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STANDING WAVES IN FRONT OF A SLOPING DIKE
by
Nobuo Shuto

Asian Institute of Technology, Bangkok, Thailand

Abstract

A solution of two-dimensional long waves on a beach of uniform slope is
connected with that in water of constant depth, in order to yield an approximate
solution for standing waves in front of a sloping dike. Wave motions are
expressed in the Lagrangian description.

The highest possible standing waves as well as the reflection coefficient
are calculated according to the Miche's conception. Theoretical results
show a good agreement with the experimental results of Murota and Yamada.

It is also predicted that there is a relationship between the wave
overtopping quantity and the quantity of water of standing waves above the
crest height of the dike.

As for the wave pressure of standing waves, a simple formula in the
Eulerian description is derived for relative-dike length 4/L < 0.16 by
allowing 6% error.

Introduction

Although a sloping face structure is more practical than a structure with
vertical wall, no theoretical work except that of Keller & Keller Dhas been
done to solve the standing waves in front of the former. At the point where
the slope of the dike intersects the horizontal sea bottom, there is an abrupt
change in slope. Difficulty in mathematical approach arises from this point.
Since the direction of motion of water particles at the bottom is parallel to
the bottom, the water particles should change their direction abruptly at the
point. It is hard to satisfy this condition mathematically.

In the following analysis, an approximate theory is developed. The entire
region is divided into two regions; U 1] region of uniform water depth, and
L11] region of a constant slope. Solutions of standing long waves in each
regions are obtained at first independently and are connected so that the
horizontal and vertical motions of water particles are continuous across the
boundary between the two regions.

There are several theories for waves in water of uniform depth. Solution
for long waves to the first order approximation is applied, assuming that the
relative water depth in front of the structure is shallow enough and the motion
is small, although the result is found applicable to such a higher waves as
waves breaking on the slope.
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Only a few wave theories are available for waves on a sloping beach.
Miche2)obtained a solution for waves over beaches sloping at special angles,
by using the Lagrangian description. In his paper, surface waves were dis-
cussed. Since nodal line in case of standing surface waves are not straight
lines in vertical direction, Miche's theory introduces another complexity if
it is connected with a solution of waves in water of uniform depth. Lewy3),
or Isaacson ’extended the Miche's theory for surface waves, but for slopes of
more general angles or for all angles. Carrier & Greenspand)solved long wave
motion on a sloping beach, using the shallow water theory in terms of the
Eulerian description. As the horizontal coordinate in their result is a
function of local wave height which varies with time, it is not convenient to
use their solution in the case, because no such a theoretical result is
available for case of long waves in water of uniform depth. Keller & Kellerl)
applied the Isaacson's solution to the practical problems similar to the
present problem. They obtained a result which corresponds to wave run-up
height.

The author®)s7Jobtained a theory of long waves on a sloping beach in the
Lagrangian description. Although his theory is of the first order of approxi-
mation, the result was comparable to that of Carrier & Greenspan. In addition,
it is easy to obtain long wave motion in water of uniform depth. Therefore,
this theoretical result is used in the present paper.

Theory

Let us consider the two-dimensional motion of an inviscid fluid. The
position of the water particle, which is at the point (xo,yo) at t=0 is
(x,y) at the time t=t. The pressure acting on this water particle is denoted
by p. The still water surface is chosen as the horizontal axis and the y-axis
is taken positive upwards.

Equations of continuity and motion are

agx,y) ) = 1 (1)
=] XY,
2
o x _ _18(p,y) (@
Btz e a(Xo’yo)
ofy L, latep) €}
atz 4 (xo,yo)
where the symbol 8(u,v) denotes the Jacobian
a(x ,y )
0’0
a2
ox
d(u,v) - o o %)
8(x ,y ) ?v av
oo ¥ ? dy
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Let x., y, and p, be the small fluctuations around the zeroth order terms
Xys ¥ an Pys then

X=xtxmtoo. , y= .t y1+.... ,and p = Pt Pytes.. (5)

1

2
We assume the long wave motion in which 9—% is negligible compared with other
terms up to the first order approximation.

The terms of the zeroth order approximation yield the equations,

=2 = 0 (7

o
—-— = . 8
5y0 g (8)

and the first order texms yield thle equations
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2

3°x dp 8y

1 1

=t T tege < O (10)
Bt S °

ep &x
1P 1
e 0 (11)
p ayo axo

The water particles forming the free surface at the initial instant remain
on the free surface throughout the succeeding motion., The water pressure
acting on these particles is taken equal to the atmospheric pressure.

p = PO+ Pyt =0 for particles satisfying Y, = o] (12)

The water particles initially on the bottom cannot depart from the bottom.
In the region [I], the vertical coordinates of these particles should
satisfy the following equation

= _h =y + e
y h =yt oyt
which yields
y,= -hy ¥ = 0 for particles satisfying v, = -h (13)

In the region [11], the slope of the dike is given by

y = -ox
and bottom condition is written as

vy = -eXos yl = -ox; for particles satisfying Yo o (14)
Equations (1) through (3) yield the zeroth order solution

p, = -P8Y (15)

which indicates the hydrostatic pressure distribution.

Equation (9) is integrated from the bottom to Y,

Yo éxl
8y = —gf Bl gaxl(xo, -axo;t) b 11 (16)
bottom "o
where §, is 8 =0 and § = 1 for i{=1, II., Equation (16) satisfies

the bot%oélboundary condition.[I u
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Eouation (11) is integrated from the free surface to y_ so as to satisfy
the propored boundary condition on the free surface, and i8 given by

y
o
P ox
1 1
o= gf on dy 17)

o]
o]

Substituting Eqs. (16) and (17) into Eq.(10), we have

2 bottom
8 Ky s . axl
p- — - - it =
7t w8 sE W, e (e~ 50 b fe 0 (18
dt o o ©

which determines the required solution.

In the region [1], Fq.(18) is written as

— O, - {
> 8 3x [ So @, =0 (19)
ot [+] o

Let X = X‘xo) Y(yo) T(t). From Eq.(19), Y(y ) is concluded to be constant,
o
Terms X and T should satisfy the eguation

XT" - gh X"T = 0

where each prime denotes the differentiation once with respect to the parti-
cular independent variable, A solution of standing waves is given by

T = cos ot

X (20)

(<]
cos( -
o] ~gh
where — = k is the wave number and & the phase lag which is included because
~gh
the point x = 0 does not always coincide with the antinode of the standing
waves in th region [1]

x* 5)

Solution for y,end p, are obtained by Eqs.(16) and (17). With appro-
priate coefficients, a set of solutions is given for standing waves in the
region [I] as follows:
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x) = %E cos (kx0 + 9) cos ot
_ 2a, A
vy = W, t h) sin (kx + 8) cos at (21)
p, = -Pg 2a y sin (kx + 8) cos Ot
1 h 7o [

where a denotes the amplitude of the incident waves, 0 = 2n/T the frequency
and k = 2m/L the wave number,

Equation (18) is written, in the region [I1], as

2 o
9°x ox?

1 5 1 ? L

7 T8 G s Yo 8 g (5 - ORgiE) = 0 (22)
St [ o © o

Since the second and third terms in the above equation are functions indepen-
dent of Yoo % is a function of e and t only. Equation (22) is reduced to

1

ale 32

- g — (xx) = 0 (23)
6t2 axt o !

o
Let x, = X(xo) T{t) and we have
" il

%” - Eg_Lﬁné__ii__g§_l = _02 (24)

Functions X and T for standing waves are given by

T = cos 7dt
X = 1TJ1(22~&) (25)
vx o Wea °

First order terms are given as follows for standing waves on a sloping
beach, with a coefficient A to be determined later.

WX cos Ot
o

o
Y, = A ( + ax ) g 1 J T ¢ _ 3 29 W cos ot (26)
yo ° X 2 — ;\/X - - 2 XO ] ¢
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where y, and p, are determined by Egs.(18) and {17), and I, is the n-th
Bessel Function of the first kind,

Two coefficients, A and &, which are wundetermined connect the two regions.
Consider the particles which are, at the initial imstant, at the point x = &
which is the boundary between two regions. Two expressions of the horizontal
movements of these particles should be the same. As for the vertical movement,
we cannot conpect it for all water particles locating on x = 4. However, the
most important factor to be considered is the vertical displacement of the water
particle on the free surface. As the first order pressure is the hydrostatic
pressure, any discontinuity in water levels between the two regions might
have a big influence. Therefore, this condition is adopted as one of the

conditions., We have

2+ %% cos ki+d) cos Ot = 4 + é: Il( 5% JZ] cos Ot 27)
and L N gw

%% sin (ki+§) cos ot = %R ig o Jz(gg: VI)— - Jl( Zg: VZ)COS ot 128)

2 e v vge
Eliminating § A is determined as
Ny
_ 2a 2 4 2 4 ,

A = EN/Z[JO(ZWE)* Jl(lmf) 29)
in which the following relation is used.

Z%szﬂf%: zm%’ £30)

~g ~gh

Wave run-up on

corresponding to XO

Run-up Height

the dike is given by the vertical location of a particle
= 0 and v, = 0.

vi - - Y - J (—*—20 R ) -8 J (—2‘7‘ WX } cosot\
X 0, y=0 X 2 o — ot — o
o o @ o Nga g g XO:O’yozo
=-AC < cos Ot (31)
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Relative wave rum-up height is given by

|

-2 £ 2
= LJO (4m £> + Jl (4m E>J (32)

[

a

The resut coincides with the amplification factor of Keller & Keller.

Figure 2 shows the relationship between %% and %, and its asymptotic
expressions:

%
R = 1
7 &2 ﬂ( Z) for large value of I (33)
2
R Z(i?) i (
5a 1+ 2m I for small value of T (34)

> o o~

4 1072 o' | 4
T

Fig.2. Relative Wave Run-up

Breaking Condition

Local wave steepness at the wave front cannot be steeper than the
inclination of the slope. Therefore,
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dy/dx

= = - (35)
-0 -0 ex/ex
Xo = U, yO = o

gives the critical condition. This is the Miche's criterion for breaking.
From Egs.{5) and (26)

N o3
é% l = A w———-  Cc08 Ot
= =0 1
ox =0,y e
and
. 3
%E | =1- -—Jlééf»cos ot
0 XK= 0, Y= 0 2g0n/BG
Equation 735) is written as
03A ojA
-¢ + ———— c¢os Ot = ~————— 05 Ot

2g:/ge Y

Introducing the critical amplitude a of the incident wave which just breaks
on the slope, the breaking condition is given by

2a -1 %

m 1 2 X 2 1% 2 12
—_— == = = 4 = = [
T n e [JO an )+ 37 (em D) (36)

Figure 3 shows the relation above with the two approximate expressions;

5 32 3/2

a

ml1l _ 1 14 4 .
T & - (—*E i ) for large value of 7 (37

2m

2a N

m 1 1 4 X 4
- 5 = ? ( T ‘)— I for small value of T (38)

Figure 4 provides a comparison of theoretical results with experimental
results by Murota and Yamada. For a relative depth h/L = w{/L and an
incident wave steepness 2a/L, an angle, «, of the slope on which waves just
break is uniquely determined by Eq.{36), and is expressed in degree in the
figure.

Reflection Coefficient

According to the Miche's definition, the reflection coefficient, r,
of a slope is given by
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r =1 for H, < 2 a
i~ m
2 a (39)
= }% for Hi > 2 am

in which H, is the incident wave height and 2a_ is the critical height of the
incident wave which just breaks on the slope.

Wave smaller than 2a_ can be totally reflected by the slope, while a
part of waves correspondigg to 2a is considered to be reflected in case
of bigger waves and the rest is considered to be lost due to the breaking.

1639



COASTAL ENGINEERING

1640

JUITDT3IP0D u0TIVBTIAY  (®) § B1g

adojs jo ajbuy

06 D9 S 0 02 O O
i 1 L T 1 r,
/
/
/
\
8200 1
ssaudasjs aAom
9I'0
wideq anoay ]
-
‘*

adojg j0 3jbuy
06 09 S 02 02 O O
O ! 1 1 ] T I O
/
/
/
\ :
Y 9100 i 1%0°
ssaudas)s aADMm
v.o No_.o — . v.o
yidag anAlpjay 1

Py

e

g
90 = 490

e }

o

3
80 = 180

(2}

[+

3
o] 401
2l 121
i v

1UaIoy4e0) UOHOBYRY



1641

SLOPING DIKES

JUPTOTIFI0) UOYIDATIAY  (4) §BTd

adojg jo slbuy

06 09 05 Ob 08 02 OF O
I T 1 T I I _\
/
/
/
\ -l
2¢00 !
559udaa)g SADM /
10 / ]
yidag eAuoIRY |
|

20

14Y)

90

80

Ol

2l

14!

JUBIDIY430D  UOHDBYRY

8do|g Jo a)buy

20

14

90

80

ol

<l

06 09 0s or 0¢ O O O
T T T T T 1 L2
/
/
!
/
\ -
2€00 /
s59UdadS DM
2ro i
yidag a0y
|
]

14l

4UBI0144307  UOHIB|Jay



1642 COASTAL ENGINEERING

Figures 5 - (a), (b) show examples of the comparison of theoretical
result with the experimental results of Murota and Yamada. They carried out
experiments in a wave flume which was divided into two parallel parts of the
same width by a separator set along the centerline. At the end of the one part
they placed a slope, while at the same end of another part a wave absorber
was set to generate only the progressive waves in this part. Wave gauges
were set in both parts at the same dictance from the wave generator, Signals
from wave gauges were electrically subtracted to separate the reflected waves
from standing waves. For waves of bigger height, effect of nonlinear inter-
action may affect the magnitude of the reflected waves as was pointed by
Goda and Abe”; but in their experimental results no correction was made. This
is considered a reason why they obtained the reflection coefficients bigger
than unity under some conditions. 1In the figures, black marks correspond to
waves which break on the slope, white marks correspond to non-breaking waves
and the broken lines are theoretical results.

Wave Overtopping

In Figure 6, the rate of overtopping is compared with the volume of water
above the crown height of the dike at the time when a crest of standing waves
appears on the dike. Wave profile in front of the dike is drawn for water
particles y =0 at the time cos ot = -1 by using Egs.(5) and (26), at first
assuming thé crown height of the dike is high enough to allow no overtopping.
Then, the volume of water above the crest height is calculated. The experimental
results are taken from one of the author's experiments. The figure suggests
there is a close relationship between wave overtopping and the volume of
water determined by the method above.

Wave Pressure

Pressure acting on the slope when maximum wave run-up occurs is given as

follows by setting cos ot =1, y = -ax and y = -ax, in Egs.(5), (15) and
(26). 0 ° L !

P = Pgax - pgd oA J ( 29 VIN)

o - 2\ — [}
N B A8
(40)
X = X =~ —é: Jl( Ef M;?>)
°  vgo vga e

In order to calculate the pressure acting at x, the initial position, x , of
the particle is determined by the second equation of Eq.(40), and is suBstituted
into the first equation of Eq.(40).

As the procedure above is troublesome, an approximate expressivpn is derived
as follows., Introduction of non-dimensional variables defined as
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| anun P 2
Ve, 2w, dx = Bx, e o
g N g & &
and
2
D = 4o S_ A
B e

reduces Eq.(40) to the followings

P = X - D J(WK)
° 2o “41)
X = X —ZD—_]'—_—Jl(V)_()
o T o
o
For small XO Eq.(41) is approximated by
Xo 1 Xo
Po= X -0y 3 24]
142)
XO
X = XO—D[I-—E—}

Error in the value of pressure given by Eq.(42) is less than 6% for X < 4,
which is equivalent to 4/L < 0.16 °

An Fulerian expression of the pressure is given by

2

8 - D 2 (X+D)

P = (X+D) + ZD (43)
K (8+D)?

g +

Figure 7 shows the wave induced pressure for cage of D = 0.5. First term of
the above equation is a simple expression accurate enough in this case.
Including the second term, Eq.(43) coincides with the theoretical result,
Eq.(41).

The term D is also a function of £/L, and it is approximated by, for small
relative dike length, 4/L,

2

o %[ 1+ 2112(%) ] “44)

fedd

i

D = —
1

fpll e

where H = 2a.
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With dimensional variables, total pressure is written in the Fulerian
description as follows.

2H 4 112

o - 4m 1L { 1+ 2m ( E) 2 a2

7%; = 5 ox + 2H I+ 2m (f >
ot 42 B % { 1+ an( %)

2 2
2 4 2 H4 2 {4
+ § HY{l+ Zﬂz (%) m L %? * 4n TL { Lo+ 2m if) }
o + 4ﬂ2 % % {l + 2ﬂ2 (% ) } (45)

Conclusion

A theory is developed to describe the standing long wave motion in front
of a sloping dike. Relative run-up height, breaking condition, reflection
coefficient and pressure distribution are given. The breaking condition and
the reflection coefficient are compared with the experimental results, and
good agreements betweefl the theory and experiments are shown. A method is
proposed to predict the wave overtopping. Comparison with experimental results
shows utility of this method.

Although the theory has several approximations from mathematical and
physical point of view, it provides a useful basis for practical design.
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