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ABSTRACT 

The random nature of ocean wave records introduces statistical varia- 
bility into the wave spectrum estimates based on these records. This may 
cause inaccuracy in subsequent calculations such as the prediction of the 
primary wave direction or the estimation of structural response. Confidence 
intervals on such estimates are needed to evaluate whether adequate estimate 
accuracy has been obtained. 

The chi-squared confidence interval commonly used for wave spectra is 
based on the assumption of a Gaussian sea surface.  Its applicability for 
hurrican size waves has been open for question. Therefore, after a brief 
outline of the relevant statistical relations basic to the chi-squared pro- 
cedure, wave data from Hurrican Carla is empirically analyzed and compared 
with the theoretical conclusions. A simulation procedure is used to proceed 
from the data to probability interval statements. A comparison of these with 
the correponding chi-squared statements shows the chi-squared relations to be 
fairly reasonable approximations for spectral estimates averaged over bands of 
at least eight values. The empirical simulation procedure can be extended to 
subsequent calculations based on the spectral estimates while the chi-square 
method encounters difficulty for such problems. 

INTRODUCTION 

The use of the wave height spectrum to characterize ocean wave conditions 
is widely used and generally accepted as a very significant mode of analysis for 
confused sea conditions.  If the wave system is unidirectional and produces 
Gaussian (i.e., multivariate normal) water level elevations, the wave spectrum 
provides the information for a complete characterization of the statistical 
properties of the sea surface fluctuations. For a multidirectional wave system, 
the directional wave spectrum (if it can somehow be estimated accurately) also 
completely characterizes the statistical properties of the random sea surface 
provided the sea surface is Gaussian. 

The Gaussian assumption is not true for wave systems involving wave heights 
of appreciable magnitude.  It is well known that wave crests typically extend 
higher above mean water level than the troughs fall below the same level. This 
would not occur if the sea surface were Gaussian.  It has been shown [Pierson, 
1955, Brown, 1967, p. 32-37] that the water level elevation in confused sea con- 
ditions will be Gaussian if there are no spectral lines present and if linear 
wave theory holds. 
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The wave situation of interest to engineers is usually the high sea con- 
dition such as occurs in a hurricane.  It is very difficult to justify linear 
wave theory and the Gaussian sea assumption for these circumstances. Never- 
theless, the wave spectrum still provides a useful, although not complete, 
characterization of the statistical properties of the sea surface. Other 
spectrum-type functions, such as the bispectrum, yield additional information. 

Typical wave spectra for hurricanes have been computed and presented by 
Robinson, Brannon, and Kattawar (1967) and others.  These are particularly 
useful in the study of resonant response and fatigue in engineering structures. 
They also help give a climatological perspective to the wave conditions which 
might be encountered.  It is expected that as time goes on, more and more engi- 
neering design criteria will be tied computationally to the design wave spec- 
trum. 

This raises the statistical question of confidence for the spectral esti- 
mates.  It is desirable to know the approximate accuracy of the estimate. As 
long as the sea surface was Gaussian and a relatively long record was avail- 
able for analysis, asymptotic confidence intervals (Blackman and Tukey, 1958, 
p.  21 ), based on the chi-squared distribution could be used. This procedure 
is no longer strictly applicable for the nonlinear wave conditions in a hurri- 
cane. What should be used then? For that matter, what are the statistical 
properties of the wave spectrum values for hurricane conditions? These ques- 
tions will be examined in detail. 

WAVE SPECTRUM ESTIMATION 

Two basic procedures have been used for estimating the wave spectrum. 
The first of these (Blackman and Tukey, 1958) is based on using the data to 
estimate the covariance function and then numerically making the cosine Fourier 
transform of the covariance function to get the raw wave spectrum. The second 
method (Bingham, Godfrey, and Tukey, 1967) uses the "fast Fourier transform" 
computer algorithm to get the raw wave spectrum directly from the data. 

The word "raw" in the above paragraph refer to the spectrum before it is 
smoothed or modified in various ways to improve the statistical properties of 
the spectrum estimate.  Both basic procedures give the same general results,if 
the modifications could be deleted. This is difficult for the covariance 
method since the estimation of the covariance intrinsically causes an equiva- 
lent spectral smoothing. 

From the viewpoint of simplicity, computational speed, and the preserva- 
tion of information, the fast Fourier transform procedure is preferrable. There- 
fore it will be the method used in the following analysis. The fast Fourier 
transform (here after designated FFT) is a computer algorithm for rapidly com- 
puting 

N-l 
Am = At I nn exp (-i2irmn/N) (l) 

n=o 

or its inverse 

N-l 
nn = Af I    Am exp (i2wmn/N) (2) 

m=o 
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Here At represents a time increment and Af is a frequency increment. This 
notation is used since with it the FFT is directly and obviously the finite 
difference approximation to the integral Fourier transform.  In order for 
equations (1) and (2) to be exact inverses of each other, At and Af must 
satisfy 

(At) (Af) = 1/N (3) 

The significance of relations (1) and (2) for wave analysis can be seen if 
nn (n=0, 1, 2 N-l) is taken to be water level elevations above mean 
water level from a wave recorder digitzed at At increment apart. Then 
is real-valued and (2) reduces to 

N-l 
nn = Af Z     [Um cos (2Trmn/N) + Vm sin (2irmn/N) 1 (i() 

m=o 
N-l  ______ 

= Af I JU*  + V_    cos (2rr mn -<f>m) (5) 
m=0 N 

where 

and 

Am = V'Vm 

*m " arc tan (Vm/Um> 

Thus, computation of Am provides the coefficients for a trigonometric series 
represefltation of the wave record. The mean-square fluctuation (variance) 
attributable to the m-th senusoid is (with n/N = nAt/NAt =  t/T) 

T 

mean-square = jMAflt!2, + VJ*   cos(2irm_-ij) m)]  dt 
8    2    T T 

= -^|— /    (U2 + V2)   0/2 +  1/2 cos  2   (27rmt  -  *  )]   dt 
T      /        m        m ——       m o T~ 

= (Af) (U2 + V2)/ (2T) (6) 

Here, the relation (3) together with T = NAt has been used to obtain Af = ]/j 
The variance per unit frequency or spectral density is, thus, 

mean-square   =    
Um + "m    =   j_J (7) 

Af 2T fT 
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2      2 
It follows from (1) that |AN_m| = |Am| .  Hence it is only necessary to 
list the expression in (7) for m = 0, 1, 2, ..., N/2 since from there on 
the values are mirror images of the preceding ones. The frequency, 
NAf/2, corresponding to m = N/2 is called the Nyquist freqency.  It is a 
useful convention to tabulate double the expression in (7) versus m = 0, 1,2, 
..., N/2 so that IAm|

2/T gives the variance for the m-th and the (N-m)-th 
terms combined.  Hence raw spectral density estimates are defined as 

Sm = lAm!2/T <8> 

THEORETICAL STATISTICAL PROPERTIES 

Because the chi-squared confidence interval for the wave spectrum is so 
often used blindly without an appreciation of the applicability of the method 
to that particular wave data, the theoretical basis for the chi-squared confi- 
dence interval will be outlined in some detail. 

If the sequence of sea surface elevations (ru, n= 0, 1, 2, ..., N-l} 
are regarded as a random vector with intercorrelated components, a number 
of results can be derived for the real and imaginary parts of Am.  It will 
be assumed that the stochastic sequence is second-order stationary and rin 
has zero expectation. The theoretical covariance sequence and spectral den- 
sity will be defined as 

ck » Et nn in+kl (9) 

Sm = At  Z       Ck exp (- !2irmk/N) (10) 
k=0 

The expression E[-] denotes the expectation operator (Freund, 1962, Chapter 
h,  p. 90). 

From the above frame work, it is possible to derive a number of statisti- 
cal properties for 

N-l 
U » At I  n. cos (2irmn/N) (11) 
m n 

n=o 

N-l 
Vm » At  Z  n

n sin (2-irmn/N) (12) 
n=o 

It can be shown that (1) Um and Vm have zero expectations, (2) Um and Vm are 
asymptotically independent, (3) the components of the vectors (Um, Vm) and 
(Um', Vmi) are asymptotically independent of each other, and (4) the variances 
of Um and Vm, for 0<m<^ are the same and equal to TSm/2. The word "asymptotic 
in the above results refers to N approaching infinity while the covariance se- 
quence is zero for k larger than some fixed integer. 
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Asmptotically, then, 

2   2 
*     U + V 

E[Sm] = E[ 
m T 

m ] 

1 JS„ TS^ 

Var(Um) + Var(Vm) 

) (13) 

and Sm is asymptotically unbiased as an estimate of S • 

If, in addition to the above assumptions,{nn, n = 0, 1, 2 N-l} 
is a multivariate normal vector it follows that (Um, Vm, Umi, Vmi) is also 
a multivariate normal random vector. This is true since any linear trans- 
formation of a normal vector is again normal (Lindgren, I960, p. 129) and 
equations (11) and (12) show that Um and Vm are linear combinations of the 
nn.  Hence Um/ i/TSm/2 and Vm/ /TSm/2  are standard normal random vari- 
ables and, as mentioned above, asymptotically independent. The sum of the 
squares of two independent standard normal random variables is a chi-square 
random variable with 2 degrees of freedom (Freund, 1962, p. 19A). Thus 

S* 3m 
Sm 

U2 + V2 m   m 
TSm 

U    \ 2   i v   \ : 
m    )   * /     m ~ ) 

/ TSm/2 /    \  /TS^72   / 
M (Tt) 

(asymptotically) 

Now suppose Sm is the average of b values of S^ and that Sm is constant 

over the b values. Then asymptotically 

I b+r  -       X^ S%/S-o " F *r (Sm '  SJ " "t- (,5) 

where r is the first in value in the band and m0 is the mid frequency of the 
band.  Equation (15) holds since the sum of independent chi-squares is again 
a chi-squared random variable with degrees of freedom equal to the sum of the 
degrees of freedom of the individual summands (Freund, 1962, p. 19*0. 

The relation (15) is the basis for the chi-squared confidence interval 
used so often for wave spectra. 

TC? 
2b. 

'"I 

2b Jm 
(16) 

In the above expression, TC. refers to the c-th percentile of a chi-squared • II      nife.     uuuvv     vnpi  bJSI Ull ,      l^,y • I  V* I  \^ I 

variate with 2b degrees of freedom. 
What then should the user beware of relative to the chi-square confidence 

interval for wave spectra? Some of the points to consider are as follows, 
(a) the Length of record analyzed (i.e., the value of N) should be as large 
as possible consistent with avoiding non-stationary conditions. For most 
wave situations, a commonly used choice is 20 mintes of record,  (b) the co- 
variance function should be essentially zero for lags substantially less than 
the wave record length.  One published suggestion is that the maximum covar- 
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iance lag with appreciable non-zero covariance values should be on the order 
of one-tenth of the record length (Blackman and Tukey, 1958, p. 11).  (c) The 
closer the wave conditions come to satisfying 1inear wave theory, the better 
will be the confidence interval approximation provided by (16), and vice-versa. 

EMPIRICAL DATA ANALYSIS 

Wave data from hurricane Carla was selected to test the accuracy of 
the chi-squared confidence interval under extreme conditions. Water level 
elevations (4096 values) digitized at an invervat of 0.2 seconds apart and 
starting at noon, September 8, 1961 were used. The wave records were made 
in 100-ft. water depth by the Chevron Research Company on a Chevron plat- 
form in South Timbaker Block 63, Gulf of Mexico, as a part of their Wave 
Project II (Thrasher and Aagaard, 1970) and have been released to the Na- 
tional Oceanographic Data Center. The FFT coefficient, Am, were computed 
by the NL0GN subroutine (Robinson, 1967. P- 63) and S^ was tabulated for 
m = 0, 1, 2, ..., 'tOgS- The values of S* for 6 < m < 305 were selected 
by inspection as being significantly different from zero. These values, 
graphed in Fig. 1 versus f = mAf, are the basic initial information from 
which the wave spectrum is estimated. 

The scattered points must be averaged in some manner to produce a 
mean curve.  Fig. 2 shows the results of two different averaging methods. 
The dashed line gives the results of straight arithmetic averaging in 
blocks of 8 lines. The solid line gives the spectrum as determined from 
the following weighted average 

Sm " [ J Vj SP / t J Wm-jl <'7) 

where 

m-j 

•[(m-j)Af]2 / (2a2) 

(18) 

a = 3Af 

This averaging will be referred to as Gaussian smoothing because of the 
analogy to the normal or Gaussian density. The two spectral estimates are 
almost identical. The Gaussian smoothing was selected as preferrable for 
the present study because it gives the greatest emphasis in averaging to 
nearby points and the least emphasis to points further away. This is dif- 
ferent from the block averaging which equally weights points within the 
block. 

The scatter of the raw spectrum points about the Gaussian-smoothed 
spectrum estimate was examined next. The residuals, or deviations of Sm 
from the spectrum estimate 

Rm = Sm ' Sm 
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are plotted at the bottom of Fig. 3- As would be expected the residuals are 
the biggest for frequencies where the spectrum is large. -The magnitude of 
the residuals at different frequencies was characterized by three different 
root-mean-square values. These were 

cm  = r-m-s- Rm 

0^ = r.m.s. positive Rm (19) 

a        =  r.m.s. negative R 

The first formula uses (17) and (18) as written except R? is substituted for 

S*. The second formula applies (17) and (18) only to the R? where R. is 

greater than zero. The third formula does the same for the negative R.. 

All three Gaussian averages are then square-rooted to get the root-mean- 

square values. The quantities cm+, and am_ are graphed versus frequency 

in Fig. k. Although computed, om is not shown since it did not prove to 

be useful in later parts of the study. 
As Fig. k  shows, o+ has a much larger maximum than 0_. Also both maxima 

more or less coincide with the peak of the spectral density. 
The residuals were first normed by dividing them by am. These values 

are graphed as the normed residuals shown in Fig. 3. Originally it was in- 
tended to use these normed residuals as the stationary noise characterization 
of the spectrum deviations. However a careful examination of the normed 
residuals shows that their minimum values are. larger around 0.10-0.15 Hertz 
than elsewhere. Thus the noise in this form does not appear to be stationary. 

The residuals were then normed by dividing positive Rm by o^ and divid- 
ing negative Rm by om_. These symmetrically normed residuals are plotted at 
the top of Fig. 3. A Smirnov k-sample test applied to six groups of 50 each 
of these (Conover, 1971, p. 322) leads to an acceptance that the noise repre- 
sented by the symmetrically normed residuals is essentially stationary (See 
Fig. 6). Thos noise was therefore used to characterize the fluctuations 
about Sm. 

The empirical distribution function of the symmetrically normed residuals 
is shown as the solid line in Fig. 7. The corresponding probability density 
function was estimated from the slope of the straight line fitted by least 
squares to the empirical distribution function using the values in a band of 
width +_ 0.5 about the abscissa value for which the density is being estimated. 
A graph of the density is given in Fig. 8. 

A COMPARISON WITH THEORY 

How do the above empirical results compare with the theory outlined pre- 
viously? Theoretically, the Sm are supposed to be asymptotically independent. 
This would imply that the symmetrically normed residuals would also be in- 
dependent. This would imply that the symmetrically normed residuals would 
also be independent. As a partial test of this property, the m-th symmetri- 
cally normed residual was graphed versus the (m+l)-th corresponding value as 
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shown in Fig. 5. The scatter shows no clear cut trend except for a tendency 
to produce a square cloud of points. The squareness is explained by the 
abrupt start and termination of the density function in Fig. 8.  If the den- 
sity were uniform, for example, and the residuals independent a perfectly 
square cloud would be expected. Thus, Fig. 5 does not appear to contra- 
dict the asymptotic independence. 

The chi-square distribution with^two degrees of freedom which theoreti- 
cally should approximately hold for S" was checked next. Symmetrically norm- 
ing a "K.   random variable produces a variable with a distribution function 
shown by the dash-dot curve in Fig. 7.  The corresponding theoretical density 
function is graphed in Fig. 8.  The discontinuity results from the abrupt 
change in norming constant at zero. 

A Kolmogarov test for goodness-of-fit at the .05 level can be performed 
by inspection of Fig. 7. The distribution function for the symmetrically 
normed*X| variate passes outside the 90% Kolmogorov confidence band (Conover, 
1971, p. 299) and therefore causes a rejection of the hypothesis that the 
data follow that theoretical distribution. 

Despite this rejection, it is interesting to compare the chi-squared 
probability predictions with what would follow from the symmetrically normed 
noise.  By Monte-Carlo procedures, independent noise having the empirical dis- 
tribution function given in Fig. 7 was assigned at random to the different m 
values.  Then a+, <J-, and Sm were used to reconstruct the S^ values consistent 
with this noise.  Finally a new set of §m values were computed by Gaussian 
smoothing. These Sm values would be an equivalent possibility to that which 
actually occurred if the noise had just been shifted around to an equally 
likely realization.  Three hundred such sets of Sm values were developed and 
90% probability intervals were established from the 5th and 95th percentiles 
of simulated values. These are shown in Fig. 9. 

The Gaussian smoother used in deriving the original Sm, had a width 
roughly equivalent to band of 8 spectral lines.(its standard deviation was 
3 lines and the width is somewhat larger than +a.) Hence it seems reasonable 
to compare the probability intervals with that for a chi-squared with b = 8, 
or 2b = 16. This is shown in Fig. 10. The two probability interval sets are 
slightly but not terribly different.  One would have to conclude that the chi- 
squared approximation is reasonably adequate, even for hurricane waves. This 
seems true despite the disagreement relative to the Sm values.  Something like 
a central limit theorem seems to be pulling the distributions into agreement 
for averages of bands including as many as 8 raw spectral values. 

ADDITIONAL DOCUMENTATION PLANNED 

Empirical Analysis has continued on the Hurrican Carla data. About half 
of the available data sets have been analyzed. The empirical distribution 
functions and probability densities for these (seven more records) are all 
remarkably identical with Figs. 7 and 8.  The Smirnov k-sample test over- 
whelmingly accepts that they all have the same distribution function.  It is 
planned that the detailed empirical analysis of the Hurricane Carla spectra 
and of a variety of spectra for other wave conditions will be issued as a 
project report as soon as the analysis is complete. 
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CONCLUSIONS 

The available data supports the use of the chi-squared approximation 
for a confidence interval on spectrum estimates.  It is difficult however 
to extend the chi-squared approximation to yield confidence intervals on 
subsequent quantities computed from wave spectra. For such situations, 
simulation procedures based on the empirical properties of the spectral 
noise would seem to provide a reasonable approach to developing confidence 
intervals. 
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Fig. 1. Values of S^ versus mAf 
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Fig.   2. The spectrum estimate Sm determined by 
two different methods. 



OCEAN WAVE SPECTRA 247 

Fig. 3- Various versions of residuals plotted 
versus frequency. 
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Fig.   5.     Scatter  diagram of  the m-th  symmetrically 
normed   residual   plotted  versus   the   (m+1)-th 
value. 
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Fig. 6.  Smirnov test of noise stationarity. 
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Fig.   7.     The  empirical   distribution  function  of  the 
noise as  compared with  a  symmetrically  normed 
chi-square distribution  function. 
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Fig. 9.  Empirical probability intervals as de- 
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