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ABSTRACT 

A solution of finite amplitude long waves on constant sloping beaches is 
obtained by solving the equations of the shallow water theory of the lowest 
order. Non-linearity of this theory is taken into account, using the perturb- 
ation method. Bessel functions involved in the solution are approximated with 
trigonometric functions. The applicable range of this theory is determined 
from the two limit conditions caused by the hydrostatic pressure assumption 
and the trigonometric function approximation of Bessel functions. 

The shoaling of this finite amplitude long waves on constant sloping 
beaches is discussed. Especially, the effects of the beach slope on the wave 
height change and the asymmetric wave profile near the breaking point are 
examined, which can not be explained by the concept of constancy of wave 
energy flux based on the theory of progressive waves in uniform depth. These 
theoretical results are presented graphically, and compared with curves of 
wave shoaling based on finite amplitude wave theories. 

On the other hand, the experiments are conducted with respect to the 
transformation of waves progressing on beaches of three kinds of slopes ( 1/30, 
1/2.0 and 1/10 ) . The experimental results are compared with the theoretical 
curves to confirm the validity of the theory. 

INTRODUCTION 

As waves progress in shallow water, wave transformations occur due to the 
presence of the sea bottom. Especially, the changes of wave height, celerity 
and length in shoaling water are generally explained by using the assumption 
that the wave energy flux based on the theory of progressive waves in uniform 
depth is kept constant in shoaling water1'!2). On the other hand, some 
investigator^) >" have attempted to obtain a solution of wave transformation 
on the sloping beach considering the change of water depth as the bottom 
condition. The existing results of observations and experiments show that the 
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change of wave height, celerity and length are well explained By the concept 
of constancy of energy flux based on theories of finite amplitude wave in 
uniform depth2). 

However, on sloping beaches, not only the wave height increases but also 
the wave profile becomes asymmetric5). Further, as Goda°' pointed out 
recently, it is obvious that the beach slope affects the breaking wave height. 
Similarly, the beach slope will affect the wave transformations before 
breaking. These two problems, i.e. the asymmetry of wave profile and the 
effect of beach slope, can not be explained by using the approximate method of 
energy flux of waves in uniform depth. They will be explained by the solution 
of progressive waves on the beach mentioned above. However, none of existing 
theoretical investigations has given any solution to clarify these problems, 
except Biesel's investigation7) which proposed a quantity representing the 
asymmetry of wave profile. 

This paper treats analytically the two-dimensional wave transformation on 
constant sloping beaches in order to explain the asymmetry of wave profile and 
the beach slope effect on wave transformation. As the method to obtain the 
solution of progressive waves on the beach, two approximate methods exist, 
which are the small amplitude approximation and the shallow water approximation. 
In this paper, the shallow water theory of the lowest order8-^ is used as the 
basic equations. These equations are non-linear, and the linear solution was 
already obtained9). It is seems that two problems mentioned above can be ex- 
plained by taking this non-linearity into account. Carrier and Greenspan10) 
and Ichiye11) solved this non-linear shallow water theory already, but did not 
make clear these problems. 

The non-linearity of this shallow water theory is taken into account 
herein by using the perturbation method as Ichiye did. Further, by using the 
asymptotic expansion of Bessel functions with trigonometric functions, the 
general solution of finite amplitude long waves progressing on the beach of a 
uniform slope is obtained. Based on this solution, the graphs showing the 
effects of beach slope on the wave height change and the asymmetry of wave 
profile are presented. On the other hand, the experiments with respect to wave 
shoaling on beaches of three kinds of slopes ( 1/30, 1/20 and 1/10 ) are con- 
ducted. The experimental results are compared with the theoretical ones in 
order to confirm the validity of this theory. 

DERIVATION OF SOLUTION 

BASIC EQUATIONS 

The equations of two- 
dimensional shallow water      /5%—i 
theory of lowest order are as 
follows ( see Fig.l ) : 

u, + u •»,+£• 7=0 

V, +[u • (r/ + h) } j= o , ! 

(1) 

Fig.l Sketch of waves on sloping beach 
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where h = h(x) is the water depth, n = n(x,t) the height of water surface 
above still water level and u = u(x,t) the water particle velocity in the x- 
direction which is not dependent on the vertical coordinate. This implies that 
the pressure distribution is approximated with the hydrostatic distribution. 
Suffixes t and x denote the differentiations with t and x respectively. Eq.(l) 
is non-linear and frequently solved numerically with the method of character- 
istics. In this paper, the perturbation method is used in order to represent 
the non-linear effect analytically. That is, n and u are assumed to be ex- 
pressed as the power series of a small quantity a as follows : 

i, = a. ,<'') +«2. ,(2) +   ,   u = a.  „(1) +tf2. tt(2) +   _ (2) 

Substituting Eq. (2) into Eq.(1) and rearranging with respect to a and a2, the 
coefficients of a and a2 lead respectively 

uWi + g.r,Mx   =o   ,   <?(1\ + («(1)- h}x  =0   (   (3) 

and 

u<2>, +ttW. .«_ +g . n®x =o  , n{2), +U(1)- i?(l'+«(2>- A}„=o. (4) 

SOLUTION OF n^ AND u^1) 

Eliminating u^1) in Eq.(3), the following equation is derived : 

VM„-g'lVM, • h }x   =0 (5) 

If the beach slope i is constant and the water depth h is ixx ( see Fig.l ), 
Eq.(5) is further reduced as follows : 

1W ,,-g-l '(1)« • i • " + ?(1)» • H = 0 _    (6) 

n^-1) is assumed to be expressed as 

!j<1'0, ()= >?(*) -cos a t _  (7) 

Therefore, from Eqs.(6) and (7), the equation of n^1) is obtained as follows : 

x • 1„ + 1*+(°2/gi)- V  =0.  (8) 

When the variable x is replaced with w through the relationship12*, 

* = igi /i°2)-w2   ,    (9) 

Eq.(8) is modified as 

It is evident that Eq.(lO) posesses a solution consisting of Bessel 
function Jo(w) and Neumann function NQ(W). A similar result is obtained when 
nC1' is assumed as 
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V^hx,  () =J?(a;).SJH o t (H) 

When x ( therefore w ) approaches infinite, Bessel and Neumann functions are 
expanded asymptotically as follows : 

J   (»)~V2/i»   .cos O- vn I 2- " / 4) 
(12) 

N   (u))~V2 / n w   -Sin (w- vx / 2 — * / 4) 

,(1) Accordingly the solution n*-1'   corresponding to  the waves progressing in the 
negative x-direction  ( see Fig.l )   is  given as9) 

n^\x,  O =a • I COS a t • J„(2 "  /——)-   Sin °t • N (2" /—) }  •• 
• V     a  i 0 V   ~ / * •(13) 

where a is a constant related to the wave height. Using the relationships, 

Z0'O) = -Z^w) > z1 \w)  = Z0(»)-«,-
1. Z^w)  j   (14) 

and Eq.(3), uC1) is obtained as 

u"> (x, t) = aj^r • x   '.{Wot • J ,(2« 7—) + 00S at -N (2o 7—)} ••(15) 

1.0 
Eqs.(13) and (15) are the solutions of Eq.   , 

(1) when the non-linearity is neglected. Due to 
the natures of JQ and NQ, the amplitude of n^1)  0.5 
increases with decrease in x. Therefore the 
solution rp1) can explain the fact of wave 
height increase in shoaling water. However, the  1.0 
wave profile of n(1) with time has the form of 
sine function, and can not explain the experimen- 
tal fact of asymmetric and forward inclined wave 0.5 
profile on the sloping beach ( see Fig.2"). 

SOLUTION OF r)(z) AND u^2) 10 

When u(2) is eliminated and the relation 
h = ixx is used in Eq.(4), the following equation ".5 
is obtained. 

(2) 

I   • X   + \U (D.„(i) 

 (16) 
After substituting Eqs.(13) and (15) into 

Eq.(16), rearranging by using the relation of Eq. 
(14), the right side of Eq.(16) becomes as 
follows : 

00S 2 a t .  (- - a2 —- x "1 . ( J0
2- If- N[)2+ N,

2) 

1.0 

0.5 

0 
-0.5 

experimental   /"""S/' 
wave          /        /\ 

profile    /       j 
\  h= 14.80cm 

v   \H- 1.90cm 

/      /\ cnoida 
/    y    \ wave 

file         \\ 

/Y \     h- 9.10cm 
\   H= 2.37cm 

/    / N\\ 

/  \   ' /   \ f 
\     h= 6.60cm 

',    H= 2.84cm 
i 

O"^^ 

/ \       / 
\     h= 4.25cm 

1     H- 3.93cm 
i 

i 

t/T 0.5 

Fig.2 Asymmetric wave 
profile on 
sloping beach5' 
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-at.g.x  ^.(J^-N,2)  } 

+ Sin 2 0 t • • I 3 a2 ^j  z-1 . (J0ND- J, N,) 

1.0 

Jo(w) 
: asymptotic. Eq.(12) 

°\ , \, s^/; >i 

V 

2 j i    u       u 

+ 2o2.g. ^"2. J1 N1 } 

2 

No(w) 
. asymptotic.Eq.(l2) 

Fig.3 Approximate values by asympto- 
tic expansion of Bessel and 
Neumann functions 

3„2 — a 
2 

•(17) 

In Fig.3, the approximate values of JQ and Ng based on Eq.(12) are com- 
pared with the exact ones. It is seen that the approximate values are accurate 
enough for the large value of w. When Bessel and Neumann functions in Eq.(17) 
are approximated with the trigonometric functions of Eq.(12), Eq,(17) becomes 

<-      2 ° rw   -% I %    n  . 
OOS Z« t •  [- 3 a    - V ° • *   • 0OS( 2(2"V—: ) I u x       i gi        4 

+ -a S-x'-  sm(2(2 0 / — ) } + a -S- -fgi- x'/2. <m{2(zaj — ) }] 
2   " gl 4        n° gi 4 

+ Sin 2" t  -[3 a2 - 74. :t~% • SID ( 2 (2 o J— - -) } 
n       i gi 4 

Sh(2(2»,/J-£>}] 

+ [o2iyf.;c-K.00St2(2O/z_5)) 
7T ^  ( #1     4 

_ 102 «. x-2. siD(2(20 /Z_ -!)}_a2-J_V7r • *"^. COS (2 (2*7^- -) } ] 
2   IT v gi    4       Tff y /?»   4   J • 

The solution of n   is assumed to be expressed as 

y(2\x,  O = OOS 2"« • /<U) + sin 20 t • fiO) + C(*) .    

Substituting Eq.(19) into the left side of Eq.(16), it becomes 

oos 211 • {- 4"2 . A(x)~ g • i • x • A" (*)- g • i • A'(x)  ) 

+ sin 2°t  . (-402 . B(x)-g- i .%• B\x)~g- i-B'(x)  ) 

•C18) 

(19) 
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+ [-g • i •  C ' (*)- g • i • C U) } %   (20) 

Comparing Eqs.(18) and (20), A(x), B(x) and C(x) are determined as follows : 

1   -1 „;_ r     r*~       "   ,   3  2 1  .     „        I   .      OTYl   I    r\   f n ft I.   ._ \    i      ,.  *-     ^(l)=_a2_t_.;c-1. sin{2(20   /JL. _ ^))_^_a2-!-   /£. »-«. cos{2(2» /-^ - -)) 
  (21) 

BU)=_a
2-J_. »-1. 008(2(20  /Z_  *))+_La2 J_ /I". »-X. sin{2(2(,    /A--?-)} 

 C22) 

C(:0=ia2 -±-    /T-  *-%-  008(2(2"   /4-  ^}_-L02_4_.,-2.  ^(.^o JZL -  f) } 
4        ffff   V» V  ei        4 16        "• V   ei 4       ' 

 (23) 
Substituting Eqs. (21),- (22)   and  (23)   into" Eq. (20),   the left side of Eq. 

(16)  becomes 

00a z»t •[-3«!- J% • *"**• oos( 2 (2" J— -) } 
T      1 gi        4 

+ i„2 £^-2.sin(2(20/Z _ f) } + -ila
2 -5- VgT • *"%. oos(2(2o/4--)l] 

2        t et        4 40        t" gJ     4 

+ sin 2"< • [302- y 4 • x"%. sin( 2 (20, 
FT"' 

5     9  g     -9 , I  x        K    ,        21    1    g      ,        -^     •    ,     , / x ft..,-, 
-a2 S-x   Z. C0S( 2 (20 V— ) }-^-a2-2-   -fgT • x  A -m{2(20j— - -))] 
2        " gi       4 4 0        no g<        4 

+ ra21 y£. a.-K.00S(2(2ay^__ f)} _ ia2 £. ^-2.Mi(2(2oy -^ - -r 
L ff I gt 4 2" g>* 

_a2_g_vriT. «'^. COS ( 2(2°/4- -)}+  ia2 -§i.  i . x-«.Sin(2(2»/4- -) } ] 
110° gl 4 4 to2 gt 4 " 

••••• (24) 
From the comparison between Eqs.(18) and (24), it is found that the 

difference exists between the constants in the third terms of coefficients of 
cos2crt and sln2o't. Further, the forth term in the last part ( independent on 
t ) exists only in Eq.(24). Three terms in the coefficients of cos2ot 
and sin2ot involve x-3/2, x-2 and x~5'2 in turn, and the forth term in the 
last part of Eq.(24) involves x-3. Using the relationships of T = 2it/cr and 
h = i*x, the ratios of the second, third and forth terms to the first term 
become : 

2nd/lst term ~ {(gT f 2*) / <fgh } -i ,   3rd/lst term ~ [ |(«T/2«)/ -fgh } • i  ]2 , 

and 4th/lst term - [ KgT / 2 *) / -JgH } • i  ]5. 

Therefore the higher term becomes smaller in proportion to i. 

 The third terms in the coefficients of cos2ot and sin2cft have cos{2(2o 
/x/gi-ir/4)} and sln{2(2oVx/gi-7r/4)} respectively,and are in the same phase as 
that of the first term. If 1 = 1/10, h = 20cm and T = 3sec, the ratio of third 
to first term ({(gT/2Tr)//gh}i) 2 becomes smaller than 1/10, and the difference 
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between constants of the third terms is negligible. Similarly, the forth term 
in the last part of Eq. (24), which has sin{2(2oVx/gi-7r/4) } is in the same 
phase as that of the second term, and also negligible. 

Therefore, Eq.(19) with Eqs.(21), (22) and (23) is the solution of Eq. 
(16), and expressed as follows : 

nP'f*,   t)= 00S 2" t[-a2 —   • *~1 • Sill ( 2 (2»v4- -   -) ) 
it i g i 4 

_  ^02 J_yr. ,-K.   003(2(2* J5L ._   I))] 
1 0 "0 I gl * 

+ S)H 2« t •   [-a2—   x"1 •  C0S( 2(2<V-4- ) } 
Ii gl 4 

+ ^_02_L/T  .,-H.fihU 2(20 /^-  1))] 
10 I"        < gi 4 

+ [  ia2 J_   /T.  *"*.  0OS{2(2"/^-  -)) 
4 10 ^    j g-J 4 

- —a2 -2=-   • x'2- Sin (2(20 7—^-   -) }]         
16 TO2 V  gi 4      J   • •(25) 

Using the relationship of Eq.(12),  n^1'   of Eq.(13)  becomes 

V^(x, O =  o.(^I)M. ,fK. eos( o( + 2o/2- - -)  (26) 
7TO gj 4 

For the sake of comparison with Eq.(26), Eq.(25) is finally reduced as follows 

7(2)(*, t) = a2 — • x'^-BOS (2(0 <+2o /-^ - -) + -+tan "1 ( —-^. *"**) } 
•i #i   4   2        10  0 

+ Q I0
2A./¥. ,-X. ^(2(207^- I) }- -Va2^- *"2 • 8in(2(2./E _ *) }] u 4   TO   i g!    4     16   TO gj    4  J- 

 (27) 

APPLICABLE KANGE OF SOLUTION 

The basic equation (1) is the shallow water theory of the lowest order8), 
and the pressure distribution is assumed to be hydrostatic. Therefore these 
solutions are applicable only when the water depth is considerably smaller 
than the wave length. If the wave celerity is equal to that of long waves vgh, 

A/i= l/(rVy/T) ,  (28) 

The upper limit of h/L implies that the lower limit of T/g/h exists and that 
the upper limit of the water depth h exists if the wave period is given. On 
the other hand, the lower limit of h also exists. As the solution of IV1', 
Eq.(26) is used in which Bessel and Neumann functions are approximated with 
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trigonometric functions by Eq.(12), which, is the asymptotic expansion when 
|w| •> «°. Comparing between the exact and approximate values of Jo, NO. JJ   and 
Nj, it is found that the approximate values are accurate enough when |w[ fe 1.0. 
Using Eq.(9), this condition is rewritten as follows : 

T Vg I h   <  4 K / i , •(29) 

This means that the lower limit of h determined by the beach slope exists when 
the wave period is given. Two conditions mentioned above are shown in Fig.4. 
Two lines showing the lower limit of T/g/h are given for the two limiting 
values of h/L. 

DETERMINATION OF a 1 

The second part of the 
right side of Eq.(27) consists  ' 
of two terms involving x~3'2  . 
and x-2 respectively. The 
ratios of these to the first 
term in the first part of the 
right side are KgT/27r)//gh}i 10' 
and ({(gT/2Tr)/Vgh}i)2 respect- 
ively. Therefore the second    5 
part is smaller than the first 
part by the order of {(gT/2?r) 
//gh}i. Further, because of 
independence of t, the second 
part affects only the still   10' 
water level and does not 
affect the wave height and     c 
wave profile. Becuase this      D  10 
paper deals with the beach 
slope effect on the wave 
height change and wave profile 
asymmetry, the second part of the right side of Eq.(27) is neglected. 

Substituting r/1-' of Eq.(26) and r/2) of Eq.(27) into Eq.(2), the wave 
profile is given by 

'    \I ',           ' 
', 
t ' 
'<. 

'• 

t / 
"   t T-/g7h * 4*/i 

/ 
/ i_r 
i . h/L < 1/10 '^   T 
f.   ^ 

' "•' t^ > 
-h/L<1/25 jL^ i 

* 
region of ap plicability W 

----.-.:>   L__ 

' '/ y\   ! 

5 102  r-  5 

Fig.4 Applicable range 

10'' 

7 (x, t) = a • a • (- '««, i(»i + 2»V —: ) 
21 4 

0OS{ 2(»( + 2"V   
T)+2 

• tan ' 
10 o 

). (30) 

Now, hj/L() is applied as the small quantity a, where hj is the largest water 
depth in the applicable range of this solution ( see Fig.4 ) and LQ is the 
deep-water wave length of the small amplitude wave theory, gTz/2ir. 

DETERMINATION OF a 

Substituting a  = hj/LQ into Eq.(30) and rearranging, Eq.(30) is simply 
rewritten as follows : 
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where A^,  A^ , 

1\ lhy  = A^ • DOS 0 +A& •   00S(2 0 + *)5 

and  5 are are given by 

•(31) 

4(1) =   2-X.K"«. i   *.(A,   /L0)
K-(A., /h)H-(a /A,), 

i2> =  «• .(ft,  /L0)2. (A.,   /A).(a /A,)    , 

2> IT • t + 2z[ST7~£ -(A /i0>      ) • * lLQ~n I 4  , 

id). *C2>, 

it/2+tan"1(3 /10- • ihiL.r*}. 

•(32) 

.(2) If Au-'i  and k^2'}   denote A^l>   and A^l>   at h = hj   respectively,  these are 

#)f  =JC"1. (A,   /t0)
2 • (a / A, )2  . 

(33) 

Because tan-1{ } in 5 of Eq.(32) is smaller than TT/2 at hj, it is neglect- 
ed. Therefore the wave profile nj at hj is given as follows : 

V,  lh^A«\ ./(fl,     (34) 

where 

fiffl = cos e- b • sin 2 e, 

A = i2)
1/^

(1)
1.   (35) 

Fig.5 shows the 
profile of f(9) in the 
range of -ir ^ 6 S IT. It is 
evident that the relative 
wave height Hj/hj at hj is 
given 

f(9)=cos6-bsin28 

\ 

Fig.5    Profile of  f(8) 

4« tf, lhr-2xA^\ -f(t>c).  (36) 

is  determined  from df/d6  =  0.   After all,   considering -IT/2 ^  8C £  0, 

sin 6c = (i / 4 b- ^l /16 A2 + 2) /2   .       (37) 

In Eq.(36), A^i is the function 
a/hi. because b ( = A^2>1/A

(l-)
1 ) i 

mined from Hi_ by using Eq.(36) 

DISCUSSION OF SOLUTION 

of a/hj, and f(9„) is also the function of 
s dependent on a/hj. Therefore a is deter- 

For simplicity, the second term of right side of Eq.(31) is assumed to be 
smaller than the first term at hj and negligible. Therefore the wave height Hi 
is equal to twice of the amplitude of the first term. Using this relationship, 
Eq.(31) is reduced as follows : 
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V  /A, =1 /2 •(//, /A,). (A, /A)K. cosfl 

+ v^~- (A, /£0)
M- T1 • (ff, /2A,)2 . (A, /A). 008 (29+ 3) .   D8) 

As seen in Eq.(38), the amplitude of the first term ( the linear solution ) is 
inversely proportional to the l/4th power of the water depth h, and independen 
on the Beach slope 1. This agrees with Green13)'s law with respect to the long 
wave transformation on very gentle sloping beaches without wave reflection and 
energy loss. On the other hand, the amplitude of the second term representing 
the nonlinear effect is inversely proportional to h, and the rate of wave 
height increase with decrease in the water depth is much larger than that of 
the first term. Further it depends on hj/Lo and the beach slope i. Especially, 
the amplitude of the second term increases inversely proportionally to the 
beach slope i, the effect of which has not been made clear previously. 

The authors2))5) presented previously the theoretical curves of wave 
shoaling based on the wave energy flux of the hyperbolic wave theory which is 
the approximate representation of Laitone's cnoidal waves of the second appro- 
ximation11*). Before these investigations, as the preliminary step, Iwagaki15) 
obtained the theoretical equation of wave height change based on the first 
approximation. The characteristics of this equation agree with the relation- 
ship between the amplitude of the second term and the water depth that the 
amplitude is inversely proportional to the water depth h. Furthermore, the 
period of the second term is a half of that of the first term, and the phase 
of the second term is in advance of that of the first term by S.  As seen from 
Eq. (32), 6 consists of w/2 and tan""1 {(3/10) • (2ir)-1/2-i- (h/Lo)-1/2}, which 
increases with decrease in the water depth. As descrebed later, the difference 
of phase explains the asymmetry of wave profile. 

NUMERICAL COMPUTATION 

RESTRICTION ON NUMERICAL COMPUTATION 

As shown in Fig.4, the applicable range of the water depth h exists when 
the wave period T and the beach slope i are given, which is determined by two 
limit conditions of the hydrostatic pressure assumption and the trigonometric 
function approximation of Bessel and Neumann functions. However, some 
arbitrarity exists in determination of the limiting value of h/L, which 
corresponds to the largest water depth hj in the range. In this paper, the 
following value is adapted : 

A /££ l /20  (39) 

From Eqs.(28) and (39), the following equation is obtained : 

TV g/ h>  20 .  (40) 

Using the deep-water wave length LQ  = gT2/2ir,  hj   is given by 

A1 / £„ = 0-0157.    (41) 
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Before the changes in the wave height and profile with decrease in the 
water depth on the beach of constant slope i are discussed numerically, the 
wave height Ri  at hj is calculated bv using the theoretical curves of wave 
height change, which the authors2^>5^ obtained based on the wave energy flux 
of the hyperbolic wave theory. If the value of deep-water wave steepness HQ./IO 
C H0 : deep-water wave height ) is given, the value of Hj/Ho is obtained from 

the theoretical curve when hi/Lo • 0.0157 and the value of Hj/hj = (Hj/Ho)x 
(Ho/Lo)/(hj/Lo) is calculated. According to the theoretical curves of hyper- 
bolic waves, when HQ/LO * 0.006, waves already break at the water depth where 
hi/LQ = 0.0157. Therefore, the deep-water wave steepness to which this theory 
is applicable is restricted to considerably small values. 

When the beach slope i is given, the 
described previously. However, the value 
in i for a constant value of HQ/LO and wi 
value of i. The numerical computation is 
£  1. Therefore, for the larger value of H 
computation can be made becomes 
larger. Ho/U 

i 
RESULTS OF NUMERICAL COMPUTATION 

The numerical computations 
were conducted for the cases that 
the deep-water wave steepness 
H0/L0 =0.004, 0.002, 0.001, 
0.0004, 0.0002 and 0.0001. As 
mentioned above, for each value 
of HQ/L0, the value of Hj/Ho was 
calculated using the theoretical 
curves by the energy flux method2 

)>5', for the largest water depth 
hj/Lo = 0.0157, where the compu- 
tation was started. Further, the 
values of a/hj were calculated 
for given values of i. The values 
of i in computations were 1/10, 
1/20, 1/30, 1/50, 1/100 and 1/200. 
However, due to the restriction 
on the beach slope mentioned 
above, the computations were con- 
ducted for the larger values of 
i than 1/100 when Ho/L0 

= 0.001, 
1/50 when H0/L0 = 0.002, and 1/20 
when H0/L0 = 0.004. 

For each value of Hg/Lo and 
i, using Eqs.(31) and (32), n/hj 
was computed for many values of 
h/Lo which are smaller than hj/Lo. 
The numerical computations were 
performed with FACOM 230-60 at 
the DATA PROCESSING CENTER, KYOTO 

value of a/hi can be calculated as 
of A^2-*I'/A(1'I increases with decrease 
th increase in HQ/LQ for a constant 
restricted in the range of A^'/A^-1' 
Q/LQ, the value of i for which the 

0.OO1 
1/20 

?/Hi 

10 h/Lo=0.0157(=hi/Lo) 

t/T 

Fig. 6 Wave profile change with 
decrease in water depth 
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UNIV.. One example is shown  4(3 
in Fig.6, for the case that 
H0/L0 = 0.001 and i = 1/20.   H 
The wave profile n Is divided fio 
By the wave height Hj at the 
water depth hj. Therefore 
(n/HiW - (n/H!)mln - 1.0 
In (a). This value Increases 
with decrease in the water 
depth h ( in order of (b), 
Cc) and (d) ), and it becomes 
larger than 2.0 in id). 
Further, it is found that the 
slope of front face of the 
wave becomes steeper and that 
of back face becomes more 
gentle, so that the wave pro- 
file becomes more asymmetric 
and forward inclined. Thus, 
the asymmetric deformation of 
the wave profile in shoaling 
water can be explained by 
this solution. 

Fig. 7 Effect of deep-water wave steepness 
on wave height change 

Several examples of wave 
height change are shown in 
Figs.7 and 8. The beach slope 
i is constant ( 1/20 ) in 
Fig.7 and the deep-water wave 
steetmess HQ/IO is constant 
( 0.001 ) in Fig.8, which 
shows the effect of the beach 
slope on wave height change. 
The theoretical curves 
obtained under the assumption 
of constancy of energy flux 
of hyperbolic waves2^>5) are 
also shown with broken lines. 
Similarly the curve of small 
amplitude waves is shown with 
chain line. At the upper end 
of each curve of this theory 
(full line ) the value of 
A'ZJ/A'

1
^ approaches 1.0. 

4.0 

3.0 

2.0 

1.0. 

s* 

s\ * 
 : hyperbolic waves °\ \ 

,   \ 

s t\ / i )"v \ V '$> 
S^^- k\ 

^ 
x" \\ /. 

VSft 
<?>J V s; ̂  Vi ^ 

°*0 >  ^ S5Ct> 

- Ho/Lo =0.001 
~"~~""~~"-~- m 

10"-5 h/U W 

Effect of beach slope on wave 
height change 

Fig. 8 
In general, the wave 

heights by this theory are 
always larger than those of small amplitude waves, and the rate of wave height 
increase with decrease in the water depth is larger than that of small ampli- 
tude waves. Further, as well as the curves of hyperbolic waves, the rate of 
wave height increase is larger for the larger value of the deep-water wave 
steepness. However, as the deep-water wave steepness becomes smaller, the 
value itself of this theory becomes smaller than that of hyperbolic waves. On 
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-t-i 

Fig-9 Parameter of asymmetry of 
wave profile 

the other hand, for a constant 
deep-^water wave steepness as in 
Fig.8, when the beach slope i is 
small, tha rate of wave height 
increase becomes large. This 
effect of the beach slope is 
expected from the fact that i" 
is involved in the coefficient 
of the second term of Eq.(38). 
Thus, this theory clarifies the 
effect of beach slope on the 
wave height change, which has 
not been made clear theore- 
tically before. 

020 
As a parameter repre- 

senting the degree of asym- 
metry of the wave profile, 
tp/T shown in Fig.9 is taken 
Several examples of the 
change of tp/T in shoaling 
water are shown in Fig.10 
and 11. Fig.10 shows the 
case that the beach slope is 
constant ( 1/20 ) and Fig.11 
is for the constant deep- 
water wave steepness ( 0.001 
). It is obvious that the 
value of tp/T increases with 
decrease in the water depth 
and the wave profile becomes 
more asymmetric and forward 
inclined. It is found from 
the figures that the wave 
profile becomes more asym- 
metric for the larger deep- 
water wave steepness and for 
the smaller beach slope.        ~      3 

10       h/Lo 

As mentioned above, 
Biesel7) derived theoreti- 
cally the average value of 
the slopes of front and back faces of the wave profile, while the parameter 
tp/T is same as the " wave horizontal asymmetry " discussed experimentally by 
Adeyemo16'. The wave profile asymmetry corresponds to the asymmetry of time 
variation of water particle velocity, and affects the time variations of wave 
forces on coastal structures and motions of bed materials. Therefore, the 
parameter tp/T may has more important engineering significance than Biesel's 
parameter. 
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Fig.10 Effect of deep-water wave steepness 
on wave profile asymmetry 

COMPARISON WITH EXPERIMENTAL RESULTS 
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The equipment and pro- 
cedure of the experiments 
with respect to wave shoal- 
ing on Beaches were same as 
that described by Iwagaki2), 
in which the experiments for 
the beach slope of only 1/20 
were conducted. 

WAVE HEIGHT CHANGE 

In Fig.12 (1) ^ (3), 
the experimental results of 
wave height change for the 
beach slopes of 1/30, 1/20 
and 1/10 are shown. In Fig. 
12 (1) ( i = 1/30 ), 
although the experimental 
values can not be directly 
compared with the theoreti- 
cal values by this theory 
because of the lack of data 
for corresponding values of 
HQ/LO> it seems that the trend 
of the experimental values 
agrees roughly with that by 
this theory and the values are 
larger than those by the hyper- 
bolic wave theory2)'5). In Fig. 
12 (2) ( i = 1/20 ), the ex- 
perimental values when HQ/LQ = 
0.0026 agree with those by this 
theory and all of the experi- 
mental values agree well with 
those by the hyperbolic wave 
theory. In Fig.12 (3) ( i = 
1/10 ), the experimental values 
are much smaller than those by 
this theory. Therefore, the ex- 
perimental results confirm the 
prediction by this theory that 
the wave height becomes larger 
on the gentle slope beach than 
on the steep slope beach. 

WAVE PROFILE ASYMMETRY 
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Comparison with experimental 
results of wave height change 
( i = 1/30 ) 

In Fig. 13 (1) "\. (3), the 
experimental results of wave 
profile asymmetry for the 
beach slopes of 1/30, 1/20 and 1/10 are shown. The experimental values of a 
parameter tp/T increase with decrease in the water depth. This agrees with the 
behaviour of the curves by this theory. However, the experimental values 
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themselves are considerably 
different from those of theo- 
retical curves. Although the 
common range of values of h/Lg 
and HQ/LQ between the experi- 
mental results and the theore- 
tical curves is limited, it is 
found that the experimental 
values begin to increase at 
the larger value of h/Lg than 
the theoretical curves and the 
rates of increase are also 
larger than those of theoreti- 
cal ones. It seems that the 
experimental values of tp/T 
are larger for larger values 
of the deep-water wave steep- 
ness. This trend of the experi- 
mental values agrees with that 
of this theory. However, be- 
cause of scatter of experimen- 
tal values, the effect of the 
beach slope on the wave profile 
asymmetry can not be confirmed 
by the experimental results. 

CONCLUSION 

A solution of finite 
amplitude long waves on 
beaches of constant slope was 
obtained by sblving the 
shallow water theory of the 
lowest order with the perturb- 
ation method. This solution 
was used to explain the beach 
slope effect on the wave 
height change and the wave 
profile asymmetry in shoaling 
water, which have not been 
made clear theoretically. The 
theoretical results were shown 
graphically. On the other hand, 
the experiments on wave shoal- 
ing were conducted in order to 
confirm the validity of this 
theory. 

It was found theoretical- 
ly that the rate of wave 
height increase is larger on 

0.006  0.01 

Fig.12 (2)  Comparison with experimental 
results of wave height change 
( i = 1/20 ) 

0.006  0.01 

Fig.12 (3) Comparison with experimental 
results of wave height change 
( i = 1/10 ) 
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the gentle slope beach than on the steep slope beach. The experimental results 
agreed qualitatively with this theoretical prediction. 

It was found theoretically- that the wave profile becomes asymmetric with 
decrease in the water depth and more asymmetric for the larger deep-water wave 
steepness and smaller beach slope. The experimental results confirmed the 
theoretical prediction on the effects of the water depth and the deep-water 
wave steepness. 

This study is the part of the authors' investigations on the finite 
amplitude waves and their shoaling during recent several years. The authors 
wish that the results of this study contribute to advance of investigations 
on these problems and practical applications. 
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