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Abstract 

A solution of two-dimensional long waves on a beach of uniform slope is 
connected with that in water of constant depth, in order to yield an approximate 
solution for standing waves in front of a sloping dike.  Wave motions are 
expressed in the Lagrangian description. 

The highest possible standing waves as well as the reflection coefficient 
are calculated according to the Miche's conception.  Theoretical results 
show a good agreement with the experimental results of Murota and Yamada. 

It is also predicted that there is a relationship between the wave 
overtopping quantity and the quantity of water of standing waves above the 
crest height of the dike. 

As for the wave pressure of standing waves, a simple formula in the 
Eulerian description is derived for relative-dike length -t/L < 0.16 by 
allowing 670 error. 

Introduction 

Although a sloping face structure is more practical than a structure with 
vertical wall, no theoretical work except that of Keller & Keller^)has been 
done to solve the standing waves in front of the former.  At the point where 
the slope of the dike intersects the horizontal sea bottom, there is an abrupt 
change in slope.  Difficulty in mathematical approach arises from this point. 
Since the direction of motion of water particles at the bottom is parallel to 
the bottom, the water particles should change their direction abruptly at the 
point.  It is hard to satisfy this condition mathematically. 

In the following analysis, an approximate theory is developed.  The entire 
region is divided into two regions; L I 3 region of uniform water depth, and 
[ II ] region of a constant slope.  Solutions of standing long waves in each 
regions are obtained at first independently and are connected so that the 
horizontal and vertical motions of water particles are continuous across the 
boundary between the two regions. 

There are several theories for waves in water of uniform depth.  Solution 
for long waves to the first order approximation is applied, assuming that the 
relative water depth in front of the structure is shallow enough and the motion 
is small, although the result is found applicable to such a higher waves as 
waves breaking on the slope. 
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eories are available for waves on a sloping beach, 
tion for waves over beaches sloping at special angles, 
n description.  In his paper, surface waves were dis- 
ine in case of standing surface waves are not straight 
ction, Miche's theory introduces another complexity if 
solution of waves in water of uniform depth.  Lewy->', 

the Miche's theory for surface waves, but for slopes of 
for all angles.  Carrier &  Greenspan^)solved long wave 

ach, using the shallow water theory in terms of the 
As the horizontal coordinate in their result is a 
height which varies with time, it is not convenient to 

the case, because no such a theoretical result is 
long waves in water of uniform depth.  Keller &  Keller^) 
solution to the practical problems similar to the 
obtained a result which corresponds to wave run-up 

Only a few wave th 
Miche^/obtained a solu 
by using the Lagrangia 
cussed.  Since nodal 1 
lines in vertical dire 
it is connected with a 
or Isaacson^-'extended 
more general angles or 
motion on a sloping be 
Eulerian description, 
function of local wave 
use their solution in 
available for case of 
applied the Isaacson1 s 
present problem.  They 
height. 

The author"-' * '^obtained a theory of long waves on a sloping beach in the 
Lagrangian description.  Although his theory is of the first order of approxi- 
mation, the result was comparable to that of Carrier &  Greenspan.  In addition, 
it is easy to obtain long wave motion in water of uniform depth.  Therefore, 
this theoretical result is used in the present paper. 

Theory 

Let us consider the two-dimensional motion of an inviscid fluid.  The 
position of the water particle, which is at the point (x0,y0) at t=0 is 
(x,y) at the time t=t.  The pressure acting on this water particle is denoted 
by p.  The still water surface is chosen as the horizontal axis and the y-axis 
is taken positive upwards. 

Equations of continuity and motion are 

S(x,y)      ^   1 

32x 1 ^(p.y) 
P §(x ,y ) 

(1) 

(2) 

at' 

I a(x,P) (3) 

where the symbol S(u,v)   denotes the Jacobian 
&(x ,y ) 

d(u,v) 
d(x ,y ) 

^o 

&y„ 

(4) 
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^feajj^ 

Fig.!.  Definition Sketch 

Let x^, y  and p^ be the small fluctuations around the zeroth order terms 
x , y and p , then 

x = x + xv y = y + y +. 
o yl 

,and p = p + p +....   (5) 
o  1 

•g-j is negligible compared with other 
terms up to the first order approximation. 

The terms of the zeroth order approximation yield the equations, 

1=1 (6) 

Spo 
IS2 =  ° (?) 

o 
and the first order terms yield the equations 

(8) 

^T sy„ 
=  0 (9) 
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1 dpl dxl 
p dy      s  Sx 

o o 
The water particles forming the free surface at the initial instant remain 

on the free surface throughout the succeeding motion.  The water pressure 
acting on these particles is taken equal to the atmospheric pressure. 

P = p + P-, + ,,.. = 0    for particles satisfying y = 0     (12) 

The water particles initially on the bottom cannot depart from the bottom. 
In the region [i], the vertical coordinates of these particles should 
satisfy the following equation 

y = -b =  yo+ y1+  

which yields 

y - -h, y1 = 0 for particles satisfying y - -h    (13) 

In the region [il], the slope of the dike is given by 

y =  -ax 

and bottom condition is written as 

y = -o/x , y = -o/x.     for particles satisfying y = -o/x    (14) 
o     o  1     1 &  o    o 

Equations (1) through (3) yield the zeroth order solution 

Po = -pgy (15) 

which indicates the hydrostatic pressure distribution. 

Equation (9) is integrated from the bottom to y 

«yi = -sj"   er dy
0 - **»i<v -av° »i n as) 

bottom  o 

ll„ls *! II = °?nd 6n II _,  , vi II,   ,1 II   ,. t. the bottom boundary condition. 
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Eouation (11) is integrated from the free surface to y  so as to satisfy 
the proposed boundary condition on the free surface, and is given by 

?!     r 
oxi . 

(17) 

Substituting Eqs. (16) and (17) into Eq.(lO), we have 

St 

bottom 
6* 

-  dy -gQx, (X , -ax.  ;t) 6. TT 
o    1 o    o    x II 

which determines the required solution. 

(18) 

In the region [i], Eq.(18) is written as 

2 "h 

s ir I sr dy
0 = ° at 

(19) 

Let x, = X(x ) Y(y ) T(t).  From Eq.(19), Y(y ) is concluded to be constant, 
loo o 

Terms X and T should satisfy the equation 

XT"  -  gh X"T = 0 

where each prime denotes the differentiation once with respect to the parti- 
cular independent variable.  A solution of standing waves is given by 

T = cos at 

X = cos — 
Vgh 

(20) 

where — = k is the wave number and 6 the phase lag which is included because 
Vgh 

the point x = 0 does not always coincide with the antinode of the standing 
waves in the region [i]. 

Solution for y and p  are obtained by Eqs.(16) and (17).  With appro- 
priate coefficients, a set of solutions is given for standing waves in the 
region Li] as follows: 
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1  kh cos (kx + 6) cos ot 

2a / h) sin (kx + §) cos at 

2a 

(21) 

Pi = -PR -T~  y  sin (kx + 6) cos ot 1       h J o o 

where a denotes the amplitude of the incident waves, o =  2rr/T the frequency 
and k = 2n/L the wave number. 

Equation (18) is written, in the region [il], as 

S2x 
-ax 
ex' 

6t" 
~ + S I— I "S-^- dy - 8" I—xi(x , - "x ;t) = 0 6 ex v ex   -^o    5x 1 o     o (22) 

Since the second and third terms in the above equation are functions indepen- 

„2 

dent of y , x, is a function of x and t only.  Equation (22) is reduced to 
o  1 n ^ 

1 

ix 
-x  (x x ) 
2   o i 

(23) 

Let x, = X(x ) T(t) and we have 
1     o 

get [xnX" +  2X']  = Q2 
X 

Functions X and T for standing waves are given by 

T =  cos at 

1   T l2a     r —— J   Vx 
Vx   'Vga 

-Vx I 

(24) 

(25) 

First order terms are given as follows for standing waves on a sloping 
beach, with a coefficient A to be determined later. 

A     /2a   — \ 
X =   J. ( -  Vx J cos at 

Vx      VgOf 

<y„ -V^-x^^^J-^^virjcos, 
Vga o  *• vga   ' vx    Vga   'i 

p  = _£S£ _5 A j   _ 
Vga Xo     Vga 

— Vx I cos at 

t  (26) 
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where y1 and p. are determined by Eqs,(18) and (17), and J^ is the n-th 
essel Function of the first kind. 

Two coefficients, A and 6, which are  undetermined connect the two regions. 
Consider the particles which are, at the initial instant, at the point x  = t 
which if the boundary between two regions.  Two expressions of the horizontal 
movements of these particles should be the same.  As for the vertical movement, 
we cannot connect it for all water particles locating on x = -t.  However, the 
most important factor to be considered is the vertical displacement of the water 
particle on the free surface.  As the first order pressure is the hydrostatic 
pressure, any discontinuity in water levels between the two regions might 
have a big influence.  Therefore, this condition is adopted as one of the 
conditions.  We have 

•C + T-p cos kh 
>-tf6) cos at ^ + ~  Ji ( ~ J^ ) cos ot '27) 

— sin (k-t+6) cos ot - ~ 
kh kh 

Eliminating 6, A is determined as 

V<* 

L Vg     Vg<*     V-t     Vg<* 

in which the following relation is used. 

2a  ?r h-t  . I 
4n- 

kh    I    o I   I I 1 '   L ' 

lg relat 

cos ot r28) 

'29) 

^30) 

Run-up Height 

Wave run-up on the dike is given by the vertical location of a particle 
corresponding to x  =0 and y  --= 0. 

y>x  = 0, y = 0  =A 
o  'o ,(!o ' 2o 

r—-   X    2* ;     0/      ,     O* ;     O 
cosot\ 

x = 0,y =0 

=-Aa ./— cos ot (31) 
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Relative wave run-up height is given by 

iKjo^i) + ji^i>] (32) 

The result coincides with the amplification factor of Keller &  Keller. 

R     *t 
Figure 2 shows the relationship between j-  and -, and its asymptotic 

expressions: 

I    -    *«[$) for large value of (33) 

_R_ 
2a 1 + 2TT 

2 I I (£) for small value of — (34) 

n cvi 2 - 

- 

-     2a ^KJ+JiV^ 
,1 

2 

- 

&-*"<tf*V ̂ •&••'*» A y2 

- 
~ 

i                              i 

10 r2 10 

Fig.2.  Relative Wave Run-up 

3reaking Condition 

Local wave steepness at the wave front cannot be steeper than the 
inclination of the slope.  Therefore, 
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dy 
dx 

Sy/dx 

°. y„ 
Sx/Sx 

= -a 
0, y = 0 

(35) 

gives the critical condition.  This is the Miche's criterion for breaking. 

From Eqs.(5) and (26), 

ay I 
3x ' 

o x 0, y = 0 g\/g" 

ax 
6x 

2gavga 

Equation '35) is written as 

o3A 

2g7ga 

Introducing the critical amplitude a of the incident wave which just breaks 
on the slope, the breaking condition is given by 

ml   2 ,,  -L, 
_— - = - (4TT -) 
L   Of    TT      L 

J2 (AT, h  +  J2 (An ~) 
o     L     i     L 

'36) 

Figure 3 shows the relation above with the two approximate expressions; 

?a 
m 1 

L a 

?a 1 m 
L a 

3/5  -3/2 

-l 

for large value of 

for small value of 

(37) 

(38) 

Figure 4 provides a comparison of theoretical results with experimental 
results by Murota and Yamada. '     For a relative depth h/L = u-i/L and an 
incident wave steepness 2a/L, an angle, a, of the slope on which waves just 
break is uniquely determined by Eq.(36), and is expressed in degree in the 
figure. 

Reflection Coefficient 

According to the Miche's definition, the reflection coefficient, 
of a slope is given by 



1638 COASTAL ENGINEERING 

10 

-le 
El 

O _l 

0.1 

0.01 

gQjnl= 2,[jp(^|:)+^(4^)] 

eBssl _!_avii 
L a ~ 27r2 V     L 

0.01 0.1 

Fig.3.     Breaking Condition 
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Fig.4.  Theoretical Breaking Condition Compared 
With Murota & Yamada's Experiment. • 

for H. < 2 
l — 

for H. > 2 
(39) 

in which H. is the incident wave height and 2a  is the critical height of the 
incident wave which just breaks on the slope.m 

Wave smaller than 2a  can be totally reflected by the slope, while a 
part of waves corresponding to 2a  is considered to be reflected in case 
of bigger waves and the rest is considered to be lost due to the breaking 
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Figures 5 - (a), (b) show examples of the comparison of theoretical 
result with the experimental results of Hurota and Yamada.  They carried out 
experiments in a wave flume which was divided into two parallel parts of the 
same width by a separator set along the centerline.  At the end of the one part 
they placed a slope, while at the same end of another part a wave absorber 
was set to generate only the progressive waves in this part.  Wave gauges 
were set in both parts at the same distance from the wave generator.  Signals 
from wave gauges were electrically subtracted to separate the reflected waves 
from standing waves.  For waves of bigger height, effect of nonlinear inter- 
action may affect the magnitude of the reflected waves as was pointed by 
Goda and Abe"; but in their experimental results no correction was made.  This 
is considered a reason why they obtained the reflection coefficients bigger 
than unity under some conditions.  in the figures, black marks correspond to 
waves which break on the slope, white marks correspond to non-breaking waves 
and the broken lines are theoretical results. 

Wave Overtopping 

In Figure 6, the rate of overtopping is compared with the volume of water 
above the crown height of the dike at the time when a crest of standing waves 
appears on the dike.  Wave profile in front of the dike is drawn for water 
particles y =0 at the time cos at = -1 by using Eqs.(5) and (26), at first 
assuming the crown height of the dike is high enough to allow no overtopping. 
Then, the volume of water above the crest height is calculated.  The experimental 
results are taken from one of the author's experiment s.  The figure suggests 
there is a close relationship between wave overtopping and the volume of 
water determined by the method above. 

Wave Pressure 

Pressure acting on the slope when maximum wave run-up occurs is given as 
c 

(26). 
follows by setting cos at = 4, y = -ax and y ~ -ax, in Eqs.(5), (15) and 

o     o     1     1 

p ~  pgax - -=-*- aA J (  Vx 
o    :—    2 ^ ,—   o . 

A  Tf 2o  — \ 

(40) 

vgc*   vga 

In order to calculate the pressure acting at x, the initial position, x , of 
the particle is determined by the second equation of Eq.(40), and is substituted 
into the first equation of Eq.(40). 

As the procedure above is troublesome, an approximate expression is derived 
as follows.  Introduction of non-dimensional variables defined as 
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Fig.6.      Wave   Overtopping 
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and 

VX  =   yx 
o    —   o 

Vga 
Vx = 2o 
  yx 

4o 

Vg" 

reduces Eq.(40) to the followings 

4o   p 

D J,(VXo) 

X  =  X  - 2D 
yX 

J, (VX ) 1   o 

'41) 

For small X  Eq.(41) is approximated by 

1    x 
1 o 
2 "  24 

X 
'42) 

Error in the value of pressure given by Eq.(42) is less than 6% for X ^4, 
which is equivalent  to £/L < 0,16 

An Eulerian expression of the pressure is given by 

P = f^5 (X+D) + |D W 
8 + D 3   (8+D)2 

(43) 

Figure 7 shows the wave induced pressure for case of D ~  0.5.  First term of 
the above equation is a simple expression accurate enough in this case. 
Including the second term, Eq.(43) coincides with the theoretical result, 
Eq.(41). 

The term D is also a function of -t/L, and it is approximated by, for small 
relative dike length, -t/L, 

8nH , I 
a   L    L 1 **,'(£) '44) 

where H ~   2a. 
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With dimensional variables, total pressure is written in the Eulerian 
description as follows. 

a -  4TT 
2 H I 

* •*"'(*: 

a +  4rt    7T(   l+2n   | - ' 

-JT^(i) 

2 / i • 
ax +  2H <   1 +  2n' ( £ ) 

2^f+4^f^1+2^ 

a +  4TT    — — •( 1 +  2n (*)'} (45) 

Conclusion 

A theory is developed to describe the standing long wave motion in front 
of a sloping dike.  Relative run-up height, breaking condition, reflection 
coefficient and pressure distribution are given.  The breaking condition and 
the reflection coefficient are compared with the experimental results, and 
good agreements between the theory and experiments are shown,  A method is 
proposed to predict the wave overtopping.  Comparison with experimental results 
shows utility of this method. 

Although the theory has several approximations from mathematical and 
physical point of view, it provides a useful basis for practical design. 
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