
CHAPTER 61 

ON THE GEOMETRICALLY SIMILAR REPRODUCTION OF DUNES 

IN A 

TIDAL MODEL WITH MOVABLE BED 

M.S. Yalin * 

ABSTRACT 

A model design method is suggested which is based on the 
principles of the theory of dimensions and which is evaluated by 
experimental relations for the geometric properties of dunes. The 
model is distorted and, in general, non Froudian. The geometrically 
similar model dunes are reduced in vertical model scale. The scale 
of the flow velocity is derived from a generalised friction equation 
which takes into account the influence of both skin friction and form 
drag. The application of the method is illustrated by a numerical 
example. This example indicates that a practicable set of scales is 
obtained if the model bed is formed by a light weight material. 

INTRODUCTION 

When carrying out model tests with drilling structures, buried 

pipelines or any other objects which are in contact with a movable 

bed a major consideration is that the model dunes should be 

geometrically similar to their counterparts in the prototype. Indeed 

the functioning of the structures mentioned depends to a considerable 

extent on how their geometry compares with the geometry of dunes 

around them, so that a reliable prediction of the performance of 

these structures can only be made if the model and prototype dunes are 

geometrically similar. 

At present no systematic information on dunes formed by tidal 

flows is available. On the other hand the measurements carried out 

in the North Sea, Liverpool Bay, Outer Thames and Sandettie 
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(in English Channel) indicate that the dunes produced by tidal 
currents should be very similar in their size and shape to the dunes 

* produced by the equivalent unidirectional flows.  This similarity 
between the tidal and unidirectional dunes is, in fact, not surprising, 
for the formation of dunes by tidal currents takes place mainly in 
those parts of the periodic cycle when the whole body of the fluid 
moves in one direction, that is when the tidal flow becomes virtually 
a unidirectional flow. Considering this (fortunate) similarity 
between the tidal and unidirectional dunes, the present method is 
developed by using the existing information for unidirectional dunes. 

SOME QUANTITATIVE ASPECTS OF RIPPLES AND DUNES ** 

It can be shown that the dimensionless combinations (variables): 

v*D        pv*2        h  *** 
X =    ;  Y = —n-  ;  Z = £ 1) 

V y D D 

are sufficient in order to express any dimensionless property of sand 
waves formed by a unidirectional tranquil (Fr < 1) flow (i.e. of 
ripples and dunes). 

From the analysis of a large number of data it follows that the 
relative length A/h of dunes is a function of two variables : 

£ = MX, Z) (2) 

Furthermore, the same data reveals that for X > z  25 and/or 
2 > ~  5000 the function f (X, Z) reduces into a constant (2TT) : 

£ = ^ (3) 

* The author is grateful to R.C.H. Russell and A.W. Price 
(HRS - Wallingford) for this information. 

** Extensive information on all the aspects summarised in this 
section can be found in Chapter VII of Ref [1]. 

*** See "List of Symbols" at the end of the paper. 
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In natural estuaries, the values of X and Z are almost always 

large enough, as to assume that the length of dunes is given by the 

proportionality (3). 

For the height a of dunes the following expression is valid 

£ = * (f- . X, Z ) (4) 
cr 

where the subscript cr signifies the "critical stage" (initiation of 

sediment transport), while the fundtion $ characterises the dune 

steepness.  Here the most important variable is Y/Y  ; the 

variations in <3> induced by X and Z are comparatively small. 

Accordingly the relation (4) can be replaced by its approximate 

equivalent: 

£ *  * ( y— ) (5) 
cr 

If Z > * 1000, then ripples and dunes exist in the regions 

shown in Fig. 1. When Z decreases from * 1000 to * 200 the 

point X„ moves towards the fixed point X, * 5 , as to reduce the 

interval XpX, to the point X„ = X, ~ 5 , for all Z smaller than 

x  200. Hence, for Z < K 200 the simultaneous occurrence of ripples 

and dunes (in the form of ripples superposed on dunes) becomes 

impossible; the sand waves are either ripples o£ dunes. This is only 

natural, for ripples can be superposed on dunes only if their size 

A = const. D is much smaller than the size A of dunes. Observe, 

however, that 

-r     is proportional to jr = Z 

and thus that A  cannot be "much smaller" than A if Z is not 

sufficiently large. 

It follows that the presence of ripples on model dunes will 

certainly be avoided if the model value of X is selected as to be 

larger than = 25 . (Note that this requirement coincides with one 

of the requirements for the validity of the proportionality (3)). 
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SCALE RELATIONS 

Let A' and A" be the prototype and model values of a 
quantity A , and A. = A"/A' be the scale of A . 

From Eqn (5) it follows that the steepness of model and prototype 
dunes will be approximately the same, i.e. the approximate scale 
relation 

A ~-    1 (6) 
AA 

will be valid if the condition 

AV    =    AVcr (7) 

is fulfilled. 
Consider now the X; Z plane shown in Fig. 2. From the text 

preceding Eqn (3) it follows that if the model and prototype "points" 
M" (X" , Z") and M' (X' , Z1) are both outside the shaded region, 
then 

h   -    \    • 

The present method is an attempt to achieve the similarity of 

dunes, i.e.  the scale relation: 

h   *   h   ~~   \ (8) 

by satisfying (7), and by selecting M" outside the shaded part of 
the X; Z plane (assuming, of course, that the prototype point M' 
is also outside it). 

A certain prototype corresponds to a certain set of the values of 
the variables X, Y, Z and Y  . Knowing the prototype values 
X', Y', V    and Y' , one determines the model values X", Y", Z" 
and Y"  from the relations: cr 

x" = xxr   ;   Y" = xYv   ;   z" = xzr   -,   rr = yrr (9) 
where ? 

X    An X X 

h= ^r1       *Y = x  /  A h - x- (10) 
X yi Y       Ax A       AD /      AD 
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In the relations above, X  and Xv are horizontal and vertical 

model scales respectively. These relations follow directly from the 

set (1) by substituting 

xg = xp = xv = 1 (11) 

(model operating with water) and 

X^ = XhXs       ;       Xh = Xy       ;    Xs = XyAx (12) 

The following procedure can be suggested for determining the 

model scales. 

(i) Choose vertical scale and the model bed material 

(i.e. choose X , X  and X~ ); 
y  Ys 

(ii) Knowing X  and XQ , determine X_ and thus 

Z" = Xj.V   ; 

(iii) Knowing Y" = X  Y'  and D" = XnD' , determine Y" s   Yq s D cr 

(from the Shields curve); 

(iv) Knowing Y' , Y^. and Y^, determine Xy = Y^/Y^ and Y" = XyY1; 

(v) Knowing Xy , determine X  (from second eqn of (10)); 

(vi) Knowing X , X , and XQ , determine X» (first eqn of 

(10)) and the distortion X /X = n; 

(vii) Check whether the position of the point M"(X" , Z") on the 

X; Z plane and the value of n are acceptable. If not 

repeat the procedure for another set of values of 

X , X   and Xn . 
y YS    o 

Nothing has been said so far on how the flow velocity scale X 

must be determined, and it is intended now to consider this relevant 

aspect of the model design. 
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GENERALISED FRICTION FORMULA:VELOCITY SCALE 

Let S. and S. be the pure friction and form drag components 

of the total slope (free surface slope) S 

S = Sk+SA (16) 

Suppose the granular material is (almost) uniform. In this case, the 

"skin roughne 

expressed as 

"skin roughness" k * D and the pure friction slope S, can be 

Fr Fr 

r?lf1<AF>]2 [ 1 ln(AZ)]2 
k 

(17) 

while the form drag slope S. can be given by 

. Fr 

Hence: 
S_ 
Fr 

A 

1 I 
2 • Ah 

1 

[^•ln(AZ)]2 

') 

1A_ 
2 Ah 

(18) 

(19) 

Observe, that since Fr = v /gh the eqn (19) can be written in 

the Chezy form 

v = c\/gSh (20) 

where the generalised dimensionless Chezy coefficient c reflects the 

influence of the skin roughness (k •« D) as well as of the sand waves 

(A,A) as follows: 

c = 
u [lln(AZ)] 

_ + 1£ 
2   2 Ah 

-1/2 
(21) 

(Note, that if the sand waves are not present (flat bed: A = 0) then 

the expression above reduces into the familiar form c = (l/i<).ln(AZ)). 

* See e.g. Ref [2] and observe that S^/Fr implies [VAJ^/V]^ . The 
comment on the values of A is in the last footnote of the text. 

Refs [3] , [4] , [5] . 
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The Eqn  (19) gives for the scales 

and thus 

[£ln(AZ")]      +£ 1     A „2 

A"h" 

^ [^ln(AZ')]"2
+l   $*r 

*Fr 

where 

1n b 2   -1      -1 
[1+lW)]     +ti'^lh   h      ) 

1 + M' 

1 A__ 
2 A'h' ln(AZ' 

(22) 

(23) 

Since A = A /A = n and since the dunes are geometrically similar, 

i-e- 2 -1  -1 

the Eqn (22) can be written as 

In A, 

vFr 

-2 

t1+wyj   +N' 
1  + N' (24) 

which gives immediately 

with A    = 5VA 
v     sv  y 

In A, 
1 + ln(AZ' 

n(l + 

-1/2 

(25) 

If the scales involved in the procedure explained at the end 

of the preceding section are determined, then A  and all of the 

terms that appear in the expression of the multiplier £ are known, 

and the value of the scale A  can be computed from (25). 

Note, that the multiplier C reflects the deviation from a 

"Froudian model". Indeed the model becomes Froudian (A =v A ) only 

Note that Eqns (19) and (22) are the generalised versions of the 
expressions given in Ref [6]. 
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if 5=1, i.e. only if n, Xj, V    and N1 are interrelated as 

follows: 
In X 

n  -   n+W[)] 

-2 

(26) 

Usually it is very difficult to select such    A,    and    n   which can 

satisfy the condition (26) and which can, at the same time, be regarded 

as "reasonable"  (Z1  and N1  being determined by the prototype).    In 

such cases it may be wiser to relax the condition (26) and thus to 

allow a deviation from a Froudian model   (especially if the phenomenon 

forming the subject of model  tests is related to the vicinity of the 

bed rather than to that of the free surface).  * 

NUMERICAL EXAMPLE 

Consider the prototype specified by the following 

characteristics: ** 

h'  = 27 m ( » 90 ft) 

D'  = 0.2 mm 
L'  = 70° km   U - 10"5 

H'  = 7 m 

Y;/Y'  = 1-65 

(27) 

(v = 10"6 m2/S, g = 9.81 m/S2) 

Using Eqns  (1) and the Shields'  curve one determines for this 

prototype the following values of the dimensionless variables 

X'  = 10.3      ;      Y1  = 0.82      ;      V  = 1.35.105      ;      Y^, = 0.052 

(28) 

If X    = 1/45, then h" = 27/45 = 0.6 m which is reasonable. Adopting 

this value of X     and using it for various combinations of X       and 
y Ys 

See more on the importance of the Froude number in Ref [7] 
(Introduction). 

** Due to R.C.H. Russell (HRS - Wallingford). 
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A  one arrives (by applying the procedure described and the Eqn (25)) 

at the results shown in the table below. * 

TABLE 1 

Model  Bed 
Material Ys *D \ Xx 

n = 

VXx h *Y h 5 

polystyrene 1 
33 15 1 1 11.85 7.70 1 

1.73 
1 

675 2.50 
(Y; = 0.05) 

3.0 mm 

45 532 

polystyrene 
(Y" = 0.05 

2.0 mm 

1 
33 

10 1 
45 

1 
343 

7.64 4.12 1 
1.79 

1 
450 2.05 

polystyrene 
(Ys = 0.05) 

1.35 mm 

1 
33 6.75 1 

45 
1 

239 5.32 2.32 1 
1.73 

1 
304 1.77 

perspex 
(Y^ = 0.19) 

1.5 mm 

1 
8.7 7.5 1 

45 
1 

209 4.65 2.41 1 
1.85 

1 
338 1.64 

sand 1 1 1 1 
1775 39.5 1 

1.78 1.46 
1 

27 5.64 
(Yj = 1-65 
0.12 mm 

1.67 45 

sand 
(Yj = 1-65 
0.10 mm 

1 1 
2 

1 
45 

1 
1745 38.80 1 

2.15 1.70 1 
22.5 5.53 

*    The values of N' were computed by adopting A = 15.00.    The quantity 
A is related to B of Ref [2]   (Chapter XX) by A = e^8.    Using 
Fig.  20.18 of Ref [3] one can show that the value of A = f(v*ks/v) 
varies within a relatively narrow interval  16.50 > A > 11.00 (for 
all    v*ks/v>10).    Hence the reason for a constant (average) 
value    A = 15.00. 
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Note, that sand models can hardly be regarded as acceptable 

(at least not for the prototype under consideration), as they require 

very large distortions (n) while their velocities deviate too much 

from the Froudian velocities (large £). Conversely, light weight 

materials yield acceptable values for n and £ , and among them 

1.35 mm - polystyrene and 1.5 mm - perspex appear to be as most 

favorable. 
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LIST OF SYMBOLS 

'  representative values 

h flow depth 

S free surface slope 

v average velocity 

v* shear velocity 

p fluid density 

p grain density 

Y specific weight of grains in fluid 
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v kinematic viscosity 

D typical grain size (usually D•) 

Fr = v /gh  Froude number 

X,Y,Z,W     dimensionless variables of the two phase motion 

as defined by Eqn (1) 

a1 and a"   prototype and model values respectively of a quantity a 

X = a"/a'   scale of a a 
x,y       horizontal and vertical coordinates 

n = X /X    distortion 

5 ratio of the non Froudian model velocity to the 

Froudian model velocity 
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