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Abstract

This paper treats the derivatian af a two-dimensional differential equation, which describes the
phenomenon of cambined refraction - diffraction for simple harmonic waves, ond a method of solving this
equation. The equation is derived with the aid of a small parameter development, and the method of

solution is based on the finite element technique, together with a source distribution method.

Introduction

it would greatly help designers of harbaurs ond offshore structures if it were passible to get same
quantitative information about the wave penetration ond wave height which can be expected in the harbour
and around the structures. For simple harmonic linear water waves mathematical models exist in the case
of diffraction [3, 4] or refraction [5, 7] separately . The combined effect in the cose of long waves
is described by the linear two-dimensional shallow water equatian [10] , but for short waves the
describing equation has not yet been derived. Battjes [1 ] proposed a set of equations fram which the
equation derived in this paper differs in one term.

Independently of the writer of this paper Schénfeld [8] derived the same equation written in
another form and obtained in a different way. Solving the equation and treating the boundary conditions
in the horizontal plane is possible in various ways. This paper gives a method which solves the equation
in an area in which the combined effect of refraction and diffraction is impartant, with a finite element
technique [12] and treats the Sommerfeld radiatian condition [9] with a source distribution method
[4] . Numerical results in the case of Tsunami response of a circular island with parabolic water depth
[”] , propagation of plane waves over a parabolic shoal, and response of o rec\‘mngular harbour with
o constant slope of the bottom ore given and compared with analytical or numerical results from other
methods. The accuracy of the numerical treatment is not yet known in detail and will be the subject of
further study, so the interpretation of the results must be done with care. An attempt was made to compare

the results for short waves over a parabolic shoal with measurements by Holthuysen [6]

Derivation of the .equation

The theory will be restricted to irrotational linear harmonic waves, and loss of energy due to
friction or breaking is not token into account. A two~dimensional equation which is applicable to woves
in the range from shallow water to deep water has been derived by means of o small parameter development

and on integration over the water depth.
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Basic equatians

The equatians with which the derivotion starts ore:

[th] The three-dimensional patentiol equatian
2 2 2
8 ¢ , a8 _
6x2 By2 622
(i) The linearised free-surface conditian far harmonic waves
2
ﬁ I ¢ = 0 otz=0
0z g

(iii)  The battem condition

M+9£§i+?£ih =0

oz ox  9x dy dy
with x, y : harizantal caardinates.
z : vertical coardinates.
J] :  three-dimensianal velacity patential.
w : angular frequency.
g accelerotian due ta gravity.
h 1 woter depth.

N

Dimensianless caordinates

ot z = -h (x, y)

@

&)

Intraduce dimensianless quantities with the aid af a vertical length H (mean water depth) and a

harizantal length 4 (wove length carrespanding ta H)

Figure 1

x" =x/A; y' =y/h; z' = z/k; d=h/H

The equatians written in these dimensianless quantities are:
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32’2
a¢-6¢:o at z’ = 0 )
dz’
By L (Vg v =0 atz’ = - d ®
dz
2 2
: . , 3
with A =gl By v:(i s — )
ax’z 3y'2 ox’ ay’
2
5 = v A and p:i
g A

Gradient of the bottom

Instead of the horizontal length A it is more correct to use the horizonto! length L (see figure 1

for the definition) as a characteristic length corresponding to the slope af the bottom.
X =x/Londy=y/L thenVh=fTdwth y =" ad ¥ (2, 2.
L 9 x 3y

Assume (¥ d. ¥ d) and ¥ 2d are of order one.
Now

V'd=Lvh =e Vv d
H

and (E:L)
L

(From now on the primes will be omitted for simplicity in notation.)

Power - series
Assume the potential function @ has the farm
¢(x, y,2) = Z{d, z;p i x, y, Ve 2)
or

=28 w P& yv»E) @)
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with E; =z/pond V = pei (= H/VTL), ¥ will be developed into a power - series with respect to »§

P =P by +VEPK Y +VIERR, ®

The porometer y can vary independently from the parometer v between zero (shollow water) and

infinity (deep water). Assuming that the function Z is sucB that for small values of u the derivatives with
respect to d are of order |..l2, then -~ 2% and 8z
2

W2 o W2 ad?

are finite for every value of the parometer

Substitution into the boundary conditions

Substitution of {7) and (8) into the condition (6) using the relation

VZ=¢2= 9 d ©9)
od
gives in the limit » —0 the results:
@ Z _o at g =-d (10)
2t
@ii) The odd numbered functions ¢ i are identically zero.
(iii) The even numbered functions ¢ | san be expressed in the function (Po with the aid

of recurrence relations.

Substitution of (7) and (8) into the condition (5) gives

Z - 5.z =0 at =0 )

As the unknown functions the two-dimensionol potential function ?70 and the function Z remain.

Substitution into the differential equation

Remembering the previous assumption obout the function Z, substitution of (7) and (8) into the

differentiol equotion (4) gives in first opproximotion for small values of ¥ the equation:

2
2 °Z 0

Kzap,r g, -

APo - ) 9°Z 12
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The left-hand side of equation (12) is a function of x and y only, so the right-hond side also must
be a function of x and y only.

Now put

2.
L2 %y 03)

PQZ at?

with % an arbitrary function of x and y only.

The fuhction Z

Equation (13) together with condition (10) and the imposed condition Z = 1 at t = 0 gives the solution:

7 = cos h ixp(c+d)i 04
cosh{)(pd}

Dispersion relation

The function X (dimensionless wave number) isfixed by equation (11) which results in the dispersion

relation

8=){tanhi)<pd} (15)

The dispersion relation is the same as is given in the theory with a constant water depth. The
wave number )( is the real root of equation (15) and will now be a function of x and y correspanding to

the local water depth d.

The function ¢
- T T

To get an equation for the two-dimensional function ?, in a higher degree of approximation than
is given by equation (12), equation (4) is integrated with respect ta c fram -d to zero after multiplicotian
with the function Z. With the aid of the relations

o]

o &—0
/ zQﬁ dt:fﬁﬁ, _ / ?Ia_zgdc
at? ay at et

-d T=-d ~d
and ° o
2
/wﬁi d§‘=p2><2/ Z2edE .
- 352 b

the power - series development of the function ¢ and the recurrence relations between the even numbered
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functions Py - the integrated equotion becomes

o o o
2
(/sz{‘)Aqoo +)(2<f zzd(-)ga°+l’2_%</ 2% 4¢)
d =d H -d
(V. Td) + O(Vh +L20(1)“) = 0 (16)
M

The function ¢, must be o solution of this equation. Now

o
f 224f-8 wih n=b+ 2Xud i
4 )(ZH sin h{2\(p d

ond the following relotion exists between the porameters & and y according to the definition of A ond

H (see figure 1):

$=2rwtan h 2 7y (17)
o
So for smoll volues of y the integral ] 22 d {' is of order one. A distinction is now mode
between three cases: -d
Case A: Assume p 2 1. In practice this is the case of "deep" woter, giving no voriotion in the wave

number. Neglecting the terms of the order O (\72) gives the equotion in dimensional quontities:
o2
AP+ —; P, =0 (18) ,

which is the diffraction equotion for deep water.
Case B: Assume p =V« 1, which means the woter is shollow, ondzneglecr ogain terms of the order
0(92). It is eosy to see thot in this cose Z = 1 + QO (V") and the dimensionless wave number

x =21 4 0.
vVd
In dimensional coordinates und variables the equation (16) becomes
v.Pvpy+le, =0 a9)
with ¢ = Vgh  (phase velacity).
This is the linearised shallow water equation.

2
Case C: Assume ¥ { p {1 and neglect in equation (16) terms of order O (V7). The resulting equation

in dimensional quantities is:

2 .
A<P°+k2?°+L.a_(L) Ve, -Yh =0
n ah K

or, written in onother form,
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°2°9 @0
V'(CCQV‘PO)"L—C“(PQ = 0 )
with ¢ = = ; e, “ne {group velocity)
w2=gkfanh(kh) ;n:%(]+7lL—L
sin h{2 k h}

Properties of equation (20}

Equation (20) changes into the well-known diffraction equation in the case of constant water depth
and is also usable in the limiting cases of deep and shallow waters. Substitution of the expression

p,-@ e S, where a is the amplitude and $ the phase of the wave,gives the equations:

1 5Au+ ! vu.V(cc)}+ 2. (9595 = 0 @n
a ce 9
9

and

V.Gl cc Vs = 0 22

If the term between curly brackets in equation (21) is neglected, the refraction equations

remain [5] . Equation (20) therefore contains all limiting situations as special cases and is generally
applicable.

Battjes [l] gives the equations:

Taa + K- (vs.v9) =0and V.(uzcchS) =0
a

as the describing equations for the refraction - diffraction phenomenon. The combination of these equations,

however, does not pass into the linear shallow water equation when the water depth is small.

Method of Solution
General description:

The solution of the differential equation (20) in an arbitrary area can be found by minimizing the
corresponding functional over the area, taking into account the conditions at the boundaries, i.e., full
reflection at rigid walls and the Sommerfeld condition at sea. The solution at sea, where the water depth
is assumed to be constant, will be a superposition of the incident and an outgoing wave which is caused
by the presence of the harbour or an obstacle. This outgoing wave will represented by a superpasition
of waves from point sources at the boundary between the sea and the area of interest. The solution at

this baundary must be continuaus with respect to wave height and phase.
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The functional

The functionol which must be minimised to get the solution in area | in which the water depth is
varioble (see figure 2) reads [2]

c

J:&ff’ [ec, 99, T3 -2 2 ¢ B ] oxay @3)

The overbar denotes the conjugote complex value. Minimizing {23) gives a solution with the

natural boundary conditions:

N I /”’— ~\‘\‘\

,/
M i
1 A /-
r h s Figure 2
\L !
P \S |I/1
\ Il 2
N\ 1 /
AN ’,’
a(p|
If the boundary condition at /-'2 is ——— = f, the following term must be added to the
functional J [2] &n
'*f (EP+ TP ccds @4

Saurce distribution

In area I, where the water depth hu is constant, the solution con be written in the form [3]

PO =P w o+ / b R k) e 5)
i 2
2
with $ : The potential function af the known incident wave.

uls) : The strength of a source distribution an the baundary /'2 .
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2
5 Hankel function of the second kind.
l<° :  Constant wave number.
r : Distance from point P to the point M at the boundary /-'2 (see figure 2).

i : V~ 1.
Formulation (25) gives a solution in area Il that satisfies the Sommerfeld radiation condition. From
this expression it can be derived that

a “3
AN TS +f b e 2 [L HZ fe r)] ds 26)
an 9 n 2 dn 2

if the point is situated on the boundcry/-'z [3 ] .

Continuity conditions
Toking together the two continuity conditions between the solutions ? and Py ot the boundary f'2

AL ]

£y = Py ond
dn an

(=1 @7

the problem is well-defined and the unknown functions u(s) and 50( (x, y) can be found.

Numerical method

The functional written in real terms (@ =<{7‘ + i(fz) reads:

g, 2 29,2 ap, 2 ap, 2
-1 . K _
J;//”[cg{<ax)+(ay)+<ax)+(ay)}

2 € 2 2 ‘
- _cg_ (P2 + 2,9 ] ax oy —‘/_'chg F Py o+t P& (28)

Thenumerical treatment is based on the finite element method to find the minimum of the
functional [12] . Now area | is split up into elements of triangular form and the functions Py and
P, are approximated in each element by a linear expression. As the treatment of both functions P
and Poyis the same, in the following the subscript will be omitted. After the linear approximation of
@, the functional will be o function of the M nodal values P, Por cvvvnnn +¢pe The functional
must be minimal with respect to variation in these values, so

94 - m=1,2,3, ... , M @9
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This gives a set of linear equations in the unknown nadal values. The function f is also unknawn,
and therefore the integral will be approximated by a summation aver N segments in which ¢ cgf is assumed

ta be a constant and equal to the value in the centre point P Gee figure 4).

Figure 4

With the aid af equations (26) and (27) the unknawn values f in the N points P on the boundary

/-’2 can be expressed in ferms of the strength p of the source distribution:

bsd N
_ 2 2 i 2
My = (—f)P-p(PH B L T ) Ty 0

The cantinuity condition for the wave height gives the additional set of equatians ta provide

M + N equations in the M + N unknown values Py Por cuene P M and py, Por ceeneens 7 BN
Yig, +P) =F B+ E ®) L n2yg )L @n
?Pi (PPi =f =1 " 27 o ko I'P\’k k

The value of § in the source point P is approximated by the average of the values in the twa
neighbouring nodal points P, and P. on the boundary /’2 (see figure 4). The full set of equatians, which
must be solved ta get the complex values P ond y in the nodal and source points respectively, becames

in matrix natatian:

Ap+ B p = @2)

De+ T

(5=
[R

P is the vectar of the unknawn complex valves @y, 5, ..... nam and p the vectar of the strength of

the source distribution in the N source points on the baundary FZ'
A is a real symmetric M x M matrix with a band structure generated by the finite element methad.
B is a camplex M x N matrix which has non-zera values in the raws correspanding with the nadal

points on the boundary /'2.
D is a real N x M matrix generated by the averaging procedure in equatian (31).



(31). The known vectors r ond s are provided by the indicent wave $
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T is o complex N x N matrix with coefficients consisting of Hankel functions according to equation

This system of equations is solved

by a direct solution method. First the vector p is computed according to

! 1

we=-0ATy T 6 - oAl @3
and then the vector ¢ follows from
_ At -1
P =Ar - A By (34)

In computing the decomposition of the matrix A, the symmetrical band structure of the matrix hos

been taken into account.

Results

It is not the intention of this poper to give accurate solutions of some of the problems but more

to show the possibilities of the method of solution which has been described.

)

)

The quantitative aspects of the accurocy of the method will be the subject of further study.

Tsunami_response for a circular island

A good comparison with other computations without large computing time can be obtained in
the problem of tsunomi response for a circular island with a parabolic bottom profile. Vastano and
Reid [”] have solved this problem with a finite difference technique and compared their results
with analytic solutions. The results of the method given in this paper are shown in figures 5 - 9.

Figure 5 gives the configuration of the finite elements in the area of variable depth, First
the problem with a constant water depth has been computed to check the method of solution (figure
6) and then the problem with a parabolic bottom profile has been solved and compared with the
results of Vastano and Reid (figure 7). It has still to be seen whether the accuracy of the method is
better when the wave length becomes greater with respect to the size of the elements.

Propagation of tsunami waves over a parabolic shoal

The influence of asheal with parabolicbottomprofile on the propagation of tsunami waves has
been computed and the results are given in figures 8 - 10. Figure 8 indicates how the area of
variable depth hos been split up into triongular elements. Figures 9 - 10 show lines of equal phase
and amplitude. The phase of the wave is expressed in degrees, so a difference of 360 degrees
corresponds to one wave length.

Propagation of short waves over a shoal

An interesting problem with respect to the combined effect of refraction and diffraction of
waves is the propagation of short waves (short with respect to the size of the disturbance of the
bottom) over a shool with a parabolic bottom profile, because the presence of a caustic curve (see
figure 11) following from the refraction theory is an indication that diffraction effects cannot be

neglected. An attempt was made to compare the results in this cose with the measurements of
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(iv)
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Halthuysen [6] . To save memory and camputing time the area, which has been split up inta finite
elements, was reduced ta a circle segment with an angle at the tap af 60 degrees (figure 12). It was
assumed that the salutian at the boundary AO (see figure 11) daes nat deviate from the salution falla-
wing fram the refraction theary (ray-methad) accarding to the measurements. The solutian af the ray-
method has been impased as a baundary canditian an the baundary AO, and the results aof the campu-
tation are given as lines af equal phase (fiure 13), lines of equal amplitude (figure 14) and lines
of equal water elevation at some time (figure 15). A goad camparison with the measurements aver a
large area was nat possible because of the lack of infarmation about the phase and because of the
unreliability aof the quantitative results af the measurements in an area above the shaal. Qualitatively
the computer results seem reasanable .
Respanse of a rectangular harbaur

The last problem of which the results will be given is the response af a rectangular harbaur
with a constant siope of the bottam. The amplitude of the stunding wave in the centre line of the
harbour is given for different slapes af the battom in figure 16. In the first instance the wave
height in the harbaur decreases as a result of the increasing slope of the bottom, but with a slope

af 1/3 the phenamenon of resonance af the harbaur becames impartant.
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Notation

o? 0 W8 B

>

o

T T T e = o g

RO
o

Z T

LR T R ==
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matrix
amplitude
matrix
phase velocity
group velocity
maltrix
dimensionless depth
function
gravity constant
mean water depth
Hankel function
water depth

|
functional
wave number
constant wave number
horizontal length
tength of k~th segment
number of nodal points
number of source points
shoaling factor
normal vector
known vector

phase

distance along the boundary

known vector

matrix

horizontal coordinates
vertical coordinate

function

3

Koo o [>°-<_\J

T T e

Koy

B gsemer™

Py

<dvg £ 19

boundaries

parameter (H/L)

Laplace operator

parameter (m21/g)

parameter { A /H)

dimensionless wave number

mean wave length

parameter (H/R)

strength of the source distribution
vector of strength of the sources
parameter (H/ V A L)
three-dimensional potential function
two~dimensiona! potential function
potential of incident wave

potential functions in areas 1 and 1
respectively

vector of values of P in the nodal points
angular frequency

stretched vertical coordinate z/u

nabla operator.
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