
CHAPTER 91 

PRESSURE UPON VERTICAL WALL PROM STANDING WAVES 

By Prof. Dr. Eng. Sci. V.K. SHTENCEL.* 

When surge waves approach a vertical wall a stan- 

ding wave is formed ahead of the latter. This is the 

only case when the interaction between waves and struc- 

ture result in a stable mode of motion with distinct kine- 

matic characteristics. Such motion can be described by 

equations of hydromechanics without the introduction of 

any hydraulic coefficients; a comparison of various the- 

oretical solutions with experimental data can serve as 

an additional criterion for evaluating the accuracy of 

this or that solution. 

The first theoretical solution for wave pressure 

acting upon a vertical wall under the effect of standing 

waves at a finite depth has been published by Sainflou 

in 1928 (1). 

By correlating motion equations for surge waves de- 

rived by Gerstner as early as 1802 and Plamani's equati- 

ons for standing waves on an infinite depth, Sainflou 

derived for the case of standing waves on a finite depth 

the following relations: 

x = x0 - 2 r cos 6t sin kx0 

P CD. 
y = yo + 2 r^cos 5t cos kxc + 2 krr^cos 6t 

In Eq.  (1)   : 

r ~ 2      sh SS -"*'    r1* 2 "irkH~^  ' 
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x0 and y0 - ordinates of a particle at rest; 
h,X  andt- respectively height,  length and 

period of a wave; 

H - depth;  k = -«;    6= -—•; 
A t 

abscissae axis coincides with still water level; 

ordinate axis coincides with wall surface and is 

directed upwards. 

When deriving the pressure relation Sainflou util- 

ized the hydrodjnamic equilibrium equation in terms of 

Lagrange variabless 

2„ w       ^2, 1 Dp    3 x 3x (_  . ci y\ dy 

£ ayo  at2 ay0 
v&  st2y ayc 

(2) 

After substituting all the partial derivatives - 

talcing into account the second order terms in relation 

to wave height we have: 

* IS = 2(gkr„ - S2r)cos 6t sin kxc + 

+ 2 k62(r2 - r2)cos26t sin 2kx0   (3) 

% rp  = -6 - 2 gkr cos6t cos kx0 - 

- 2gk (r + rfjcos 6t + 26 r,,cos 6t cos kx0 + 

+ 4k62rr1cos
26t + A-kC^r^os 26t        (4) 

The continuity equation is satisfied on condition 

k(r2 - r2)a 0 (5) 

By omitting in integrating (3) and (4-) all terms 

with second and higher order factors in relation to wave 
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height, Sainflou arrives bo the following relation for 

pressure upon a wall (with x0 = 0): 

? - " y 2n j^B cos st (6) 

By substituting in (6) cos 6t - 1 we derive pressu- 
res on approach of wave crest; substitution of cos <5t=-1 

gives respectively the pressure at trough approach. 

For plotting pressure diagrams we preset 5 or 7 va- 

lues of ordinates of resting particles y0» then calculate 

the pressure using Eq.(6), and apply it to points, the 

positions of which are derived from the equation: 

y = y0 + 2r,.cos St + 2rr,|C0s 6t (7) 

From the moment of its first publication relation 

(6) was generally used for practical calculations all 

over the world. Only in the fifties the works of Miche 

(2) demonstrated that in some cases the method implies 

considerable errors. According to Sainflou (6) maximum 

excess wave pressure upon a wall always tekes place on 

the approach of the crest (cos 5t = 1), and pressure val- 

ue is positive for all points acrosss the height (Pig.1a). 

But practically Miche was the first to demonstrate (1) 

that at considerable depth ahead of the wall maximum 

pressure can occur not on crest approach, but in some 

intermediate moment; during the approach of the crest 

even negative pressures can possibly occur near the bot- 

tom (Pig. 1b). Calculation methods were developed, which 

take into account the second order terms in relation to 

wave height. Rundgren's (J) and Kuznetsov's (4) methods 

are among the most widely known. 

Eundgren's paper, published in 19-58, completes the 

investigations that were started by Miche (2) and Biesel 

(5). The solution procedure is as follows: basic motion 

characteristics are found as polynomials and are expan- 

ded by the smaller parameter powers in relation to wave 
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Fig.1. Character of Pressure upon Vertical 

Wall Diagrams. 
a - Sainflou, b - second approximation formulae. 
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freight (retaining second order terms). Final relationships 

give a good agreement with experimental results; at rela- 

tively low heights there however appear considerable er- 

rors. This is explained by the appearance of a surplus 

term in the Cauchy integral, this term becoming markedly 

increased as relative depth HAis decreased. Therefore a 

limit for utilization of calculation formular E/\  =0.132 
is set; if relative depth would be greater, then Miche- 

Biesel - Rundgren equation would give inevitably wrong 

results. Therefore even though this solution is rather 

widely used (see e.g. Kernel's paper (6) published in 1971) 

a search for a new and more accurate calculation method 

woulo. be very desirable. 

Kuznetsov's solution (4) has many important theoreti- 

cal errors, which are analyzed in (?). Owing to a correc- 

tion achieved by introducing empirical coefficients for 

small depths, this solution is in good agreement with ex- 

perimental results, but for relatively large depths to- 

tal pressure can be found to be two or more times the true 

value. 

We feel that the cause of inadequacy of all the pre- 

sently known methods lies in the fact that neither of them 

takes into account the specific character of wave motion. 

When studying fluid motion, hydrodynamics neglects particle 

deformations. It brings no errors into final equations for 

all types of motion except those for wave motion, since 

the deformations are of random character. But in wave mo- 

tion particle deformations are periodical and undirected 

for significant areas (8). Therefore it is the deformati- 

ons that undoubtedly affect the motion kinematic, and any 

accurate solution would be impossible if we do not take 

them into account. Author's attempts of taking into ac- 

count particle deformations when deriving equations for 

3urge waves and standing waves revealed great mathemati- 

cal difficulties awaiting the investigator on this way. 
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Search for an approximate solution brought the author to 

the conclusion, that calculation formulae yielding practi- 

cally acceptable results for all the range of rated depths 

can be derived from Eq.(1). And indeed, many of the inves- 

tigators who carried out laboratory experiments on stan- 

ding waves found that wave profile derived from Eq.(1) 

gives the best agreement with experimental data for all 

the depth range, this leads to a suggestion that the dis- 

crepancy between experimental pressure diagrams and those 

calculated from (6) is caused by the approximation in its 

derivation. 

Turning now back to Eqs. (3) and (4) it should be no- 

ted that they can be integrated without omitting the se- 

cond order terms. If we assume a limiting condition for 

surface p = 0 with y0 = 0, then - proceeding from assump- 

tion (5) - we derive from (3>): 

g = T cth kH (Q) 

Integrating (4) on substitution of (8) and dividing 

the result by "g" we get: 

2 = - j0 - 2x*  cos &t  cos kx0 - 2krr/j cos 6t  + 

p   ? P 
+ 2r th kH cos 6t  cos kx0 + k(r + r,.) th kH cos 6t  + 

+ k(r2 + r2) th kH cos 26t + F(t) (9) 

To simplify the final expressions it would be reaso- 

nable to transform the fifth term having in view the re- 

lationship (5): 

k(r2 + r2) th KH cos26t = 2kr2th kH cos2£t    (10) 

( A  chek proved that it gives an error in the final result 
which lies within 1 to 2%).Function F(t) will be found 
from limiting conditions on surface: p = 0 if y0 = 0. 
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Talcing into account that an surface r = r^ cth kH,  and sub- 

stituting (10) we have: 

F(t) = - lr cth 2kH cos 2 <St (11) 

Assumin cos kx0 = 1 and substituting (10) into (9) we ob- 
tain the final expression for pressure in any point: 

n sh kvo        ? sh kv„ch k(H+y )  ? 
fi = - yo - 2h -j-gg cos.t - kh

2 — -^-g-^-^cos^t - 

. *f  JLS^ite) cos 2rt.        (12) 

Since Eq.(12) gives pressure value in Lagrange vari- 
ables, for finding the loading point calculated for a par- 
ticle with y0 = a we have to find the current ordinate of 
the particle by substituting y0 = a into Eq. (7)*. 

With unlimited depth Eqs. (12) and (7) become consi- 
derably simplified: 

J = - y. - ^f-(1 - e21^) cos 2<St       (12a) 

2 
y = y„ + heky° cos6t + --- e2ky° cos2 eit        (7a) 

Practically when H^0.4X calculations can be begun 
using Eqs. (12a) and (7a). 

For plotting an excess wave pressure diagram we have 
to set 5 to 7 y„- values, then to calculate p/#- pressure 
values; then diagram of full pressure is plotted and the 
hydrostatic pressure subtracted. 

The value of full pressue resultant can be derived 

*) In the publication of our relationship in Khaskhachik 
G.D. & O.M.Vanchagov's work (9) a misprint has slipped 
in: in the second term of Eq. (2) factor "cosfi't" is 
erroneously omitted. 
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by integrating Eq. (12) i 

-H 

5 = f fi 3.1 dyo f-Jl Ty0^° (13) 
o 

Excess wave pressure resultant will obviously take the 
form: 

*-2 = 2 . t (14) 

Omitting cumbersome calculations of this value we give 
here only the final equation: 

AR      h2,4 cos%t 
— = - (r-r th kH cos6t + 6kH —— + cos 26t + 
J       2 vkh sh 2kH 

+ cos%t - 2kH cth 2kH cos 2St)       (15) 

As seen from (15) the maximum of excessive wave pres- 
sure resultant is time-dependent. The value of phase which 
corresponds to maximum pressure is derived by taking a 
derivative of (15) and equalizing it to zero. 

As a result we derive two radicals: 

cos6t = 1 (16) 

2 th kH 
cos6t =      (17) 

kh(4kH cth 2kH --« - 5) 
sh 2kH 

It was found that if cos St calculated from (17) yields 
a value 0-£cos st-^1, then this very moment will corres- 
pond to the maximum value of excessive pressure resultant. 
If however this condition is not fulfilled, then the maxi- 
mum of resultant will occur when the first radical (16) 
is used, i.e. at the moment of maximum wave crest rise 
at the wall. 

For a case of H^ 0.4.A Eq.(1?) takes a simpler form: 



PRESSURE ON VERTICAL WALL 1657 

-!H 



165 8 COASTAL ENGINEERING 

>• cos St =  (17a) 
H(8 f - J) 

To simplify the calculations we plotted a diagram of 
relationships between cos t and relative wave heights 
o< = h/x  and depths fi = E/\_  (Pig.2). As seen from the dia- 
gram the increase in relative depth as a rule leads to 
cos St < 1 and the maximum of excessive wave pressure resul- 
tant does not coincide with the moment of maximum wave 
crest rise at the wall. 

If we derive by similar integration the resultant mo- 
ment in relation to wall bottom and then determine the 
phase which corresponds to moment maximum, then it will be 
seen, that this phase does not coincide with that of the 
resultant maximum. The recommended method of calculations 
reflects all the peculiarities of pressure variations that 
were found by other investigators. Excess pressure at the 
bottom at y =<=« will then be: 

pb    kh2 
_ cos 2St (18) 

o 2 

N.N.Zagriadskaya has collected all published data on 
experimental laboratory investigations of the action of 
standing waves upon a vertical wall, and made a compari- 
son with theoretical data. She found (10) thereby that 
the method recommended in the present paper should be con- 
sidered as preferable when compared to Miche - Biesel - 
Rundgren method and to that of Kuznetsov, since it gives 
the best agreement with the results of laboratory experi- 
ments. 
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