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ABSTRACT 

A method is proposed to investigate periodic tidal motion in single 
or multiple basins connected to the ocean by an inlet     Non-sinusoidal 
tidal motion in the ocean and square friction law in the inlet are both 
considered     The method is applied to Boca Raton inlet, Florida     The 
calculated tidal elevation and velocity in the inlet are found to be in 
reasonable agreement with measured values     The bottom shear friction 
coefficient is defined 

Tt(J = P r u|u| 

where p is the water density, T. IS the shear stress, and u is the average 
velocity in the inlet  The results of the study yield r = 0 0039, and 
predict net transport of sediment into the bay 

INTRODUCTION 

The dynamics of tidal motion in a bay connected to the ocean by an inlet 
wat investigated by Brown  (1928) who considered only sinusoidal  tidal motion 
in the ocean and linear bottom friction in the inlet     Later, Keulegan  (1951) 
treated the same problem but included tne square friction law in the inlet an 
predicted a non-sinusoidal  oscillation in the bay elevation      Van de Kreeke 
(1968) developed a scheme which predicted tidal  oscillations in bays in the 
presence of freshwater inflow by rainfall or streams     The above investigations 
were all  limited to a sinusoidal  tidal  oscillation in the ocean and all 
neglected flow acceleration in the inlet 

An extensive treatise on tides and tidal  propagation is given by Dronkers 
(1964)      It is known that tidal motion is not simple but has many harmonic 
constituents      The principal  components are shown in Table I 
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Table 1      Principal Tidal  Components 

Symbol Component 

M2 Principal  lunar semidiurnal 

S2 Principal  solar semidiurnal 

N2 Lunar elliptic semidiurnal 

Kl Lumsolar decl inational  diurnal 

01 Lunar declinational  diurnal 

The relative importance of the different constituents depends on geographical 
location and depth of water The principal lunar semidiurnal component (M-2) 
has usually the highest amplitude 

This study proposes a general method for analyzing tidal oscillation in 
bays connected to the ocean by inlets      It includes acceleration of flow in 
the inlet, square friction law, and a non-sinusoidal tidal oscillation in the 
ocean      The method utiWes the general equations of motion and approximates 
the periodic tidal  oscillation by a series in circular functions      Use is 
made of complex variables to simplify computations     The method can be applied 
to multiple basins connected to each other and to the ocean       The present 
study is restricted to relatively deep bays in which negligible spacial 
variation in water elevation exist     The inlet area is assumed constant and 
equal  to the mean area during one tidal  cycle     The method can be applied, 
however,  to shallow bays      The method has a resemblence to Dronker's (1964) 
harmonic method of tidal  propagation although he did not SDecifically apply 
the method to inlets      A method proposed by Sidjabat (1970) for describing 
the nonlinear friction is employed in this study 

THEORETICAL APPROACH 

The theoretical  development to follow describes the dynamics of flow in 
an inlet with a constant cross sectional  area connected on one side to a basin 
with uniform wate1- level  and on the other side to an ocean which has harmonic but 
non-sinusoidal  tidal oscillation     The flow in the inlet is assumed one- 
dimensional      Resonance and bottom friction in the bay are neglected 
Quantitatively bays satisfying these conditions must be at least 20 feet deep 
when the longest dimension equals 5 miles 

A  Single Bay Coupled to Ocean 

A definition sketch is shown in Figure 1      The equation of motion in the 
x-direction (direction of inlet flow)  is used to describe the inlet flow 

3u x ,, du J. ,, 3|J -      ISP j.1  3Tv f\\ 
3t 9X 3Z p   3X       p   3 

where u is the inlet velocity, p is the pressure, p is the water density, 
and T is the viscous shear stress  Denoting v 3 
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u(x,y,z,t) = Um(x,z,t) + u'(x,y,z,t) 

w(x,y,z,t) = w'(x,y,z,t) 

where U   denotes the mean flow over a length of time, T, which is small 
compare• to tidal period by long compared to time scale turbulence     The 
overbar is taken to denote averaging over period T 

M/ udt = U 
m 

Equation (1) becomes 

3U. 
f+!^Um2+^ = -^+}il(Tv + V • <2> 

where 1    is the turbulent Reynolds stress defined by 

Tt = -p    u'w1  = -p j       u' w1  dt 

Next, a vertical  average over the depth h is specified     We define 

h 

U(x,t) = if     U (x.z.t) dt (3) 
o 

Integrating Equation  (2) over depth and assuming hydrostatic pressure 
distribution 

^^k^-oft-i <rv + ^°       • w 
where 

«U2 = I   ,        ^ 
h J       v m 

o 

and the subscript o denotes bottom values (z = 0)  From open channel 
considerations a  is the momentum factor and is of the order of 1 05  The 
value of 1 0 will be assumed sufficiently accurate  In inlets, the flow 
is mostly turbulent exceot when it approaches zero during a tidal reversal 
The bottom shear stress will be assumed to be primarily due to turbulence 
rather than viscosity (i e T << T.) and to have the empirical squarp-law 
form 

/  (Um
2 + u17) dz 
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Tto = pr U|U| (5) 

where r is the friction coefficient     Equation (4) now becomes 

3t       3X 
-gg-fu|u| (6) 

Equation  (6)  is applied to the inlet shown in Figure 1      Integration of 
Equation (6) along the x-direction yields an equation which relates the 
ocean level  to that in the basin     Assuming the inlet is finite in length 
and the velocity accelerates towards the inlet but achieves a constant 
velocity, Uls in the inlet, Equation (6) is integrated to yield 

3"i Lj 
hs = \ + 3Ff + (1 +F7Li) 

U,  U, 
(7) 

where h , h, , Li and hx are defined in Figure 1  The equation of mass 

conservation consistant with the above assumptions becomes 

dh 

Mi= A. dt (8) 

where ki and A, are as defined in Figure 1 Equation (8) further assumes 

that the changes in A, and Aj due to depth changes are small over a tidal 

cycle     Eliminating \}1  in Equation (7) yields 

\     i 
d2K v. !     \  a 

~W 
dh, 

dt 

dhu 

dt (9) 

1      The Linearized Solution for Simple Motion 

The tidal motion in the ocean is described by complex variables to 
simplify computations 

hs(t) - hs e lot (10) 

where h    is a complex number and a is the tidal  frequency     Let 

h,    = -l h, e t>! bj 
lot 
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A 

where h,   is a real number representing the bay tidal amplitude     Linearization 
of the   last term in Equation (9) implies 

dhu    dh 
a2  h bj_,    bi ,. 8_   _2 is     „ict 

dt  I  dt   I"  3TT 

winch yields the solution 

Ss = fi
bi[c hbi  - in] , (ID 

where 

0 + ft" «•!)! <£.)"" 
and 

„   „   Cl    _    (Jjb.)   k. 02] 

%N  L    2 
Ab 

The term (j-L) •*• a2 represents the flow acceleration and has been traditionally 
neglected    xIt need not be always negligible compared to 1  0, it was found to 
be equal to 0 25 for Macquane Harbor which was studied by Van de Kreeke (1968) 
The amplitude and phase shift of the ocean fluctuation are given respectively, 

|nsl= hbi AX\JZ + n^ . (12) 

and 

tan e=- -4- (13) 

<\ 

O'Brien  (1969) proposed an empirical  relationship between the tidal  prism, P, 
and inlet area Aj 

A: = CP , (14) 

where C is a constant     The present analysis yields an analytical  representation 
for C which can be used to test the empirical  constant of O'Brien 

(§7)  O+^M^tJ^tane 

2[({k>^«*-13 
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2      Solution for Non-sinusoidal Motion 

The tidal motion in the ocean is not simple as indicated previously 
so that sinusoidal  simplifications introduce errors      Since the bay motion is 
affected by nonlinear friction, motion is not simple even when the ocean 
motion is      The latter case was investigated in detail  by Keulegan (1951) 
When the tidal motion in the ocean is periodic but not simple, the bay motion 
is even more complex since each ocean harmonic constituent generates its own 
harmonic as well  as multiple harmonics due to nonlinear friction     Thus a 
linearized procedure becomes invalid, in fact it is unrealistic and suggests 
negative friction at the higher harmonics 

In the following a method is proposed to describe the harmonic motion 
in both bay and ocean      The complex representation is employed 

1 l*n- lsn> 
inat (16) 

and 

K y l 

i 2 
tCn " ldn> 

inat (17) 

where the summation ranges over both positive and negative values of the index 
n which specifies the principal  tidal  frequencies, linear combinations 
thereof,  and higher harmonics      The terms corresponding to n = 0 reflect mean 
levels in ocean and bay     Since h    and h,     are real  functions, the following 
relationships must be satisfied      (Lee      x(1967)) 

r   =   r n        -n 

c   =  c n        -n dn = 'd-n 

(18) 

The average velocity is specified by 

U(t) - 2   £ K - i  bn> ^^ (19) 

where 

b    = -b n -n 

The representation of T.    in series form was considered by Sidjabat (1970) 
in conjunction with tida? propagation in wide shallow bays     His description 
of the nonlinear term is conveniently adopted     Equation (15) may be expressed 

or[EZ   }(a0-ibc)(a    -ibJe^^^Ka    -ibje1^ 
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which is equivalent to 

lU+mJt-A 
rt0 -PK[I^ + ^) + I    ^ I   |(a, - ib,)(am - ibje^^r 

can - *y«°h (20) 

Denote 

x2 = £        l(a/ + b/) = 1  £     (a£
2 + \2) (21) 

Then 

^     E    (e Tto = pn(,+E)!     ^   (an " lbn5 e 
mat (22) 

where 

E   - 7X 
1     Y V       1/ k w k  N„I U+m)ot 

It was found by Sidjabat (1970) that in areas where M2 is the dominant tide 
A is determined primarily by the M-2 component and z does not exceed the value 
0 25      Equation   (22)   is  approximated by 

to = prx I   l(an - ibn)elnat (23) 

The error in the friction term is less than 12 5% and corresponds to smaller 
errors in computing tidal elevation      In studies where such an error is 
significant, it is possible to calculate E and to include its effect in 
Equation  (22)      The above method will  be applied to Boca Raton inlet, the 
terms comprising e will  be neglected subject to comparison with measured 
tidal elevations 

The non-linear term in Equation  (9) becomes according to the above analysis 
(See Equation  (17)) 

dh, 

dt 

dh 
bi 

dt = x i  2   2^naCn + naV e mat (24) 

where 
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Jl        l=Q n    n 
(25) 

Substituting for h , h, , and Idhu /dtl (dh, /dt) and equating the real and 
S D^ 1^1 I *^1 

imaginary coefficients, the following algebraic equations for the coefficients 
of different harmonic constituents are deduced 

(^ [1  - nV (>•) k. ] c    + ii (1+FTLl)(^)2n°dn 

«„ - El  - n*o2(^-) to. ] ^ - |r (1  + r_ Ll)  (^)2
noCn 

(26) 

Equations  (26)  relate the bay motion to the ocean tidal  oscillation     The 
non-linear friction is specified by the term \x which also couples the 
different harmonic constituents of the ocean elevation 

The procedure for solution depends on the available information      If 
the tidal  elevations in both ocean and bay are measured, it is possible to 
evaluate the friction coefficient r     When only the motion in the bay is 
known, it is possible to predict the tidal motion in the ocean for any given 
r     However, when the tidal motion in the ocean is given the motion in the 
bay can only be computed by an iterative procedure for any given r 

B* Two Bays Coupled to Ocean 

A definition sketch for two bays coupled together and to the ocean is 
shown in Figure 2     The second bay is not connected to the ocean     The tidal 
elevations in the ocean and first bay are specified by Equations  (16) and 
(17), respectively     The tidal motion in the second bay is specified by 

K  • 1 U 2-pn " V 
..mat (27) 

Subject to all  assumptions stated previously, the equation which relates the 
motions in the two bays becomes 

\ " \ + & g*   dtA •<i + feL*>?<5h 
dhu 
dt 

dhu 
dt , (28) 

where the equation of continuity in the second inlet 

dh. 
U^= V W (29) 

was used  The resulting algebraic coefficient equations relating the two bays 
become 
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cn = [1  - nV  fe) k.] pn + ^(i + E- L2)  {^.)\0%      , 

dp. D . n2o2 (V) k] % - AZ (1 + r Lz) (V)2 noPn , 
(30) 

where 

i-cSo^ (Pn
2 + v^% 

/2 
S,=0 

(31) 

The motion of the first bay may now be related to the motions of both 
ocean and second bay Equation (7) remains valid for the first inlet, but 
the continuity equation now takes the form 

dh, 
U>Ai = V dt + U^ 

Using Equation (29) 

A.  dh.   A, dh, 
U, = Jii. „bi + .Ja. . °?, 

dt A, dt (32) 

and substituting for Ui in Equation  (7) the equation which relates the first 
bay to the ocean is obtained 

L     Ab     d2hb 
hs = hb    +gL(S^) dt^'  q-% 

In b9_\       bz + ^^> dF 

,    A,    dh.        A.    dh. 
u      hi Li; g %    dt Ai    dt 

A,     dh.        A,     dh, 
bi       bi b?       b? 

A!    dt Ai    dt (33) 

Using the representation for h  , h.   , and h,   , given by Equation (16),  (17) 

and (27), respectively, the following algebraic coefficient equations are deduced 

rn - cn [1  - nV iL ^ . pn [nSu    _ lR_ 

+ |1(l^Ll)C{^)nodn+{fei)noqn] 

•)] 

Sn. ^ D _ n2o2 k (_k)j. „n [n2a2 k (_k)] 
(34) 

where 
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A3 - jg. [g i(^) ncdn + (J^, „«,„}* + {(^i) nacn + (£ ) naPn}2]%  (35) 

The procedure for solution again depends on the available information  The 
friction factor can be determined when the motion in the ocean and both bays 
are known  The elevations in the first bay and ocean can be obtained 
deterministically for any given r when the motion in the second bay is known 
The motion in the bays can be determined by an interative scheme for any given 
r when the motion in the ocean is known 

APPLICATION - BOCA RATON INLET 

The theoretical method outlined above was applied to Boca Raton Inlet, 
Florida  The inlet connects the Atlantic Ocean to Boca Raton Lake which is 
also connected to Lake Wyman  A plan view of these lakes is shown in Fiqure 3 
The intercoastal waterway which connects Lake Wyman and Boca Raton Lake extends 
to South Lake Worth Inlet north and Hillsboro Inlet south  Comparisons of 
tide records obtained at Boca Raton Lake and at a station on the Intercoastal 
Waterway south of Boca Raton indicated no possible flow to or from the Inter- 
coastal Waterway south of Boca Raton Lake  Boca Raton Inlet primarily 
influences Boca Raton Lake, Lake Wyman, and areas occupied by boating marinas 
north of Lake Wyman 

Boca Raton Inlet was chosen for this study because tide records were 
available at the Inlet North Jetty (denoted by Station 1 in Fiqure 3), at Boca 
Raton Lake (denoted by Station 2), and at Lake Wyman (denoted by Station 3) 
Actually tide records at three stations around Boca Raton Lake were also 
available  These records indicated no special variation of tide elevation in 
Boca Raton Lake and verifies the representation of conservation of mass given 
by Equation (8)  The tide elevations recorded at Stations 1, 2 and 3 are 
shown in Figure 4  They indicate the magnitude and phase shift of tidal motion 
in the two bays relative to the ocean  Other available data included velocity 
measurements over a tidal cycle at Station 1 to be shown later in comparison 
with computed velocities 

Since tidal records were available in both bays and at the inlet, the 
multiple bay analysis was used to determine the friction factor r for the 
system  The tidal record in Lake Wyman was used to predict the tidal elevation 
in Boca Raton Lake using Equation (30)  The computed elevation was then 
compared with the measured one  With the tidal elevation in Boca Raton Lake 
known, the ocean elevation in the ocean (Station 1) was computed using Equations 
(34) and the results compared with the measured values  The variances between 
the computed and measured elevations were computed at Stations 1 and 2 for 
different friction coefficients  The quantities which describe the bay system 
(see Figure 2) Als Li, Au , hlt  A2» L2, h2 were all known  The area ^2  was 

not known  The computed motion which gave the best fit to measured 
tidal elevations at Stations 1 and 2 corresponded to r = 0 0039 and A^ = 23 x 106 

ft2  The latter area is much larger than Lake Wyman's area and suggests that the 
tidal motion extends to areas occupied by marinas north of Lake Wyman  Table 
2 summarizes the physical properties of the above two-bay system 
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TABLE 2      Properties of the Two-Bay System 

Boca Raton Lake     Lake Uyman 

1 40 x 103 1 68 x 103 

3 74 x 106 23 00 x 106 

7 0 8 0 
2 67 x 103 7 33 x 103 

1 57 1 40 

Inlet area (ft2) 
Bay Area (ft2) 
Inlet depth (ft) 
Inlet length  (ft) 
M-2 measured amplitude (ft) 

The variances between computed and measured tidal  elevations at Boca 
Raton Lake (station 2) and at the Ocean  (station l)werel  9 x 19~2 and 
2 0 x 10-2,  respectively for r = 0 0039     The difference in computed and 
measured phase shifts of the M-2 component were 2 degrees for Boca Raton 
Lake and 4 degrees for the ocean 

SIGNIFICANCE OF NON-SINUSOIDAL TIDAL COMPUTATION 

A comparison between the measured tide record at station 1  and the M-2 
constituent is shown in Figure 5     The agreement is reasonable only over part 
of the tide cycle     A comparison between the measured tide elevation at 
station 1 and the computed elevation using six harmonics is shown in Figure 6 
Better agreement is recognized over most of the tidal  cycle     The importance 
of considering the different harmonics in tidal  computations appears more 
dramatically in velocity computations, however      In Figure 7, the measured 
velocity at station 1  is compared to the computed velocity using the M-2 
constituent only     Near the maximum three velocity peaks appear in the 
measured record but are absent in the sinusoidal  computation      These peaks 
appear in computations which include different harmonics as shown in Figure 8 
Since the contribution of each harmonic to velocity depends on frequency and 
amplitude of that harmonic the higher harmonic contributes significantly to 
velocity even when the amplitude is small 

The velocity cycle has an important influence on sediment transport in the 
inlet     The sand trapping capability of an inlet may play an important role in 
shoreline stability in the vicinity of the inlet     The trapping capability of 
Boca Raton Inlet is investigated in what follows 

The theoretical  basis for describing movable beds is empirical      Many 
relationships exist that relate volume of sediment transport to bottom shear 
stress      While there is no one relationship which is far superior to others, 
the empirical  result arrived at by Einstein (1942)  is used 

q  '   =40 PF —  , (36) 's [g(sc - i)]V; 

where q   '  = the weight rate  (in water)  of sediment transport per unit width, 
P = water density, U* = shear velocity (='t /P), g = gravitational  acceleration, 
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s    = specific gravity of sand, and F is given by 

v -  r2 + 36 v2       -h      r       36 v2 -,% ,,7> 
F " [3 + gd^ (ss - 1)]    ' V (ss - 1)] • (37) 

where v = kinematic viscosity of water     Equation  (36) was used successfully 
by_Shemdin (1970)  in modeling of sediment flow in the coastal zone      Equation (5) 
relates the average velocity to the shear velocity 

U, = rh U 

For a wide channel with width B the weight rate of sediment transport, q  , 
becomes 

qs = qs'B = 40pFBrF[i-4^f1p/T (38) 

The net sediment transport into Boca Raton Inlet was computed from results 
similar to those shown in Figure 8     Tide records were found to fluctuate 
in amplitude and typical  records were used for two different days      The net 
transport into the inlet for the two days was calculated to be 15 and 47 
(yd3/day) which correspond to 5,400 and 17,000 yd3/yr , respectively     A 
recent dredging operation in Boca Raton inlet have been removing 30,000 - 
40,000 cubic yards of sand per year from the inlet     The computed transport 
in the inlet is of the same order of magnitude      Fugure research on inlets 
may fruitfully include field measurements of sand transport 

CONCLUSIONS 

A non-linear coupled procedure is proposed to analyze tidal motion in 
inlets and bays     The importance of the different tidal constituents is shown 
to be more important in velocity computation compared to surface elevation 
The exchange of sediment between bays and the ocean is dependent on the 
velocity variation over the tidal cycle and can only be computed accurately 
by considering different harmonic constituents in a tidal  record     The procedure 
is applied to Boca Raton Inlet and the result indicate that more sand transport 
occurs during the flood period compared to the ebb period     The inlet consequently 
behaves like a sand trap 
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-CROSS    SECTIONAL     AREA = Ai 

^1 

Figure 1      Definition sketch for a single bay coupled to ocean 

,INLET    CROSS   SECTIONAL    AREAS  - 

BAY     SURFACE    AREAS 

Figure 2      Definition sketch for two bays coupled to oce an 
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ATLANTIC OCEAN 

DEPTH    CONTOURS 

IN   FEET 
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SCALE 
STATUTE  MILES 

10 12 

Figure 3     Plan view of Boca Raton Inlet and lake, and Lake Wyman 

STATION   I   (oc«an) 

STATION  3   (balm 8) 

Figure 4  Tide elevations at Boca Raton Inlet, Boca Raton Lake, 
and Lake Wyman 
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Figure 5  Comparison between measured and computed (M-2) component 
of tidal motion at Boca Raton Inlet 

OCEAN   SURFACE 

ELEVATION 

AT  JETTY 

(feel) 

Figure 6  Comparison between measured and computed tidal motion using 
six harmonics at Boca Raton Inlet 
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Figure 7     Comparison between measured and computed velocity using 
(M-2) component only at Boca Raton Inlet 
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Figure 8  Comparison between measured and computed velocity using 
six harmonics at Boca Raton Inlet 


