimental results are presented for the two-dimensional 
model. 

The growth of nonlinear effects during wave propagation in an ocean of 
uniform depth and the corresponding limitations of the linear theory are investi- 
gated.    A strategy is presented for determining wave behavior at large distances 
from the source where linear and nonlinear effects are of equal magnitude.    The 
strategy is based on a matching technique which employs the linear theory in its 
region of applicability and an equation similar to that of Korteweg and deVries 
(KdV) in the region where nonlinearities are equal in magnitude to frequency 
dispersion.    Comparison of the theoretical computations with the experimental 
results indicates that an equation of the KdV type is the proper model of wave 
behavior at large distances from the source region. 

INTRODUCTION 
The main body of tsunami research has originated in Japan as a natural 

consequence of the devastating effects of tsunamis on this nation.    In early in- 
vestigations of tsunami generation,  e.g.,   Takahasi {1942,   1945,   1947),  Ichiye 
(1950),  Honda and Nakamura (1951),  Nakamura (1953) integral expressions 
(based on a linear theory) were developed to describe the waves resulting from 
various bed deformations in both two and three-dimensional fluid domains.    The 
difficulty in evaluating these complex expressions for the generated waves pre- 
cluded a detailed understanding of their character.    Webb (1962) and Momoi 
(1964) developed the wave profiles near the disturbance using high-speed com- 
putational facilities.    (It should be noted that the bed deformation adopted by 
Webb is of special interest since it is also one of the models investigated in 
this study; it appears that an error was made in the earlier solution by Webb.) 
The waves at large distance from the source region (and at large times after 
generation) have been investigated by several authors including Keller (1963) 
and Kajuira (1963) using asymptotic methods such as the method of stationary 
phase.    More recently Hwang and Divoky (1970) have developed a numerical 
model of tsunami generation based on the shallow-water-wave equations; this 
model has been applied to the Alaskan earthquake of 1964.    The only experimental 
investigations of tsunami generation (using bed deformations to generate    the 
waves) appears to be those of Takahasi {1963) and Takahasi and Hatori (1962). 
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Although numerous authors have investigated the tsunami problem, 
none appear to have thoroughly studied the wave profiles generated over a 
full range of characteristic size and time scales for a specific bed deform- 
ation.    In addition,  no authors appear to have determined the restrictions 
on the applicability of the linearized description of wave behavior for generating 
and propagating a wave.    In this investigation a linear theory has been adopted 
to describe the waves; however,   the effects of nonlinearities during generation 
and propagation will be examined (for the two-dimensional model).    A three- 
dimensional model of tsunami generation will be discussed,   based on a linear 
theory,  and differences between the results for the two and three-dimensional 
models near the region of generation will be examined.    Experiments have been 
conducted in a wave tank equipped with a section of the bottom which can be 
moved in a programmed fashion by an hydraulic-servo-eystem,  and these 
results are compared to the two-dimensional theory. 

THEORETICAL ANALYSIS 

Consider a fluid domain D as shown in Fig. 1 bounded above by the free 
surface, Sf, below by the solid boundary, S. , and unbounded in the direction of 
wave propagation,  i.e.,   -°° < x < ».    Initially the fluid is at rest,   with the free 

Fig.   1.    Definition sketch of coordinate system. 

surface and the solid boundary defined by y = 0 and y = -h, respectively. For 
t > 0 the bed {or solid boundary) is permitted to move in a prescribed manner 
given by y  =   -h + C(x;t) such that lim     C{x;t)   =  0.    The resulting deformation 

|x |-«> 
of the free surface,  which is to be determined,  is given by y  =  Ti(x;t).    Assuming 
the fluid to be incompressible and the flow irrotational,  a velocity potential 
cp(x,y;t) is known to exist such that q = Vcp where q is the velocity vector,  i.e. , 
q = (u, v).    From the continuity equation V •   q  =  0,  it is found that: 

V3cp = 0 in D. (1) 

The kinematic conditions to be satisfied on the free surface and on the solid 
boundary are: 

<P    = Ht + CPX\ on y = Ti(x;t), (2) 

cpy = Ct + cpxCx ony=-h+ C(x;t) (3) 

By further assuming the flow to be inviscid and surface energy effects to be 
negligible the dynamic condition to be satisfied by the fluid particles on the 
free surface becomes: 

cpt + 4(*p)S + gTi = 0 , (4) 

where the pressure on the free surface has been taken as zero. 
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Solution    of Eqs.   (1),   (2),   (3),  and (4) is inherently difficult due to the 
nonlinear terms in the boundary conditions and the unknown location of the free 
surface on which the boundary conditions are to be applied.    These difficulties 
can be circumvented by assuming the effects of the nonlinear terms to be small 
relative to the linear effects and applying the linearized boundary conditions at 
the original positions of the fluid boundaries.    The linearized boundary conditions 
are given by: 

tptt(x, 0;t) + gcp (x, 0;t)  =  0 , (5) 

co (x, -hit)  =  C(x;t)   , (6) 
V u 

where the kinematic and dynamic conditions on the free surface have been com- 
bined into a single condition given by Eq.  (5).    The requirements necessary for 
this linearized approximation to provide an accurate description of the fluid 
behavior will be discussed in more detail shortly. 

The solution of Eqs.   (1),   (5),   and (6) for the previously stated initial 
conditions and an arbitrary bed displacement has been presented in detail by 
Hammack (1972).    Using the Fourier transform with respect to the x-coordinate 
and the Laplace transform with respect to time, t,  the water surface displace- 
ment was found to be: 

Tl(x;t)  = =i- f" e-ikx{lim i f^   »Vjlfe^_ ds}dk , (7) 
2TT J I 2m •»,,.« (sB+ur) cosh kh      J        ' v   ' 

where: uu     = gk tanh kh , (8) 

C(k;s)  = j^dxj*   eikVstG(x;t)dt . (9) 

The bracketed quantity in Eq.   (7) is the complex inversion integral for the 
Laplace transform;  the remaining integration represents the inversion integral 
for the Fourier transform. 

A specific bed deformation,   C(x;t),  must be prescribed before Eq.   (7) 
can be simplified further.    Of special interest in the present study is a bed 
deformation described mathematically by: 

Ce(x,t)   =   C0(l-e"at) H(b3-xa) for t > 0 , (10) 

where H(   ) is the Heavyside step function,    Eq.   (10) indicates that a block 
section of the bed,   symmetric about x  =  0 with a length of 2b,  moves in an 
asymptotic manner to an elevation of Co which may be either above or below 
the initial bed location.    This bed deformation can be characterized by three 
parameters:   an amplitude,   G0,  a size,  b,  and a characteristic time,  tc.    For 
convenience the characteristic time which has been chosen is the time required 
for two-thirds of the movement to be completed, i.e.,  t  =  tc  when C/C0  =  2/3 
or tc  =1. 11/a.    This bed deformation will hereafter be referred to as the 
exponential bed motion. 

Before Eq.  (7) can be simplified, the bed motion,   Qe{x;t),  must be trans- 
formed by Eq.  (9); performing these integrations yield: 

r.M=2C6^[^,]. (ID 
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Substituting Eq.   (11) into Eq,   (7),  performing the integration around the 
Bromwich contour in the complex s-plane,   taking only the real part of the 
results,  and noting that the integrand is an even function of k yields: 

i    IA of0" cos kx sin kbf    qa    V   -at _    «»   .      .1,, ,19, n(x:t) =       —-? r—n \ / e        - cos tt)t - — sin tut  dk . (12) 
TT  JQ     k cosh kh      \   s     3/L a J s     ' 

Eq.   (12) represents the water surface movement resulting from the exponential 
bed displacement in a two-dimensional fluid domain; the remaining integration 
over k cannot be performed in closed form and numerical computations must be 
used. 

Now consider a three-dimensional fluid domain,  D,   with cylindrical 
coordinates    r,   z,  and 0,  bounded above by a free surface,   Sf,   below by a 
solid boundary,  Sfc>,  and unbounded in the radial direction,  i.e. ,   0 ^ r < °°. 
Initially the fluid field is at rest with the free surface and bed located at z = 0 
and z - -h,   respectively.    For t > 0 the bed is permitted to deform in a pre- 
scribed manner given by z = -h + C(r;t);  hence,  only axially symmetric deform- 
ations of the bed are considered in this model.    The water surface displacement 
resulting from an axisymmetric bed deformation will also be independent of 9 
and is given by z = T|(r;t).    Under the same assumptions stated previously for the 
two-dimensional fluid domain,   the linearized description of fluid behavior is 
given by: 

inD, (13) 

t(r,0;t) + gcpz(r,0;t)   =  0   , (14) 

(15) 

Eqs.   (13),   (14),   and (15) are most easily solved by first using the Hankel trans- 
form of zeroth order with respect to the radial coordinate r and the Laplace 
transform with respect to t.    (See Hammack (1972) for the details of this 
solution.)   The resulting water surface displacement is found to be: 

ri(r;t)  =   fkJ  (kr){um^r [^    %' %?<*»> ds } dk , (16) J
0     °      

Lr-»2irlJu-ir (»+«)) coshkh J v   ' 

where  UJ   is defined by Eq.   (8) and the use of the tilda superscript with the bed 
displacement indicates: 

C(k;s) -  f    dr  f    r J  (kr) e"StC(r;t) dt . (17) 
•Jo       J0      ° 

The bracketed quantity in Eq.   (16) again represents the complex inversion integral 
for the Laplace transform of a function while the remaining integration is the 
inversion integral for the Hankel transform of zeroth order.    (The Bessel function 
of first kind and zero     order in     Eqs.  (16) and (17) is denoted by J0(   ). ) 

In order to compare the wave structures resulting from similar bed de- 
formations in the two-dimensional (2-D) and the three-dimensional (3-D) models 
of tsunami generation,   consider a bed deformation for the 3-D model given by: 

CJr;t)  =  £  (l-e"at) H(r   -r) , for t * 0  , (18) 
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where H(   ) is the Heavy-side step function.    Eq.   (18) represents a bed deform- 
ation in which a block section of the bed,   circular in planform with a radius r   , 
moves with the same time-displacement history as the block section of the 
bed in the 2-D model; hence,   Eqs.   (10) and (18) represent analogous bed deform- 
ations in the 2-D and 3-D models of tsunami generation,   respectively.    Three 
parameters again are required to characterize the bed motion given by Eq.  (18): 
an amplitude,   Co.   a size,   rD,  and a characteristic time,  tc.    The characteristic 
time will again be chosen as the time required for two-thirds of the bed displace- 
ment to be completed.    Substituting C  (r»t) as given by Eq.  (18) into Eq.  (17) 
yields: 

~ r  J-t {kr   )   r -, 

'.<*•> • £0-^H^ [A] - <19> 
where Ji (   )  is the Bessel function of first kind and order one.    Substituting 
Eq.  (19) into Eq.   (16),  performing the integration around the Bromwich contour, 
taking only the real part of the results,  and noting that the integrand is an even 
function of k yields: 

°  Ji(kr   )J  (kr) 
Tl(r;t)  =   -C •-L cosh kh r-^-rire'^-costut- £sin cutldk .        (20) 

The remaining integration over k cannot be performed in closed form and,  as with 
the two-dimensional example,  numerical computations must be used to approxi- 
mate the results. 

Eqs.  (12) and (20) describe the water surface displacements resulting 
from similar bed deformations in a two and three-dimensional model of 
tsunami generation.    It should be emphasized that these solutions are based 
on a linearized description of fluid behavior;  hence,  their applicability is 
restricted to bed motions in which the neglected nonlinear effects are small 
relative to the linear effects which have been retained. 

PRESENTATION AND DISCUSSION OF RESULTS 

The results presented in this study for the two and three-dimensional 
models of tsunami generation will be concerned primarily with the wave structure 
near the source region of the bed deformation.    This area of the fluid domain will 
be referred to as the generation region and is given by   |x | ^ b for the 2-D model 
and r ^ r0 for the 3-D model.    Some comments on the propagation of waves out- 
side of the generation region will be presented for the two-dimensional model. 

The Generation Region - There are two positions in the generation region of the 
2-D model which have been investigated both experimentally and theoretically; 
these positions are x/h  -   0 and x/b = b/h.    (For a discussion of the experimental 
equipment used to model the bed deformation for the two-dimensional model,   see 
Raichlen (1970) or Hammack (1972). )   Analogous positions in the 3-D model (which 
have been investigated only theoretically) are r/h  =  0 and r/h  =   rQ/h.    The results 
presented for the positions at the edge of the bed deformation,  i.e., x/h = b/h 
and r/h  =  r0/h,  are of special interest since the wave structure at these locations 
represents the type of wave which propagates from the source region. 

It has been shown by Hammack (1972) that three dimensionless parameters 
are important in determining the characteristics of the waves in the generation 
region.    These parameters are:   G0/h which represents a disturbance-amplitude 
scale,   b/h or rQ/h which represents a disturbance-size scale,  and tc,*/gh/b or 
tc/gh/ro (hereafter referred to as the time-size ratio) which is the ratio of a 
disturbance-time scale,   t   J%Th,  and the disturbance-size scale.    The time-size 
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ratio may also be interpreted as the ratio of a characteristic distance a long 
wave will propagate during the bed motion to the characteristic length of the 
bed deformation.    When the bed displacement is very rapid such that tCA/gh/b 
(or tcVgh/rQ)  is much less than unity during the displacement interval,  the 
effect of the bed deformation is confined to the neighborhood of the generation 
region.    Bed motions of this type will be referred to as impulsive.    When the 
bed displacement is very slow such that the time-size ratio is much greater 
than unity,  the water surface elevations (depressions) which occur have 
sufficient time to propagate from the generation region during the displacement 
interval;  hence,  the displaced water volume is spread over a larger region of 
the fluid domain at the end of the bed displacement.    Bed motions of this type 
will be referred to as creeping. 

One of the more important characteristics of waves in the generation 
region is the maximum displacement of the water surface,   Ti0,   which occurs 
at a particular location.    Fig.  2 shows the experimental and theoretical variation 
at x/h = b/h of the ratio of the maximum wave amplitude,  t]Qt| to the total bed 
displacement,   Q0f   as a function of the time-size ratio,  tCJS/gh/b.    The results 
are presented separately for each of the five disturbance-size scales (b/h) 
investigated.    Hollow symbols are used to indicate data for which a bed upthrust 
(Co> 0) occurred;   shaded symbols indicate data for bed downthrows (Co < 0). 
The magnitude of the disturbance-amplitude scale for each experiment is shown 
in the legend of Fig.  2. 

The general behavior of the theoretical variation of the relative wave 
amplitude,   T)Q/C0»   with the time-size ratio shown in Fig.  2 is similar for each 
size scale.    For impulsive bed motions,  i.e. ,  tc^/gh/b < < 1,  the relative wave 
amplitude reaches a maximum and remains constant with decreasing time-size 
ratios.    The results for impulsive bed motions of the larger size scales indicate 
that the maximum amplitude of the wave propagating from the generation region 
is equal to one-half of the total bed displacement;  for the smaller size scales 
the maximum wave amplitude appears to be less than 0.5 Co*    •^LS the time-size 
ratio becomes very large,  i.e. ,  for creeping bed motions,  the linear theory 
indicates that the relative wave amplitude becomes inversely proportional to the 
time-size ratio.    (The range of time-size ratios between the impulsive and 
creeping range will be referred to as transitional. ) 

The linear theory presented in Fig.  2 for the three smaller size scales 
agrees well with the variation found from the experiments;  however,  it should 
be noted that no disturbance-amplitudes scales,   C0/h,  greater than 0.2 (in 
absolute value)   were used for these experiments.    The experimental results 
presented for the two larger size scales in Fig.  2 indicate that nonlinear effects 
become important as the disturbance-amplitude scale exceeds 0.2 when the bed 
motion is either impulsive or transitional.    In the creeping range the linear 
theory agrees well with the data regardless of the magnitude of Co/*1*    (This 
suggested nonlinear behavior in the generation region due to large amplitude 
scales has been demonstrated analytically by Hammack (1972) for impulsive 
and creeping bed motions. ) 

In order to compare the behavior of the relative wave amplitude,   T|Q/C   , 
between the two and three-dimensional models of tsunami generation,  the 
theoretical variation of the relative wave amplitude for corresponding time- 
size ratios has been computed at the center of the disturbance (x/h =  0 and 
r/h  =  0) and at the leading edge (x/h = b/h and r/h = r0/h) for a size scale of 
b/h = rD/h = 12.2.    The results presented in Fig.  3 show that at x/h = b/h or 
r/h = r0/h the computed variations are similar in shape;  an impulsive,  transi- 
tional,  and creeping range of time-size ratios can be defined also for the 3-D 
model.    The relative wave amplitude for the 3-D model is smaller than that 
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computed for the 2-D model over the full range of time-size ratios.    At the 
center of the moving bed,  i.e. , x/h = r/h = 0,  the relative wave amplitudes 
become equal to unity for impulsive bed motions; hence the water surface 
moves with the bed.    In the transitional and creeping range of time-size ratios, 
the relative wave amplitude is slightly larger for the 2-D model;  however, 
in both cases ^Q/CQ becomes inversely proportional to the time-size ratio for 
creeping bed motions. 

It was shown in Fig.  2 that the maximum value of the relative wave 
amplitude in the impulsive range of time-size ratios began to decrease below 
0.5 as the disturbance-size scale became very small.    This behavior is a result 
of the elliptic nature (v2<p = 0) of the response of the fluid field to an impulsive 
boundary condition.    In order to investigate this behavior more thoroughly for 
both the two and three-dimensional models,   computations of fl0/C0 

as a function 
of the disturbance size scales (b/h or r0/h) for impulsive bed motions have been 
performed.    The results of these computations at the center (x/h  =  r/h  =  0) and 
at the leading edge (x/h  = b/h and r/h  = r0/h) of the disturbance are shown in 
Fig,   4; the time-size ratios used for these computations were less than 10""^ and 
10"3 for the two and three-dimensional models,   respectively. 

The results for the 2-D model indicate that T)0/C0 becomes equal to 
unity and to one-half at x/h  =  0  and x/h  =  b/h,   respectively,  for size scales 
greater than approximately four.    For smaller size scales the relative wave 
amplitude at each position begins to decrease and for b/h < 10"* at each 
position the relative wave amplitude become equal and directly proportional to 
the size scale. 

For the 3-D model,  Fig.  4 shows that Ti0/Co becomes equal to unity at 
r/h ~ 0 for size scales greater than approximately four (similar to the 2-D 
model);  however,  at r/h  =   r0/h the relative wave amplitude approaches a value 
of one-half in an asymptotic manner and doesn't become identical to the results 
of the 2-D model until approximately rD/h  =   10   .    For size scales such that 
rQ'

n <  10~* the computations indicate that Ti0/Co  is equal at both positions in 
the generation region;   TI0/CO   also becomes proportional to (rQ/h)3 in this range. 
Hence,  the two and three-dimensional models of tsunami generation behave 
quite differently for small disturbance-size scales. 

In addition to the maximum wave amplitudes,  it is also of interest to 
examine the temporal variation of the water surface movement at a given 
location in the generation region.    Since the temporal behavior of the water 
surface is  similar in each of the three regions:    impulsive,   transitional,   or 
creeping,  it is sufficient to examine typical wave structures for each region. 
Examples of the theoretical and experimental wave profiles at the center and 
the leading edge of the bed deformation are presented in Fig.   5 for the 2-D 
model where the water surface elevation,   X],  has been normalized by the total 
bed displacement,   Co»   and is shown as a function of the nondimensional time 
tVg/h.    (The disturbance-size scale,   b/h,  is equal to 12.2 for each record; 
a disturbance-amplitude scale,   C0/h,  has been chosen in each case for which 
the linear theory is expected to be applicable.) 

For the impulsive bed motion shown in Fig.  5,  the water level rises 
rapidly to a maximum elevation of C    and CQ/2 at x/h  =  0  and x/h  =  b/h, 
respectively,   remains at this elevation for an interval of time,   and then rapidly 
returns to the still water level (SWL) about which it oscillates in a damped 
manner.    Most of the wave energy is confined in a single lead wave which 
resembles the actual bed deformation.    The linear theory agrees reasonably 
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Fig. 5 Typical wave profiles in each region of generation at 
x/h = 0 and x/h - b/h generated by exponential bed 
displacements. 
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well with the measured profile;  however,   small differences do occur near the 
trailing portion of the lead wave.    The wave profile at x/h = b/h is typical of 
waves which propagate from the source region of an impulsive upthrust of a 
block section of the sea bed. 

In the transitional and creeping ranges,   the water level rises more 
slowly to a maximum elevation and immediately begins to return to the still 
water level.    The rate of fall of the water level to the SWL for a creeping bed 
motion is so slow that the wave propagating from the generation region resembles 
a bore at x/h  =  b/h. 

Typical wave profiles generated at the center (r/h = 0) and leading edge 
(r/h = r0/h) of similar bed deformations for the 3-D model are shown in Fig.  6. 
The wave amplitude,   r\,   again has been normalized by the total bed displacement, 
QQ,  and is shown as a function of the nondimensional time,  t*/g/h.    A disturb- 
ance-size of r0/h -- 12.2 has been chosen for each record;  hence,   a direct 
comparison is possible with the results presented in Fig.  5 for the 2-D model. 

The lead wave at r/h = 0 resulting from an impulsive upthrust of the bed 
resembles that observed for the 2-D model at x/h ~ 0; however,   after the water 
level returns to the SWL it now continues to decrease to a negative elevation of 
-1.6 C0-    Large amplitude oscillations then occur about a mean level which 
appears to be approaching the SWL.    The positive lead wave that results at 
r/h = ro/h is now observed to be followed by a negative wave of comparable 
amplitude and period;   no significant negative waves were observed to result 
in Fig.  5 from a bed upthrust in the 2-D model. 

The positive lead wave resulting from a bed modtion in the transitional 
region in Fig.  6 is followed by a single negative wave with a larger period and 
a smaller maximum amplitude than that observed for an impulsive bed motion. 
When the time-size ratio indicates that the bed motion is creeping,  a single 
positive wave is observed to propagate from the generation region; a similar 
wave also resulted for a creeping bed motion in the 2-D model. 

Tsunami Propagation in a Two-Dimensional Fluid Domain of Uniform Depth. 
Once a wave propagates from the generation region of the two-dimensional 
model described in the previous sections,  it enters a fluid domain of uniform 
depth.    The linear theory derived in the previous section provides an adequate 
description of the propagating wave as long as the nonlinear terms which were 
neglected by this theory remain small compared to the linear terms which have 
been retained.    It is well known that the magnitude of the nonlinear effects (or 
amplitude dispersion) in a long wave is characterized by the parameter,  r\0/h, 
where "n0 is the maximum wave amplitude and h is the water depth.    The 
linear effects (or frequency dispersion) are characterized by (h/-t)    where  -t 
is a characteristic length of the wave.    Hence,  the relative importance of 
nonlinear effects is indicated by the ratio: 

Tl   /h 11^ 
U=__2_    =_9_    , (21) 

"       (h/t)3 h3 

which will hereafter be referred to as the Ursell Number although Korteweg 
and de Vries (1875) as well as Ursell (1954) discussed the significance of this 
parameter in characterizing long wave propagation. When the Ursell Number 
is much less than unity for a wave, the linear theory provides an adequate 
description of wave behavior. When the Ursell Number is much greater than 
unity, the linear effect of frequency dispersion may be neglected and only the 
nonlinear effect of amplitude dispersion need be considered in approximating 
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the wave behavior.    For the special case of small-but-finite non-linear effects 
such that T)0/h is of the order of [(h/-t)   ],   a theory which describes the wave 
behavior must retain both amplitude and frequency dispersion effects;   approxi- 
mate theories such as those developed by Boussinesq (1872) or Korteweg and 
deVries (1895) provide an adequate description of wave behavior for this special 
case.    It is well known that waves of permanent form (the solitary or cnoidal 
waves) exist for this special case,  i.e.,   when the Ursell Number is about unity. 
These permanent form waves result as a balance between the competing effects 
of amplitude and frequency dispersion is achieved. 

Ursell (1954) showed that nonlinear effects grow like t3 for a long wave 
propagating in a two-dimensional fluid domain which is initially described by a 
linear theory (see Hammack (1972) for a more detailed discussion of this). 
Hence,  the linear theory presented in the previous section will eventually 
become inadequate as a description of wave behavior and a theory such as that 
of Korteweg and deVries (KdV),   which considers both amplitude and frequency 
dispersion (in an approximate manner),   would appear to be required to describe 
the wave behavior. 

The equation of Korteweg and deVries has been the subject of extensive 
research recently due to the discovery by Gardner et al (1967) of an exact 
solution algorithim for this equation with arbitrary initial conditions.    The 
exact solution indicates that a finite number of solitary waves (or solitons) will 
emerge from an initial wave form; these solitons are ordered by decreasing 
amplitude toward the rear of the train and are followed by a dispersive train 
of oscillatory waves.    Zabusky (1968) and Segur (1972) have shown that this 
pattern of wave behavior evolves when the initial wave contains a net positive 
volume.    The Ursell Number for this train of solitary waves remains constant 
during further propagation,   since these waves are permanent in form and the 
competing effects of amplitude and frequency dispersion are balanced. 

OT These properties of the solution of the KdV equation for an initial wave 
Pro ri(x;a)dx  > 0, i.e.,  the net wave volume is positive,  suggest the following 
procedure for developing a uniformly  valid solution of the wave behavior 
resulting from a bed upthrust for which a linear theory initially provides an 
adequate description of wave behavior, i.e.,   U < <  1 near the generation 
region.    The linear theory may be used to determine the wave behavior until 
the Ursell Number,  computed in an appropriate manner,  indicates that non- 
linearities are becoming important;   the wave profile computed using the linear 
theory can then be used as an initial condition for the KdV equation which may 
be solved to determine further wave behavior for all time.    An example of this 
strategy will be presented shortly . 

In order to apply the suggested strategy the Ursell Number must be 
evaluated for a variety of complex (non-sinusoidal) wave profiles in a reason- 
able way to indicate when frequency and amplitude dispersion are about equal. 
No single length may exist which adequately describes a complex wave; hence, 
the Ursell Number becomes a variable parameter in different regions of the 
wave.    An appropriate definition of the length,  tt in a region of a complex 
wave is t  =   0 (TI/TIX) where T\K represents the slope of the wave.    In order to 
determine a numerical value for  -t,  the following operational definition may be 
used: 

t = |n |/|(TI )       I , (22) 

where   j T)0 ]   is the absolute value of the total change in wave elevation within 
the region and  \{r\  ) |   is the absolute value of the maximum slope of the 
water surface in the region.    Hence,   the Ursell Number becomes: 
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(23) 

An appropriate region of a complex wave can then be defined as the region 
between two successive positions of zero wave slope (r\x = 0).    When Eq.   (23) 
is applied to each region of a solitary wave,  the Ursell Number is found to be 
approximately two;  hence,   an Ursell Number of about two when computed by 
Eq.   (23) should indicate that frequency and amplitude dispersion are about 
equal.    (It should be noted that the Ursell Number in the leading region of a 
complex wave will normally be the largest for the wave since the longest wave 
components travel the fastest. ) 

Due to the complexity of the method for the exact solution of the KdV 
equation, a numerical solution algorithim has been adopted. The numerical 
solution is similar to that introduced by Peregrine (1966) and is based on an 
equation of the KdV type in the form: 

u
t 

+ <1+!u) u* - Kxt = ° - (24» 
where us is a nondimensional velocity (u  =   u*/^/gh), x is a nondimensional 
space coordinate (x  = x*/h) and t is a nondimensional time (t  =  t*vg/h).    The 
velocity u,  is related to the wave amplitude,   T),  to the same order of approxi- 
mation,  by: , , 

Ti  =  u +~n3  - fu      . (25) 4 6   xx 

A simple finite-difference approximation of Eq.  (24) was found to be stable by 
Peregrine.    The accuracy of this finite-difference approximation for a specific 
grid size is easily determined by propagating a solitary wave numerically; 
changes of the shape of this wave during propagation are due to the approxi- 
mation.    The accuracy of the finite difference model can be improved by 
decreasing the grid size. 

In order to illustrate the suggested strategy for a bed upthrust,   an 
experiment with the following generation parameters has been investigated: 

C   /h  =  0.1,    b/h  =   12.2,    t sjghjb   =  0.148    . (26) o c 

From the previous discussion,  a linear theory would be expected to accurately 
describe the waves near the generation region for the parameters of Eq.   (26). 
Fig. 7a shows the measured wave profiles at the leading edge of the bed section, 
(x-b)/h  =  0,   and at three more positions downstream:    (x-b)/h  =  20,   180,   and 
400.    The wave amplitude,  r\,  has been normalized by the water depth and plotted 
as a function of the nondimensional time:   t/g/h - (x-b)/h. 

The measured wave observed to be leaving the generation region at 
(x-b)/h  =   0  resembles the actual bed deformation.    During propagation the 
single lead wave appears to separate into three individual waves (or solitons) 
and a dispersive wave train develops behind these leading solitons.     The Ursell 
Number as calculated by Eq.   (23) is indicated in Fig.  7a for the frontal region 
of the lead wave.    At only twenty depths the Ursell Number is equal to 0.7; 
hence,  frequency dispersion is only slightly larger than amplitude dispersion. 
At (x-b)/h =   180 and 400 the Ursell Number is two and three,   respectively; 
thus,  frequency and amplitude dispersion effects are about equal.    (Only one 
significant digit for the Ursell Number is indicated in Fig.  7.) 
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Fig.   7b shows the wave profiles at each downstream position as com- 
puted by the linear theory,  i.e.,  Eq.   (12).    The computed profiles at (x-b)/h  =  0 
and (x-b)/h  -  20 agree well with the measured profiles in Fig.   7a; however,  at 
the downstream positionsof (x-b)/h  =   180 and 400 the linear theory no longer 
predicts the measured wave structure well.    Frequency dispersion,  unhindered 
by amplitude dispersion in the linear theory,   continues to disperse the wave 
into its spectral components.    The continual growth of the Ursell Number in the 
front region of the lead wave from U =  2 at (x-b)/h  ~  20 to U =   12 at <x-b)/h  = 400 
is a result of this frequency separation. 

Following the suggested strategy for determining wave behavior after non- 
linear effects have become important,  the linear theory at (x-b)/h  =  20 {where 
U -  2) has been used as the initial condition for Eq.   (24).    The profiles computed 
by this equation at (x-b)/h  =   180 and 400 are shown in Fig.   7c.    The temporal 
variation of these profiles agree well with the measured results in Fig. 7a. 
The Ursell Number for the front region of the lead wave in Fig.   7c remains 
constant at a value of three;  hence,  frequency and amplitude dispersion are of the 
same order during wave propagation and solitons are emerging. 

The difference between measured and computed wave amplitudes in Fig. 7a 
and Fig.   7c are the result of viscous effects in the experimental model.    Corrections 
applied to the experiments for these viscous effects (see Hammack,   (1972)) 
indicate that Eq.  (24) does predict these amplitudes well for a non-dissipative 
fluid medium. 

Oscillating Bed Motions With a Mean Displacement -  In the preceding sections 
only a simple time-displacement history of the bed motion was considered.    In 
order to observe experimentally the effect of a more general time-displacement 
history on the resulting waves,   experiments were conducted where an oscillating 
motion (or dither) was superposed on the mean displacement;   the frequency and 
amplitude of this dither was varied.    Fig. 8 abc   shows the measured waves in 
the generation and downstream region resulting from three bed displacements 
with the same mean motion;   the wave amplitude,  r\,   has again been normalized 
by the water depth,  h,   and shown as a function of the nondimensional time 
tVgTh - (x-b)/h.    The actual time-displacement history of the bed section is 
also shown in Fig.  8. 

Waves resulting from the mean motion alone are shown in Fig. 8a. Note 
that this mean motion (termed the half-sine bed displacement) occurs in a finite 
time,  t  ;   the generation parameters for this motion are: 

CQ/h  =  0.2,    b/h  =   12.2,    t «/ih7b  =   1.10   . (27) 

The time-size ratio in Eq.   (27) indicates that this bed displacement is near 
the boundary between the impulsive and transitional ranges of time-size ratios 
(see Hammack,  1972 for more details of this mean motion).    The wave measure- 
ments in Fig.  8a for the mean motion again demonstrate the evolution of solitons 
from the positive lead wave which propages from the generation region.    In Fig. 
8b a dither is superposed on the mean motion with a period,   T,  of one-half the 
characteristic time,  tc,  of the mean motion and an amplitude,   £i»  of one-half 
the total bed displacement.    The lead region of the wave profiles in the generation 
region (x-b)/h  -   -b/h and 0 resemble the actual bed displacement; the wave 
leaving the generation region at (x-b)/h  =   0  contains several small oscillatory 
waves superposed on the larger wave which are apparently created by the mean 
motion alone.    These oscillatory waves are left behind by the mean wave during 
propagation until,   at (x-b)/h  =  400,  the measured wave resulting from this bed 
motion is almost identical to the results for the mean bed displacement alone 
in Fig.  8a. 
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Fig. 8 Measured wave profiles; a) an impulsive half-sine mean 
motion, b), c) half-sine mean motion with a superposed 
oscillation. 
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Fig.  8c shows the waves generated when the period,   T,   of the superposed 
dither is reduced to 0. 1 tc  while the amplitude,   Ci *  is maint ined at 0.5 C0* 
Large amplitude cross waves,  i.e.,  waves propagating laterally across the 
wave tank,   were created in the generation region by this bed motion.    These 
cross waves also created high frequency oscillatory waves that propagated 
downstream as evidenced by the measurements at (x-b)/h  =  20 and 180.    These 
oscillatory waves appear to decay very rapidly (due to the combined effect of 
frequency separation and viscosity) and are again left behind by a large wave 
which is apparently created by the mean motion of the bed only.    The measured 
wave at (x-b)/h  =  400 is almost identical to the results found in Fig.  8a;  hence, 
it appears that the detailed time-displacement history for an impulsive bed motion 
may not be of critical importance in determining the wave behavior downstream 
of the generation region.    (It should be noted that the opposite was found to be true 
by Hammack (1972) for creeping mean motions with a superposed dither.    A 
knowledge of the exact time-displacement history of the bed section is of major 
importance in determining the downstream wave behavior when the mean motion 
is creeping.) 

CONCLUSIONS 
The following conclusions regarding tsunami generation and propagation 

can be drawn from the theoretical and experimental models investigated in this 
study: 

1) The maximum amplitude of the wave propagating from the generation 
region is approximately one-half of the total bed displacement for both 
the two and three-dimensional models of tsunami generation which were 
studied. 
2) The linear theory appears to accurately predict the wave structure in 
the generation region whenever the disturbance-amplitude scale, £0/h, 
is less than 0.2 in absolute value. 
3) Major differences exist between the structure of the wave propagating 
from the generation region of the 2-D and 3-D models investigated; large 
negative waves can result from an impulsive bed uplift in the 3-D model 
while no large negative waves result from a bed uplift in the 2-D model. 
4) Nonlinear effects grow during wave propagation in the 2-D model so 
that the linear theory eventually becomes an inadequate description of 
wave behavior; an equation similar to that of Korteweg and deVries was 
shown to be the proper model of wave    behavior once linear and nonlinear 
effects become about equal. 
5) A detailed knowledge of the time-displacement history of an impulsive 
bed motion may be unimportant in determining the wave behavior outside 
of the generation region. 

ACKNOWLEDGMENT 
This study was supported by the National Science Foundation under 

Grants   GK-2370   and  GK-Z4716    and was conducted at the W.  M.  Keck 
Laboratory of Hydraulics and Water Resources,   California Institute of 
Technology. 

LIST OF REFERENCES 
Boussinesq,  J.   1872 "Theorie des ondes et des remous qui ae propagent le long 

d'un canal rectangulaire horizontal,   en communiquant au liquide contenu dans 
ce canal des vitesses sensibilement pareilles de la surface au fond",  J. de 
Mathematiques Pures et Appliquees,  2nd Serie, J/7,   55-108. 

Gardner,   C. S. ,  Greene,  J.M., Kruskal,  M.D.,   and Miura,  R.M.   1967 
"Methodfor Solving the Korteweg-deVries Equation",  Phys.  Rev.  Ltre, 
12,   1095-1097. 



2608 COASTAL ENGINEERING 

Hammack,  J.  L.,  Jr., 1972 "Tsunamis - A Model of Their Generation and 
Propagation",  Rep. No. KH-R-28,  W.M. Keck Lab. of Hydraulics & 
Water Resources,   California Institute of Technology. 

Honda, H. ,   and Nakamura,  K.,1951,   "The Waves Caused by One-Dimensional 
Deformation of the Bottom of Shallow Sea of Uniform Depth",  Science Report 
Tohoku University,  Sendai,   Japan,   3_,   133-137. 

Hwang,   L.S.,   and Divoky,  D., 1970,   "Tsunami Generation",  JGR,   75,   6802-6817. 
Ichiye,   T., 1950,   "On the Theory of Tsunami",  Ocenographical Magazine,  Z_, 

83-100. 
Kajiura,  K. ,   1963,   "The Leading Wave of a Tsunami",   Bull.,  Earthquake. Research 

Institute,   Tokyo University,  4J_,   535-571. 
Keller,  J. B. ,   1963,   "Tsunamis — Water Waves Produced by Earthquakes", 

Intern.  Union of Geodesy & Geophysics,  Monograph No.  24,   154-166. 

Korteweg,  D.  J. ,  and deVries,  G. ,   1895,   "On the Change of Form of Long Waves 
Advancing in a Rectangular Canal,  and on a New Type of Long Stationary Waves", 
London,   Edinburgh,   and Dublin Philosophical Mag. ,  Ser.  5,  39.,  422-443. 

Momoi,   T., 1964,   "Tsunami in the Vicinity of a Wave Origin",   Bull.  Earthquake 
Researchlnstitute, Tokyo University,  42_,   133-146. 

Nakamura,  K., 1953,   "On the Waves Caused by the Deformation of the Bottom of 
the Sea,  I",   Science Report,   Tohoku University,  Sendai,  Japan,  5th Series, 
5_,   167-176. 

Peregrine,  D.H.,   1966,   "Calculations of the Development of an Undular Bore", 
J.   Fluid Mech.,  25,   321-330. 

Raichlen,   F. ,   1970,   "Tsunamis:   Some Laboratory and Field Observations", 
Proc.   12th Coastal Engineering Conf. ,  Washington,  D. C. ,  2103-2122. 

Segur,  H.,   1972,   "The Korteweg-deVries Equation and Water Waves. I.  Solution 
of the Equation",   submitted to the J.  Fluid Mechanics. 

Takahashi,R.   1942,   "On Seismic Sea Waves Caused by Deformations of the Sea 
Bottom",   Bull.  Earthquake  Researchlnstitute, Tokyo University,  20,  275-400. 

Takahashi,  R.,   1945,  "On Seismic Sea Waves Caused by Deformations of the Sea 
Bottom,   2nd Report",   Bull.  Earthquake Research Inst. , Tokyo Univ. ,   Z3_,  23-35, 
(in Japanese). 

Takahashi,  R. ,   1947,   "On the Seismic Sea Waves Caused by Deformations of the 
Sea Bottom,   3rd Report",   Bull.  Earthquake Res. Inst.,   Tokyo Univ. ,  25,   5-8. 

Takahasi,  R.,   1963,   "On Some Model Experiments on Tsunami Generation", 
Intern.  Union of Geodesy & Geophysics,  Monograph No.  24,  235-248. 

Takahasi,  R.,   and Hatori,   T.,   1962,   "A Model Experiment on the Tsunami 
Generation from a Bottom Deformation Area of Elliptic Shape",   Bull.  Earth- 
quake Research Institute,   Tokyo University,   4£,  873-883. 

Ursell,   F. ,   1953,   "The Long-Wave Paradox in the Theory of Gravity Waves", 
Proc,   Cambridge Philosophical Soc.,   49.,   685-694. 

Webb,   L.  M. ,   1962,   "Theory of Waves Generated by Surface and Sea-Bed 
Disturbances",  Appendix l,"The Nature of Tsunamis,   Their Generation and 
Dispersion in Water of Finite DepthJ' Tech.  Rep.  SN 57-2,  Natl,  Engrg.  Sci.   Co. 

Zabusky,   N. J. ,   1968,   "Solitons and Bound States of the Time-Independent 
Schrodinger Equation",   Phys.  Rev.,   168,   124-128. 




