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ABSTRACT 

A theory is presented for analyzing the wave induced oscillations in an 
arbitrary shape    harbor with constant depth which is connected to the open-sea 
The solution is formulated as an integral equation which is then approximated 
by a matrix equation      The final solution is obtained by equating,   at the harbor 
entrance    the wave amplitude and its normal derivative obtained from the 
solutions for the regions outside and inside the harbor 

The results of experiments conducted using a harbor model of the East and 
West Basins of Long Beach Harbor (Long Beach,   California) are presented and 
compared to the theory      Good agreement has been found between the theory and 
experiments 

INTRODUCTION 

Experience has shown that a natural or an artificial harbor can be excited by 
incident waves from the open-sea in such a way that large water surface oscilla- 
tions can result for certain wave periods      This phenomena of resonance is 
similar to the dynamic response of mechanical or acoustical systems when exposed 
to time-varying forces,   pressures,   or displacements 

Resonant oscillations in harbors (also termed seiche and harbor surging)   can 
cause significant damage to moored ships and marine structures especially if the 
resonant period is  close to that of the ship-mooring system      In addition    the 
currents induced by these oscillations can create navigation hazards      Such 
resonant oscillations have occurred at many locations around the world and have 
damaged moored ships and dockside facilities,   e   g       Table Bay Harbor    Cape 
Town,   South Africa     In order to correct an existing resonance problem or design 
a harbor which is free of such problems one must be able to predict the resonant 
frequencies and the expected wave amplitude at various locations within the harbor 
as a function of the wave period 

Many previous investigators have studied various aspect of the harbor 
resonance problem     McNown   (1952)   studied seiches in circular harbors with 
small entrances by assuming an antmode occurred at the harbor entrance when 
the harbor was in resonance      A similar method was applied to rectangular 
harbors by Kravtchenko and McNown   (1955)      Thus,   due to this assumption    the 
resonant periods were identical to those of the eigenvalues for the free oscilla- 
tions of a completely closed circular   (or rectangular)  basin      The problem of a 
rectangular harbor connected directly to the open-sea was investigated by Miles 
and Munk   (1961)      They included the effect of the wave radiation from the harbor 
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mouth to the open-sea thereby limiting the maximum wave amplitude within the 
harbor for the mviscid case to a finite value even at resonance Ippen and Goda 
(1963) also studied the problem of a rectangular harbor connected to the open- 
sea by using the Fourier transformation method to evaluate ihe wave radiation 
from the entrance to the open-sea good agreement was found by them between 
the theory and experiments 

In recent years     studies on more complicated harbor geometries have been 
conducted      Wilson    Hendrickson     and Kilmer   (1965)   studied the oscillations 
induced by long waves in a basin with a complicated shape and variable depth 
incorporating an assumption of a nodal line (a line of zero amplitude)   at the 
harbor entrance       Leende rtse   (1967)   developed a fimte-diffe rence numerical 
scheme for the propagation of long-period waves in an arbitrary shape    basin 
of variable depth given the water surface elevations at the open boundary 
Recently,   Hwang and Tuck   (1970)    in a study independent of the authors'  study 
investigated the wave induced oscillations m an arbitrary shape basin    with 
constant depth connected to the open-sea      Their approach was to superimpose 
scattered waves    which were computed using a distribution of sources     on the 
standing wave system      In their analysis the calculation of the source strengths 
along the entire reflecting boundary must be terminated at some distance from 
the entrance    the location of such a termination is not obvious unless trial 
solutions are made 

The present theoretical analysis is developed by applying Weber's solution 
of the Helmholtz equation m both the regions inside and outside the harbor with 
the final solution obtained by matching the wave amplitudes and their normal 
derivatives at the harbor entrance      In this way some of the problems of appli- 
cation which other investigators have experienced are eliminated    since only 
the wave characteristics at infinity in the   open-sea need be specified to obtain 
a complete solution      Experiments were performed m the laboratory to verify 
the theoretical solutions 

THEORETICAL ANALYSIS 

For the theoretical analysis     the flow is assumed irrotational and the fluid 
incompressible    thus     one can define a velocity potential $  such that the fluid 
particle velocity can be expressed as a vector as u = v"$f   where V is the gradient 

Still water 
level ^ 
z = 0       =• 

/ 

Bottom (z ~ -h) * 

Fig    1    Definition sketch of the coordinate system 
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operator       (The coordinate system is defined in Fig     1   )    The velocity potential 
$ must sati&fy Laplace's equation 

a3*     azi , a3$ _ ... 
ap-+ a^r + gpr - o (1) 

and a number of prescribed boundary conditions     one of these is that the fluid 
does not penetrate the solid boundaries which define the   limits of the domain 
of interest    i  e       9$/9n = 0 on solid boundaries   (where n is normal to the boun- 
dary and directed outward) 

If the water depth is considered constant    the method of separation of vari- 
ables can be used to obtain the function which represents the depthwise variation 
of the velocity potential $       Thus,   within the limitation of small amplitude water 
wave theory the following form of the velocity potential § is found 

,     Ax g cosh k(h+z) ,-f 

where, a is the angular frequency defined as 2rr/T   (T is the wave period)    X=tf-l, 
Aj.   is the wave amplitude at the crest of the incident wave    h is the water depth 
(assumed constant),   g is the acceleration of gravity    k is the wave number 
defined as ZTT/L, (L. IS the wave length),   and the function f(x, y)     termed the wave 
function    describes the variation of $ in the x-y directions      The function f(x  y) 
must satisfy the Helmholtz equation 

0 + 0 + ^f=O (3) 
To complete the expression for the velocity potential $ the remaining 

problem is to determine the function f(x y) which satisfies Eq 3 (known as 
the Helmholtz equation) and the following boundary conditions 

(1)    9f/9n = 0 along all fixed boundaries  such as the coastline 
and the boundary of the harbor 

(11)    as A/X   + y   -*<*>    there is no effect of the harbor on the wave 
system    this is termed the radiation condition      Mathemati- 
cally    the radiation condition is necessary to ensure a 
unique solution of the function f(x  y) in the unbounded domain 

A method for solving the Helmholtz equation    Eq    3    for an arbitrary shape 
harbor is presented in the following      The domain of interest is divided    at the 
harbor entrance    into two regions as shown in Fig    2    the infinite ocean (Region 
I) and the region bounded by the limit& of the harbor   (Region II)      For convenience 
the function f of Eq    3 in Region II is denoted as fs     and in Region I it is denoted 
as fa 

In Region II the function fa that satisfies the Helmholtz equation at any 
position x inside the harbor can be expressed as the following line integral 

fa(x) = -i J   {f3(xo)£[H^(kr>] -H»>(kr)£fa(xo)}ds£o) (4) 
s 

whore x    is the position vector of the boundary point    r is the di-tance  |x-x   | 
and n is normal to the boundary and is directed outward      The   function 
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H      (kr) = J   (kr) + XY   (kr) and is termed the Hankel function of the first kind and 
zeroth order      The integration in Eq    4 is to be performed along the boundary of 
the harbor traveling in a counter-clockwise direction 

ww//w>ww//wwy. 

  ,   X 

~*- direction of 
integration 

Fig    2   Definition sketch of an arbitrary shape harbor 

Eq    4 indicates that if one knows the value of f2   and 8fP /9n at the harbor 
boundary the function is  at any position x inside  the harbor can be obtained 
readily     However    the valuo of f2  at the boundary   (including the harbor 
entrance)  is not known at this stage of the development    the value of 9f8 /9n 
at the harbor entrance is also not known although it is known that 9fE /9n is 
zero on all solid boundaries within the harbor      In order   to evaluate fE (x   ) 
at the boundary as a function of the value of 9fE /9n at the_harbor entrance 
the field point x is allowed to approach a boundary point X!      If the boundary 
is sectionally smooth an integral equation is obtained as follows 

*.<*,)=-£ J C£»(xc ^"o1^* •H>r>^,;c 
)]db(x   ) Ci) 

where r =   x Although the exact solution of the integral « qxiation (Vq    5) 
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is difficult to obtain    it is posbible to obtain an approximate solution of Eq    5 by- 
converting this integral equation into a matrix equation      This is accomplished 
by dividing the boundary into a sufficiently large number of segments   (N)   and the 
value of fs   (or 8f2 /3n)   at each boundary segment is considered constant and equal 
to the value at the mid-point of each segment      Thus Eq    5 can be approximated 
by the following matrix equation 

N N 

«F>i = T[I(GnVF,J-   !{GWFnO' (6) 

J=l J=l 
for l = 1   2 N 

using the notation 

(F^fa^)     , i = 1,2 N (7a) 

d),v,    , _JJ_ (G   )     = -kH    '(kr    ) -~^- As n'lj 1 ij'    3n j 

= -k[Jl(kr    ,UYl(kr    ,][.^fL(U)+ri2j(|£)>.     , 
J ' ij 1      V J 

l,s i.J =1.2 N   i£,   (7b) 

<°n)li-J 1(-H»'(kr,|^)dr 
o 

^-(l^l^-l^f^) As    , 1=1,2 N (7c) 
IT \8s 8s^       3s"  9s/       l 

l 

(G)     =H(1)(kr    )As     , ij = l,2, N I^J   (7d) 
y ° ij      J 

(Fn)x= afs/8n(Xi), 1 = 12, N (7e) 

r*Asi   (i) (G)     =2 Hl   ;(kr) dr 11        J o 

[l+i,-]lO| 
kAs -, 
—— - 0   42278]    As i = 1   2 N (7f) 

The vector Fn m Eq    6 involves the unknown value of 9f3 /9n at the harbor 
entrance as well as the value of 9fE /8n at the solid boundaries (these latter 
values are zero)      Thus    the vector Fn can be represented as 

P a 6    C   = UC (8) 
ij    J 

J = l 
where p is the total number of segments into which the harbor entrance is 
divided    the vector C represents the p unknown values of 9f2 /3n at the mid- 
point of each entrance segment,   and the matrix 
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U = 6     = |j f      i_
3 (with the index 1=1   2 N    and the index 

1 = 1,2 p) 

Substituting Eq    8 into Eq    6 and rearranging    one obtains 
P 

f?K'~ZM   C   = M-        (for i=l   2 N)    , (9) 
J = l 

in which the matrix M = (X/2Gn +1)     (X/2GU) is a N x p matrix and can be 
computed directly (I is an identity matrix)      Eq    9 shows that the function 
f3 (xx) on the harbor boundary can be expressed as a function of the unknown 
value of dip /9n at the entrance      Eq    19 can also be interpreted as the contri- 
bution to the value of f3  on the harbor boundary from the superposition of the 
effect of p small harbor openings 

In order to evaluate the unknown vector C defined m Eq    9,  i   e      the value 
of dip /8n at the entrance    the function fx   in Region I at the harbor entrance must 
be expressed as a function of 9fx /9n      Thus     using the "matching condition" at 
the entrance     f^ = f3 ,   dfx /9n = ~9f3/9n    one is able to solve for the vector C    and 
the complete solution to the response problem can be obtained 

For the region outside the harbor   (Region I)    the function fa   may be ex- 
pressed as follows 

Mx,y) =fL(x  y)+fr(x  y)+f3(x,y) (10) 

where fx represents an incident wave function    fr represents a reflected wave 
function considered to occur as if the harbor entrance were closed    and f3 
(termed the radiated wave function) represents a correction to fr due to the 
presence of the harbor      For the case of aperiodic incident wave with the wave 
ray perpendicular to the coastline     the function f-^x  y) can be represented by 
|e      y (the factor ^ is taken for convenience)      Thus    the reflected wave function 
fr can be represented by fr(x  y) = fi(x, y) = $e -Xky 

The function 13 (x y) can be obtained by the same   procedure as used m Eq    4 
for determining the function f2     the reader is referred to Lee (1969) for its 
development as well as other details of the analysis 

For the condition of a periodic incident wave propagating m a direction 
perpendicular to the coastline   (x-axis)    the function fj   at the harbor entrance 
can be expressed as 

fl(x  0) = l+(-f)_|H<I)(k|x-xol)[|rf3(xo  0)]dxo (11) 

AB 

The first term on the right-hand side of Eq     11 represents the incident wave 
plus the reflected wave if the harbor entrance is closed,   the second term 
represents the contribution from the radiated wave function f3      It is noted 
that in deriving Eq    11 the relation     9^ /9n = 9f3/3n = -9f3 /9n has been used 
at the harbor entrance 



RESONANCE IN HARBORS 2169 

Eq    11 can be approximated by a matrix equation as 
P 

M^) = l+("f)I   H^C    , (for 1=1   2 p) 

J = l 

(12) 

where 

H     =H(1)(kr    )As for 1  j = l   2 p   I^J 
!J o ij      J 

H ± = [l+X-(log(—A)-0   42278)]ASI   for i = l   2 p, 

and the vector C is the derivative 3fa /9n at the harbor entrance as defined 
in Eq    8 

Eqs    9 and 12 can now be equated to solve for the unknown value of 8f2 /9n 
at the harbor entrance    l   e       the vector  C      This is done by first taking the 
first p equations from Eq    9 

P 
f2(Xi) =£   M^C   =Mp'C (13) 

J = l 
in which the index 1=1   2, p and the matrix M    is a p x p matrix obtained 
from the first p rows of the matrix M      Then by equating Eq    13 to Eq    12 and 
solving for the unknown vector C  one obtains 

^(V^H)-1 i      x 
(14) 

where (Mp + .-Hy"    is the inverse of the matrix (Mp + ;TH/>   and 1_ is the vector 
with each p element equal to unity 

With the value of 3f2 /8n at the entrance    l   e       the vector C   determined 
from Eq    14    the value of fs (xj) at the harbor boundary can be evaluated from 
Eq    9    and the value of fs (x) at any position inside the harbor can be obtained 
from the following discrete form of Eq     4 

N p 

f2W=-f{l4(xj)[-kH«1»(kr)|i]Asr);H(1)(kr)CAsj} (15) 

J=l J=l 
where x   is at the midpoint of the j      boundary segment    and r = |x-x  | 

The response of a harbor to incident waves is described by a parameter 
called the "amplification factor" which is defined as the ratio of the wave 
amplitude at any position (x y) inside the harbor to the sum of the incident 
and the reflected wave amplitude at the coastline   (with the harbor entrance 
closed) 

A f2(x,y)e •Xat 
ln,(xyt)| .   iv^'.yje       i 
... -xoc, - TJWTT^ = lf3(x.y>l 

|Ai(fi+fr)e-X°C|    "        lA-l-e'^" 
(16) 
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EXPERIMENTAL EQUIPMENT 

Experiments were conducted m the laboratory in a wave basin 1 ft 9 m 
deep    15 ft 5 in    wide,   and 31 ft 5 in    long      An overall view of the wave basin 
is presented m Fig    3      The wave generator was a pendulum type 11 ft 8 in 
long,   2 ft high located at one end of the basin and it was designed to operate 
either as a paddle- or piston-type wave generator with a maximun stroke of 
±6 in      (For detailed description and design considerations the reader is 
referred to Raichlen (1965) )   Wave periods ranging from 0   34 sec to 3   8 
sec can be obtained 

The wave period was determined by a pulse counting technique   the pulses 
are generated by interrupting a light beam which was directc d at a photo cell 
by a disc with 360 evenly spaced holes arranged in a circle around its outer 
edge      The voltage pulses which are produced m this manner are counted by 
an industrial counter over an interval of 10 sec      Thus the wave period mea- 
sured was an average over 10 sec and throughout an experiment this period 
varied at most by ±0   05% 

Wave amplitudes were  measured electronically using resistance wave 
gages and an oscillograph recorder      The wave gage was calibrated before 
and after an experiment   (approximately one hour apart)      Even though these 
calibrations showed very little difference    a calibration curve representing 
an average over the duration of an experiment was used m reducing the ex- 
perimental data (see Lee (1969)) 

In order to simulate the open-sea m the laboratory wave basin    two types 
of wave energy dissipators were employed     a wave filter placed m front of the 
wave generator     and wave absorbers located along the side-walls of the wave 
basin    these can be seen in Fig    3      The wave filter was  11 ft 9 in    long,   1 ft 
4 in    high    and 5 ft thick in the direction of wave propagation and was con- 
structed of 70 sheets of galvanized iron wire screen with each sheet spaced 
0   8m    apart      The wire diameter of the screens was 0   011 in    with 18 wires 
per inch in one direction and 14 wires per inch in the other      The wave absorbers 
placed along the    sidewalls   of the basin were each 1 ft 6 in    high     1 ft 10 in 
thick normal to the sidewall,   and 30 ft long and consisted of 50 equally spaced 
layers of the same galvanized iron screen as used in the wave filter      The 
majority of waves used m the experiments were reduced in amplitude by at 
least 80% as the result of passing through the wave filter  (or absorber) 
reflecting from the wave machine (or wall)     and passing through the wave 
filter   (or absorber) again      Such wave energy dissipating materials were 
necessary in order to simulate the open-sea condition satisfactorily      With- 
out this wave filter and these absorbers    wavts radiated from the harbor 
entrance would be reflected from the wave paddle and the sidewalls of the 
basin creating a wave system which is quite different from the open-sea 
This problem was described by Raichlen and Ippen (1965) in which it was shown 
that,   due to coupling between the harbor and the wave basin    the response of 
a rectangular harbor in a highly reflective basin was radically different from 
that of a similar harbor connected to the open sea 

In order to fully test the theory developed    it was di cided to use a model 
of Long Beach Harbor which in the past experienced problems from long period 
waves      This model shown in Fig    4    was constructed from \ in    thick lueite 



RESONANCE IN HARBORS 2171 

Fig.   3   Over-all view of the wave basin and wave generator with 
wave filter and absorbers in place 

Fig.   4   Model of the East and West Basins of Long Beach 
Harbor   (Long Beach,   California,   U. S. A. ) 
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plate with a planform which was simplified from the prototype East and West 
Basins of Long Beach Harbor The harbor model built to a horizontal scale 
equal to 1 4700 was designed so that it would fit into an opening at the center 
of a false wall simulating a perfectly reflecting coastline which was installed 
27 ft 6 in    from and parallel to the wave paddle 

PRESENTATION AND DISCUSSION OF RFSULTS 

Prior to applying this theory to a complicated harbor    the theory was applied 
to harbors of simpler shapes     circular and rectangular      The circular harbor 
represents an extreme where the harbor boundary is curved and the tangent to 
the boundary is continuously changing direction      The rectangular shape harbor 
represents the other extreme since the harbor boundary is composed of 
straight lines,   along each line the direction of the tangent to the boundary 
remains the same      It has been found   (see Lee 1969     1970)   that the results 
of this theory applied to circular and rectangular harbors agree well with 
corresponding experiments 

As mentioned previously    m order to verify the theory for a harbor of 
complicated shape    Long Beach Harbor was studied theoretically and experi- 
mentally m the laboratory      A sketch of the harbor model which was used is 
presented in Fig     5 which shows the width of the entrance as 0   2 ft and the 
characteristic dimension of the harbor    a    equal to 1   44 ft      The water depth 
was constant m both the harbor and the "open-sea" and equal to 1 ft 

Re sponse curves at four different locations inside the harbor are pre- 
sented m Figs     6 to 9       The four points are designated as A    B,   C,   D and 
their relative positions m the model are shown m Fig    5 as     A (0   30 ft, 
-0   525 ft),   B (0   30 ft,   -0   96 ft)    C (1   32 ft,   -0   96 ft),   and D (-0   45 ft, 
-1   245 ft),   -where the first number inside the parenthesis is the x-coordmate 
and the second number is the y-coordinate      For all the response curves the 
abscissa is the wave number parameter    ka (where k is     the wave number, 
and "a" is shown m Fig     5)    the ordmate is the amplification factor R,   de- 
fined as the wave amplitude at point A   (or B,   C,   D) divided by the average 
standing wave amplitude at the  harbor entrance when the entrance is closed 
(see Eq    16) 

The theoretical results obtained are shown as solid lines in the response 
curves while   the experimental results are shown as circles      In applying the 
theory the boundarv of the harbor is divided into 75 unequal straight-line 
segments including two segments for the harbor entrance      The segments are 
numbered counter-clockwise starting from the right-hand limit of the harbor 
entrance and this numbering system is also shown in Fig     5       For accurate 
results the length of these boundary segments should be less than approxi- 
mately one-tenth of the smallest wave length investigated (see Lee     1969) 

From Iigs    6    7    8,   and 9 it is seen that the theoretical results agree 
well with the experimental data at all four locations which were invc stigated 
The complicated shape of the response curves are due to the irre gular shape 
of the harbor and the fact that this harbor really consists of two coupled 
basins      One common feature of the four response curves is that while th< 
theory has prediced the frequency of every resonant mode of oscillation 
correctly    the theoretical amplification factor at resonance is slightly 
larger than the experimental data especially for the resonant modes at larger 
values of ka      There are two possible reasons for this      First    in applying 
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N 75 (TOTAL NO OFSEGMENTS) 

^2, " | "' | 7~ 

+ AI03H    0525ftl 

+ B<03fl     096ft) 
44 "l .1,1 1 H 

[I 32ft   096fl)        " •, 

25   26'27' 28' 29 

45   46       47       4s      49      50       5i       52       53       545856 

 o 144ft -I 
SCALES 

0                  "«"'              05ft 
I 1 1 I 1 I 
0 Pol type 2500ft 
1 l        l        I        l        I 

Fig    5    Dimensions sketch of the Long Beach Harbor model 

  Arbitrary Shaped 
Harbor Theory 

o       Experiment (h = 10 ft) 

Fig    6   Response curve at point A of the Long Beach Harbor model 
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a   « 

Arbitrary Shaped 
Harbor Theory 

Experiment (h = I Oft) 

Fig    7   Response curve at point B of the Long Beach Harbor model 

Arbitrary Shaped 
Harbor Theory 

Experiment (h-IOft) 

Fig    8   Response curve at point C of the Long Beach Harbor model 
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Arbitrary Shaped 
Harbor Theory 

Experiment (h = IO ft) 

Fig    9   Response curve at point D of the Long Beach Harbor model 

60 - 
- Arbitrary Shaped Harbor Theory (for present harbor model) 

600 ft Gate Opening  1 
2000 ft Gate Opening) Mod<" S,u<* "» Knapp « V-non,(l945) 

Fig    10   Response curve of the maximum amplification for the model 
of Long Beach Harbor compared with the data of the model 
study by Knapp and Vanoni (1945) 
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the theory     the harbor boundary was divided into the same number of segments 
for all wave numbers    thus the ratio of the segment length As to wave length L 
is smaller for the smaller values of ka than for lctrger values of ka      Therefore 
the theoretical results for small ka are more accurate than the results which 
correspond to large ka    and    thus    better agreement between the theory and 
experiments is to be expected      Second    energy dissipation is larger near 
resonance for large values of ka which also tends to decrease the experimental 
amplification factors compared to those determined theoretically 

It can also be seen from the response curves that the agreement between 
the theoretical solution and the experimental data is uniformly good at each of 
the locations       This suggests that the theory has also accurately predicted the 
wave amplitude distribution inside the harbor for each mode of resonant 
oscillation 

It is interesting to note that for larger vahies of ka,   the shape of the mode 
of oscillation inside the harbor becomes more complex      For example    for the 
first resonant mode   (ka    0   61) the amplification factors at the four positions 
{ABC    and D)   are approximately the same      In fact    for this mode of 
oscillation the wave amplitude is fairly uniform throughout the harbor and 
either positive or negative water surface displacements occur simultaneously 
throughout the harbor       Thus     the first resonant mode   (ka •= 0   61) is usually 
termed the "pumping mode"      However    for the mode corresponding to 
ka = 7   62    the amplification factors at the four locations differ considerably 
indicating that this is a much more complicated mode of oscillation than the 
"pumping mode" 

The variation of the maximum amplification within the entire basin plotted 
as a function of ka is presented in the respone curve of Fig    10      The ordmate 
is the ratio of the maximum wave amplitude within the harbor     regardless of 
location    to the standing wave amplitude with the entrance closed       This curve 
shows every possible mode of resonant oscillation for the range of ka that has 
been investigated,   as well as the maximum amplification for each mode 
Experimental data from a model study conducted by Knapp and Vanom (1945) 
are included in Fig     10 for comparison      (The gate or entrance width used m 
the present model corresponds to a prototype width of 940 ft   )     The original 
data of Knapp and Vanoni were presented by them as the maximum ampli- 
fication factor as a function of prototype wave period      In order to convert 
their wave period to the wave number parameter (ka) used herein    an average 
prototype water depth of 40 ft was used throughout the harbor along with a 
characteristic dimension of the harbor   a = 6768 ft      These hydraulic model 
data and the present theoretical curve show qualitative agreement of the wave 
periods of resonant oscillations    especially    the mode of oscillation at ka = 3   38 
However     there is a considerable difference between the predicted maximum 
amplification and the measured       There are two factors that may contribute to 
such differences       First    the maximum amplification factor used by Knapp 
and Vanoni was defined as the ratio of the maximum wave amplitude inside the 
harbor model to the maximum wave amplitude measured outside the harbor 
thus    it differs from the definition used m the present theory      Second,   the 
water depth m the model used by Knapp and Vanoni was small increasing the 
importance of viscous effects in their model compared either to the inviscid 
theory or the experiments of this study 
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Fig     11   shows the distribution of wave amplitude inside the harbor for 
the resonant mode at ka = 3   38 determined from the present theory      The 
wave amplitude has been normalized with respect to the wave amplitude at 
point C   (the coordinates of this position are shown in Fig    8)      Two nodal 
lines   (line** with zero ampljtude) occur    one m the East Basin and one in the 
West Basin with maxima at the ends of each basin and a minimum near the 
confluence of the two      Data are presented in Fig     12    from Knapp and 
Vanoni (1945) on the wave amplitude distribution for a prototype wave period 
of 6 minutes (ka =3   30)      By comparing Figs     1 1 and  12 it is seen that the 
general shape of wave amplitude are similar for the two models  (e   g   ,   the 
location of the two nodes and the maximum) even though the boundary of the 
model used for present study is  simplified compared to the hydraulic model 

Fig     13 shows the average maximum total velocity at the harbor entrance 
(maximum in time averaged across the harbor entrance)   as a function of the 
wave number parameter ka      The ordmate has been noimalized with respect 
to the maximum horizontal water particle velocity for a small amplitude 
shallow water wave    ygh Ax/h      From this figure    it is seen that there are 
nine maxima in the range of ka presented which correspond to the nine 
resonant modes  bhown in Fig     10 demonstrating that each maximum of the 
total entrance velocity is assiciated with a mode of resonant oscillation inside 
the harbor      Fig     13 also shows that the velocity at the entrance for the pump- 
ing mode   (ka = 0   61) is significantly laiger than tnat of any other mode of 
oscillation      Using the prototype dimensions mentioned previously the wave 
period of this mode is about 33 minutes and could possibly be excited by 
tsunamis      If A1 = 0   5 ft and h = 40 ft,   Fig     12 indicates that the maximum 
entrance velocity for the pumping mode would be  10 fps     and for other modes 
it would be of the order of 2 fps    such velocities may cause damage to structures 
located near the entrance as well as  creating navigation problems 

CONCLUSIONS 

The following major conclusions may be drawn from this study 

1 The present lmear-mviscid-theory predicts the response to periodic 
incident waves of an arbitrary shape harbor -with constant depth connected to 
the open-sea quite well even near resonance 

2 The theoretical prediction of the resonant wave numbers  (or reson- 
ant frequencies) agree well with the experimental data      The theoretical 
amplification factor at resonance is generally somewhat larger than the 
experimental data especially for the resonance modes at larger values 
of ka 

3 The average total velocity across the harbor entrance reaches a 
maximum when a resonant oscillation develops inside the harbor     the mag- 
nitude of such entrance velocities may be much larger than the corresponding 
water particle velocity of the incident wave 

4 The present theoretical results also agree qualitatively with the 
experimental data obtained from a model study conducted by Knapp and 
Vanoni (1945) although the planform of the model investigated by them 
was more complicated and their study included depthwise variations 
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•J^Z. 

Fig    11 The theoretical wave amplitude distribution in the Long 
Beach Harbor model (ka = 3  38) 

Fig    12    Wave amplitude distribution inside the harbor model of 
Knapp and Vanoni (1945) for six minute waves (ka = 3   30) 
(see Knapp and Vanom (1945)    p    133) 
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