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WAVE ENERGY DISSIPATION IK ROCKFILL 

by 

* 
John A. McCorquodale,  MEIC, A.H.ASCE. 

ABSTRACT 

Wave motion in a rockfill embankment is solved by a 
finite element approach.  Lagrangian coordinates 
are used to trace the movement of fluid particles 
on the free surface. 

INTRODUCTION 
Very little literature exists on the subject of unsteady non-Darcy flow in 

coarse granular media. However, unsteady non-Darcy flow is encountered in a few im- 
portant hydraulic problems, for example, 

(a) Wave absorption and transmission in rubble-mound break-waters; 
(b) Water level fluctuations in the rockfill and filter zones of 

a dam subjected to wave action; 
(c) Transmission of floods or tides through rockfill dams and 

causeways, 
A mathematical model, to simulate  the internal Darcy and/or non-Darcy flow 

in an embankment subjected to wave action, would permit an improved analysis of: 
the stability of the embankment;  the stability of the armour layer;  and the ab- 
sorption and dissipation of wave energy by the rockfill.  Since the internal flow 
in the embankment and the external wave action are interdependent, a complete model 
requires the simulation of both of these flows.  Such a model would permit the 
computation of wave run-up and reflection. The present report is limited to the 
simulation of the unsteady internal flow.  Heitner and Housner (4), using a finite 
element method, have developed an external wave action simulation for Tsunamis. 
The author is presently attempting to couple the internal and external models. 

BACKGROUND 
Experimental studies of wave absorption and transmission through rockfill 

models, have been reported by Johnson et al (5).  The flow in their models was 
probably non-Darcy. 

Numerous (1/ 3, 7, 10, 11, 12, 13) studies have been carried out to establish 
the governing equations for non-Darcy flow.  Saturated flow in a porous medium may 
be characterized (12, 13) by one of the following regimes: 

(a) Microseepage (non-Newtonian flow at extremely low velocities), 
(b) Darcy flow (Laminar Newtonian flow with negligible inertial effects), 
(c) Non-linear laminar flow (steady streamline flow in the pores but 

with significant inertial effects), 
(d) Turbulent transitional flow (some of the streamlines in the pores 

become unstable or turbulent due to inertial effects although 
viscous forces are still important), 

(e) Fully turbulent flow (inertial effects predominate over viscous 
effects). 

Experimental and theoretical (1, 7) studies indicate that the governing 
equation, for the piezometric slope, i, in steady, one-dimensional, non-Darcy flow 
in regimes (c) and (d), has the form 
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i = |V4>|  =  (a + bq)q  (1) 

where a and b are constants for a given medium, fluid and flow regime;  q = magnitude 
of the macroscopic or bulk velocity.  The piezometric slope, for the fully turbulent 
regime, is described by 

i = 17* |  =  bq2  (2) 

in which | V(j) |  = the magnitude of the piezometric gradient v<j>. 

Polubarinova-Kochina (11) gives the unsteady non-Darcy flow equation 

2       3q 
l     =  aq  +  bq   +  c ^  (3) 

in which c is a constant. 

The author (7) has generalized equation 3 with the limitation that the 
effect of convergence, divergence or curvature of the macroscopic streamlines on 
the conductivity is negligible;  the general equation for 2 or 3 dimensional 
non-Darcy flow is 

q    =  - <-i-) (V * + i-||)  (4) 
a+bq        gm dt 

in which q = macroscopic velocity;  g = acceleration of gravity;  m = porosity. 

The internal flow is subject to the continuity equation 

V.q  =  0  (5) 

Hence the internal governing equation is 

-> 
v.{, }..    [V * + — |J]>* o  (6) 

(a+bq)        gm St 

Equation 6 is to be solved for $ =  <j)(x,y,t) within a time varying solution 
domain, subject to a set of initial conditions and certain time dependent (periodic) 
boundary conditions (see figure 1).  An important aspect of the wave action problem 
is the determination of the phreatic surface (in the rockfill) as a function of time. 

Lean (6) has solved the problem of wave action in a highly permeable wave 
absorber by invoking the Dupuit assumption to obtain the following equations for the 
wave motion: 

3(h u) 
3n o 
3t 3x 

3u 3D 
3x 

ku|u| 
h 

.(8) 

where the variables are defined in figure 2. 

Equations 7 and 8 were solved analytically by linearizing the friction term. 
Another possible method of solution (2, 7) which has been developed by M. 

S. Nasser at the University of Windsor, is the method of characteristics;  however in 
order to obtain a practical formulation of the problem, it is again necessary to 



ROCKFILL 1887 

use the Dupuit assumption.  The characteristic solution can be developed from 

u/m 

n)/m 0 u/m 1 

1 gm  0 

dt 0  0 

0 dx  dt 

f   = 

0 

gm F(u) u 

du 

dn 

in which F{u) = a + bju|. 

Lean's method and the method of characteristics are useful for and 
applicable to the case in which the inertial effects are large compared with the 
friction effects.  However, in the case of unsteady flow through sand and gravel 
embankments the friction effects predominate over the inertial effects and often 
the Dupuit assumption is not justified because of the two dimensional nature of 
the flow.  The method described in this paper is applicable to the latter case. 

MATHEMATICAL FORMULATION 
Simplified Equations 

If the inertial term, (l/gm)3q/3t, in Eq. 6, is small compared to 

and has nearly the same line of action as and q, then the transformation 

gm  3t 

can be introduced in order to reduce Eq. 6 to 

V.{K(|Vc|)V;} = 0 

The macro-velocity is now approximated by 

q = -K(|V?|)VC 

/•l + c I VC | in which K< V£|) -2. {I 
2b ivci 4 

and c = 4b/a . 

The variational form of Eq. 11 is, (7,8,9), 

SX = /' /   «[K(|V?|)(|VC|)
2 + G(|Vr,|)] dAdT = 0 

t A(T) 
o 

in which t = initial time; 

.(11) 

.(14) 

G(|Vr;i) = 

A(T) 

6bc 

solution domain 

(2 - c|Vr,|) v'l  + c|V5| 
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The boundary conditions for the transformed variable C are (see figure 3): 

(a) on E  A  E   :- -^ = 
 — an 

(b) on E   D   :-     if>     - 

C      - 

(c) onDC   :-     <f>      - 

(d) on  C  B   :-     <J>     = 

=      0; 

0    and 
3y 

and|^ 
3y 

C is found from Equation 10;  a particle on the 

free surface remains on the free surface. 

Within the approximation of the original transformation, the transformed 
boundary conditions satisfy the self-adjoint requirement for the variational format. 

THE FINITE ELEMENT MODEL 
The finite element method is useful for solving free surface problems because 

of the ease with which certain boundary conditions and variable geometry can be met. 
The solution domain, A(t), can be discretized by elements of the type shown in 
figure 4.     Figure 3 shows a typical discretization at an instant in time. 

The variation of Q  within each element is assumed to be 

,y)t . (16) 

where 3. are defined in terms of the six nodal conditions on C, x, y and t;  thus 

for 0 .< t -J At 

in which 

K. = ?; <8„ 

AE< 

'k. 

.(18) 

s, v,) 4   5  i   6 

is the change in C. during an interval At. 

.(19) 
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The finite element equivalent of Eq. 14 is 

3?.     3?; 

|f- =  /At /    (J-  [K(|vC
e|)(|v?

e|)2 4-  G(|vC
e|)]} dAdt 

3Ci    o   A(t)S  3Ci  (21) 

Substituting from Eq, 16 for C  yields, after integration 

k N 

e=l 

-e  -e 
K     A 

*1 
[3(B.b.     +     B,c.)e  +  S..S 

5   1               6   l               xj AS 

in which K = <C + Kt=At»/2' 

A8 = Ae
2)/2; 

»I = area of triangle  ijk; 

. (22) 

area of triangle &mn; 

S..        =      (b.b.     +     c.c.J/A,; 
13 ID 1   :       1 

c. \  -  *i> 

N    =  number of elements. 

CALCULATION OF THE FREE SURFACE MOVEMENT 
The position of the free surface after a time increment At can be found 

from 

s<X,Y,At)  =  qAt/m  +  s(X,Y,0)  (23) 

where s(X,Y,t)  = position of a free surface particle at time t (lagrangian form); 

q = average 'bulk' velocity of the surface particle for the interval At (see figure 

5)m   Since if depends to some extent on the new free surface position, the computation 
-»• 

of q must be obtained by an iterative of trial and error process.  Eq, 23 was also 
utilized to predict the motion or the outcrop point, C.  The coordinates of the 
internal nodes of the elements must be adjusted as the free surface moves. 
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At each time step, At, a new free surface <j> is computed from $ =  y + C; 
Eq. 10 is used to obtain the corresponding C A transformation is obtained by 
integrating Eq. 10 along a streamtube to yield approximately 

?  =  <f>  + •r (IS S^  (24) 
gm  3t  p 

in which (3q/3t) is a representative average value of 3q/gt along the streamtube, 
and S is the length of the streamtube.  Since the inertia term is assumed to be 

small compared with friction, the values for S can be estimated on the basis of a 
solution in which z  =  <j>. p 

JUSTIFICATION OF ASSUMPTIONS 
A one dimensional solution of Equation 6, for accelerating flow in a 

typical gravel, (8), indicates that the time required to reach 90% of the terminal 
(friction) velocity, corresponding to i = 1, is given by 

gmb 

or approximately .06 seconds for 4.4 cm crushed rock.  With zero applied piezometric 
gradient, the maximum terminal velocity will decay to 10% of its value in 

t * -^T-  (26) gmb 

or 0.4 seconds for 4.4 cm rock which corresponds to a particle displacement of 
about one grain diameter. 

The case of rapid drawdown in a rockfill has been solved using Equation 6 
without the inertia term (9), and with the inertia term (8).  The results of these 
studies are summarized and compared with experimental results in figure 6.  It is 
noted that the effect of the inertia term is small (as assumed in this paper) and 
that the numerical results are in agreement with the experimental results. 

NUMERICAL ANALYSIS 
Equations 22 and 23 were utilized to simulate wave motion in an embank- 

2  2 
ntent of 4,4 cm crushed rock (a = .005 sec/cm;  b = .004 sec /cm ; m = 0.40) , as 
shown in figure 3. The right hand rockface is subjected to a periodic hydrostatic 
force produced by varying the external water depth according to 

„. .,2-rrt. 
y   =  y  - A  Sin (•••"-•) 

in which y = mean tail water level (56 cm) ; T = wave period (2TT seconds) ; 

A = wave amplitude outside rockfill (20 cm).  The initial condition is h = y - 
o o   o 

56 cm. 
It is assumed that the internal free surface level at C will always be 

equal or higher than y . 

The solution of Equation 22 and 23 is summarized in the flowchart, figure 7. 
Equation 22 was linearized and solved by successive over-relaxation (SOR factor = 
1.65) at each time step (0.05 < At < .2 sec).  In order to start the solution of 
Eq. 22 the free surface DB at the end of interval At is initially assumed to be the 
same as at the beginning of At;  on this basis the necessary surface velocities for 
the application of Eq. 23 are obtained and hence a new free surface can be estimated. 
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As figure 7 indicates, this approximate solution is 're-cycled' to correct for non- 
linearities in the system and thus to improve the solution.  The computation at a 
particular time step is complete when successive estimates of the free surface are 
within a specified tolerance. 

The computations were carried out on an IBM 360/40 computer.  A typical 
computer solution for the wave action on certain selected points is shown ^n 
figure 8.  About 10 minutes of computer time was required for this solution. 

EXPERIMENTAL VERIFICATION 
Experimental studies, using a wave flume, are now under way to test the 

proposed numerical simulation.  Figure 9 compares the predicted and preliminary 
experimental wave transmission curve, for a 4.4 cm rock embankment. 

CONCLUSIONS 
The proposed finite element model for unsteady non-Darcy flow is 

developed for the case when the influence of (1/gm) 3q/'dt is small compared to 
the influence of turbulence. The available experimental studies appear to 
indicate that the proposed model is valid for unsteady flow in rockfill for rock 
sizes up to about 4 cm. 
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LIST OF SYMBOLS 

a constant; 

area; 

area of an element; 

wave amplitude; 

b = a constant; 

b. - y. - y, ; 
i 3   k 

c = a constant; 

c. = x, - x. ; 
i k   3 

e - superscript indicates element; 

g = acceleration due to gravity; 

h = depth measured from che initial mean water level; 

i = slope of the piezometric grade line- 

indices; 

= constant; 

= hydraulic conductivity; 

= porosity; 

= macroscopic velocity; 

Lagrangian coordinates; 

(b.b. + c.c.)/A® ; 
13    1 D   1 

= streamtube length; 

t = time; 

T - period; 

u = horizontal component of velocity; 

(x,y,z)      - Cartesian coordinates; 

y = mean tailwater depth; 

6. - coefficients in the elemental representation of r, 

n = height of perturbation measured from initial mean W-L; 

4> = piezometric head; 

X = functional; 

Z = transformed dependent variable. 
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FIGURE 4  Typical Element in (x-y-t) Space. 



ROCKFILL 1897 

WATER  SURFACE AT t, 

S(x,y,o) 

S(x,y,At) 

FIGURE 5 
Lagrangian Approach to Tracing Particles on the Free Surface. 



1898 COASTAL ENGINEERING 

Q 
UJ 
I- 
3 
Q. 

O 
O 

sis 
II 

_|e 

I 
I 

o 
I 
I 
I 

< • • 
t- 
z 
UJ UJ UJ s o <-> 
tr < ft 
UJ u. ta- 
Q. ct: ce 
X 3 3 
UJ CO CO 

en co \ v. 
3 Q 

o 
4) 
in 

c 
S 
1 
Q 

•O    • 
•H   ^ 

«   O « 

n 
a 
u 

4J 
c 

01 X 
a a 
o a 

<u B 

r-f it 
n) o 
O Q 

•H « 

§ a) 

o     o     o     o 
co      in      ^      ro 

O 
CM 

e 
•rt 
H 
<u 
& 
w 

»!»E 



ROCKFILL 1899 
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FIGURE 7  Computer Flow Chart. 



1900 COASTAL ENGINEERING 

13 
C o 

- oo   * 



ROCKFILL 1901 

< 
Q 
Ul 
Z 
X o 
O 
o 
X 
y- 
tii u 
z < 

o 
ci 






