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ABSTRACT

The added mass and damping coefficients for serm- and fully-
submerged twin cylinders 1n vertical motion are determined as functions
of the oscillation frequency, the cylinder spacing ratio, and the cylinder
submergence ratio It has been found that resonance may occur 1n
particular combinations of cylinder spacing and oscillation frequency at
which the hydrodynamic inertial and damping characteristics deviate
from the trend curves for the case of a single cylinder Justification
of using the two-dimensional results to calculate motions of three-
dimensional twin-hull vessels 1s discussed It 1s suggested that, by
means of strip theory approach, these results can be used to estimate
the hydrodynamic forces for catamaran type vessels 1n pitch and heave
motions

1 INTRODUCTION

This paper presents a method to estimate the vertical hydrodynamic
forces for twin-hull vessels, including the catamaran type surface ship
which has two hulls floating on the free surface and a certain type of
floating platforms which have two parallel and closely spaced hulls sub-
merged under the free surface

Analytical calculation of the mono-~hull ship motions generally
follows the method of strip theory approach The validity of using the
strip theory approach to calculate motions of twin-hull vessels has not
been completely established Objections certainly may raise, 1if one
considers the overall width of the vessel as the beam, which 1s relatively
too large for the strip theory to apply However one may feel different
if he considers it as though there were only one hull plus a wall effect
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1702 COASTAL ENGINEERING

It 1s not the purpose of this paper to validify the strip theory for twin-
hull vessels, but through the availability of the two~dimensional results
for the twin-hull model, obtained from this and the previous analyses,
investigations on motions of catamaran type vessels by means of strip
theory approach may proceed

According to the strip theory, the hydrodynamic quantities, such
as the added mass and damping coefficients, are estimated by making
use of two~-dimensional data of long cylinders For the present purpose,
we consider a body having two i1dentical, rigidly connected, circular
cylinders As to the added mass and damping of the catamaran type sur-
face vessels, the two cylinders are considered semi~submerged imtially
in the free surface Theoretical and experimental investigation of this
problem has been given by Wang and Wahab [1] To complete the analysis,
the present work considers the two cylinders being fully submerged The
problem 1s formulated as a linearized boundary value problem in the theory
of small amplitude waves Within this framework, a potential function 1s
constructed by superimposing a series of various order singularities, and
the solution 1s obtained through determining the singularity strength by
means of satisfying the boundary conditions

Numerical results of the added mass and damping coefficients are
presented For the convenience of discussion, the results of the semi-
submerged case are also summarized and reviewed Finally, applications
of these results to calculating forces on catamaran type vessels are
discussed

2 SUBMERGED TWIN CYLINDERS

Formulation of the Problem

We consider two identical circular cylinders, each of radius a,
rigidly connected with a spacing distance of 2b between their center-line
axes They are fully submerged and are forced to make small vertical
harmonic oscillations about a mean level f(>a) under the free surface
The problem reduces to the special case of semi-submerged cylinders
oscillation 1f £ = 0 The two cylinders are assumed to be infinitely long,
and the resulting motion 1s two~dimensional

Taking the undisturbed free surface as the x-axis, a Cartesian
coordinate system 1s defined as shown in Figure 1 The center-line axes
of the two cylinders are then (b,f) and (-b,f) Two sets of polar
coordinates are employed with their origins located at the two cylinder
centers, they are related to the Cartesian coordinates as follows

x = b+t+rsingg = -bt+tr' sing'
v = f+rcosd = f+r'cos g’
r - [(X_b)z + (y_f)2]1/2

fo= [(x+b)2+(y_f)2]1/z
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The fluid 1s assumed 1nvisid and incompressible, then the problem
reduces to seeking a potential function for the described motion Let the
motion be simple harmonic of period 2m/w  When the motion amplitude
ng 18 sufficiently small, the velocity potential &(x,y,t) may be described
by a series of singular function @ _(x,y), linearly superimposed in the
following form n

9

ooy, t) = aw o Re Z‘() An CDn(X: ) e-lu)t (2}
r=

The function @, (x,y) satisfies

(A) vzmn = 0 1n the fluid (3)
B) Ko + 0 _ 0 K o’ 4)
(B) o, —6—37 = on the free surface (K = —g—) (
3
(€) —2=0 at x=0 (5)
X
/ann \
(D) Iim \5x T 1chn/ =0 as x » £® (6)
(E) ¢ =0 asy = (7)

The coefficient An 1s a complex-valued number corresponding to

the strength of the nth order singularity it is a function of the cylinder
spacing b, submergence f and frequency w These coefficients are to
be determined by satisfying the kinematic boundary conditions on the
cylinder surface, which will be described later

Method of Solution

The singular solution of the two dimensional Laplace equation (3)
satisfying the boundary conditions (4), (6)and (7) may be written as a
source function or 1its derivatives of any assigned order For a singu-
larity located at (o f) the solutions have been given by Thorne [2] as
follows

o ekl
G , = 1 + —— kx dk
o(x y) og o 30 % cos kx
-12ne-K(Y+f) cos Kx (8)
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-1
_ cosng , (1P § Ktk . n-1 -k(y+)
Gnc(x’y) = o + oo 1) 0 Kor k e cos kx dk
-7 n -K(yif)
+1((n_)1)| 2n K™ e cos Kx (9)
n o
B sin ng , (-1) Ktk ;n-1 -k(y+f)
GnS(X:Y) = o + 1) 5-6 T k e sin kx dk
-1
(-n° n ~K(y+f)
t1 e K ) i kx (10)

Equations (8) and (9) are solutions for describing symmetrical
motions, and Equation (10) for anti-symmetrical motion In these equations,
(ps 0) are the polar coordinates, measured from origin (o, f) and pp 18 the
radial distance from the image of (o,f), 1 e , (o, -f)

By expanding the integrals in Equations (9) and (10), one may show

that any of the higher order potentials, Gnc and Gns’ can be constructed
by the following functionsg

@

G. ) = Cos g 4 g jL: e-k(V+f) cos kx dk
1Y = o 0 T K-k
-121 Ke—K(YH) cos Kx (11)
sin - e"k(yﬂ)
= sino | s k
Gls(x’ v) 5 K 0 "o St kx d
t12nKe B o ke (12)
G (xiy) = cosng , K cos (n-ljg (13)
nc omn n-1 on-1 fn:2’3
G' (x,v) = sin (ntlo K sinng (14)
ns pntl n pl
The functions Glc and Gls represent, respectively, the vertical

and the horizontal dipoles, combining with appropriate wave function to
satisfy the free surface condition (4) and the wave radiation condition (6)
Each term 1n these equations satisfies the infinite depth condition (7)
The functions Gl"lc and Gl"ls are wave-free potentials, they represent

only local fluid motion which decays rapidly at a distance and yields no
waves at infinity
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To derive the potential function cpn(x, y), one may construct it by

using singular solutions corresponding to singularities located along the
two cylinder axes, (b,f) and (-b,f), so as to satisfy the symmetry
condition, Equation (5) This may be obtained as follows

o, y) = G (x-b,y) + G _(xtb, y) (15)
0yl = Gy (x-b,y) t G (xtb,y) (16)
00 y) = G (x-b,y) - G (xtb,y) (17)
0 y) = Gl (x-boy) + G (xtb, y) fn-2.3 (18)
0, 0y) = Gl (x-byy) - G (xth, ) (19)

Substituting Equations (8), (11), (12), (13) and (14) into (15) through
(19) and invoking the following identities [3]

n-1 _-k(y-9)

cos np _ 1 k cos (x-b) ak (20)
n T (n-1)" 0
T
©
sinng 1 f 1P e KD i (kb dx 21)
n (n-1)' 0

r

we obtain

® k(y+)
rr +4§ <

w (s y) = log I T 0 % - cos kb cos kx dk
-4 e RO o0 Kb coskx (22)
©
.[ -ky kx dk
QDIC(‘{, y) = 4 { o © sinh kf cos kb cos kx d
-
+K § o (V) cos kb cos kx ak f
K-k
- 14 Ke-K(yH) cos Kb cos Kx (23)
P K
wls(x, y) = -4{.]0 e ™Y cosh kf sin kb cos kx dk
| ® -k{y+f)
.k § £

0——K—T—1€'51nkb cos kxde

- K(y+f)

-1 41 Ke sin Kb sin Kx (24)
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‘,.ao
_ 4 n-2 -ky cosh kf _ even
O Y) = oo Jo R+ KK % e o kr cos kb cos kx dk, n= V%7
(25)
[+
_ *f%_f n-2 -ky cosh kf _ odd
cons(\,y') m-1)7 %0 (k+K)k e oinh ki S0 kb cos kx dk, n= even
(26)

= A + s 2
If we put Ancon ncPrc Anscpns we may write Equation (2) 1 a

different form as follows

[+
~ - N -1pt
s0x,y,0) = aun, Re[A o e W 4+ ) (4 o tA o )V

n=1 (27)

To determine the expansion coefficients the velocity potential shall
be forced to satisfy the normal velocity on the body surface

"c‘G: wn, cos wt cos ¢ onr =a (28a)
38 ¢ ' onr'=a (28b)
'a—r| = wno cos cos Q

assuming that the vertical velocity of the body 1s wn, cos wt

Since the two cylinders are identical, the boundary condition (28b) 1s
equivalent to (28a) and need not be considered For the convenience of
computation 1n this particular case, the potential functions (Equations (22)
through (26)) are expanded 1nto series about the cylinder axis (b f) The
numerical computation then proceeds by formulating Equation (28a) into a
set of simultaneous algebraic equations, and the expansion coefficients can
be determined by a collocation technique

Added Mass and Damping Coefficlents

The steady state vertical force on a unit length of the cylinders 1s

2T 3g
F_ = -2pa ‘Jo ¢ cos0d8 (29)
One may write Fv in terms of mn(t) (= nosulwt) as
FV = -MV n(t) - Nv n(t) (30)

then the added mass coefficient ¢ and the nondimensional damping
coefficient & 1s defined as follows
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M
L f R v
alka 2 1) = —Yo (31)
Znoa
N
p(ka 2,5y = —— (32)
a’a
Zripwa

These coefficients are directly related to the potential function &,
using the expression given in Equation (2), one obtaing

o 2m

1 - b f b f
a = ;T‘ Rel_L. jo An(Ka,—é,z)c{sn(Ka ' S)CosedeJ
n-0
(33)
- 2m
- A b f b f
0= = ImLZ_. JO A (Ka’Z’E)CDn(Ka’Z’Z’ e)cosedeJ
n=0

The Horizontal Force

Because of the unsymmetrical flow over the cylinder surface, there
1s a horizontal force component 1induced between the two cylinders, exciting
sideway oscillations For a unit length of the cylinder, this force 1s

21
- 7" 3¢
EhR -pa ‘Io —gt—sule dg (35)
or
r = M2 +N2 sin(wt-¢) (36)
h h h wi-¢
where
o 2m
- 2 . b f b f
Mh— pw n2 ReL L JO An(Ka P ) ron(Ka, ' f) sin ede_‘
n=0
(37)
o 2T
2 AN b f b f -
Ny = pw'nga Imj » ‘]0 A (Ka, =, =) g (Ka, =, —, g) sin g dej
n=0
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In terms of the maximum hydrostatic force variation during the
oscillation a horizontal force coefficient 1s defined as

M2+N2

ho= o __h (39)
2 pgamno

and the phase angle by which the inward horizontal force falls behind
the oscillating displacement 1s therefore

N,
e = tan—l _I\Th (40)
h
3 RESULTS AND DISCUSSION

Added Mass and Damping Coefficients

(1) Semi-submerged twin cylinders

Before entering into discussion of the results for the fully submerged
case, we shall first review and summarize the results for the semi-sub-
merged case, which has been obtained i1n [1] The theoretical results of
the added mass and damping coefficients for this case are shown in Figures
2 and 3 These results are presented as a function of nondimensional
frequency Ka waith the hull spacing ratio b/a as a parameter

It 1s important to note that there exists a discrete set of characteristic
frequencies at which the motion of the fluid between the two cylinders 1s
strongly excited by the forcing oscillations These characteristic fre-
quencles can be obtained from the following equation

K(b-a) = nm n =12, (41)

They bear a correspondence to the natural modes of the motion of fluid
between two vertical walls of 2(b-a) apart

The first few characteristic numbers of Ka 1n accordance with the
normal modes for four cylinder space ratios are listed below

n
b/a 1 2 3 4
15 21 4t bm 87
20 i 21 37 41
30 /2 n In/2 21T
40 /3 21/ 3 i 4m/3

Table I Characteristic frequencies as a function of
hull spacing ratio



1710 COASTAL ENGINEERING
z T 2r 4r 3m Sr
3 2 3 s 3 2 3
3 l T T T T 77T} 3
/]
) / ‘b/a =15 2
e
N ‘l\—/ \
~ \
Ao~ [T l J_ ) bt
ANV N L --%[,,/%K‘“f i
40 N T LT -2 "7
D e
0 g \ AR . [ 0
\ \ 7 4
\ {
/
Y K
A \\\ YE ‘ a L/ 2
\
W, i /
/
\/
-2 |——/'—— 1 -2
-3 \! 1= -3
b —smtm—b
) i $ 1"
-5 -5
-6 -6
1 2 3 4 5 6 7 8 91 2 3 4 5 6
Ka
Figure 2 Added Mass Coefficient @ as a Function of Ka

Semi-submerged Twin-cylinders, f/a = 0



Figure 3

TWIN-HULL VESSELS 1711

x x 2x 4z 3r5r
3 2 3 T7T3
L T LI T TTT]M0o0
- A
50 / 50
—y — /\
1
\
b \\ ba 15
\ 20
10 3o 1o
P 40\ | ‘
- v
- |
0s |- | \ —Hos
0
L Ly
\ A
L |/ I
I N
~~
TR
t ‘ | /. =
[ o | ; o1
- Iy HEEAN |
B [ irY
- [ :I\
oos | I||I := \ - o005
i [ b
5 11 o \
[ I
. Il
: | ..
1] i
I i |
1 Ill
oo |- b i
- I it
X i |
- Il §
0005 |- 1l 1
L 1
I
B 1]
,
il
i ] .
I
|
0 001 | ) l‘l H 1.1 | A
1 2 3 4 56 7891 2 3
Ka

Nondimensional Damping Parameter 6 as a Function of Ka
Semi-submerged Twin-cylinders, f/a = 0



1712 COASTAL ENGINEERING

From the graphs, 1t can be seen that the added mass and damping
coefficients are markedly peaked at values of Ka close to those specified
above, and as the oscillation passes across the characteristic frequency
(a phase change taking place i1n the surface waves), the added mass be-
comes negative 1n a very narrow band of frequencies and the damping
coefficient falls down to zero at a certain frequency

Besides these normal modes of resonance, one may find, from
Figures 2 and 3 that there 1s another peak occurring between Ka = 0
and the first characteristic frequency This peak corresponds to the
degenerate mode (or zero'th mode) at which the fluid displacement between
the cylinders 1s approximately uniform and 180 out of phase with that
immediately outside the cylinders This peak occuples a rather wide
range of frequencies, as compared to those which occur at higher modes

In regard to the resonance phenomena discussed above, 1t must be
noted however that they are strictly two-dimensional characteristics
All the resonance peaks, except that of the zero'th mode, would disappear
if the hull beams vary along the length (regular catamaran hull) or if the
band width of the input oscillation 1s large For a detailed discussion, one
15 referred to [1]

(2) Fully-submerged twin cylinders

The computation has been done for four cylinder spacing ratios,
b/a=15,2 0 2 5and 3 0and four submergence ratios, ffa=15, 2 0,
2 5and 3 0 To demonstrate the spacing effect which arises from the
interference between the two cylinders values of g and § for different
spacing rafios are superimposed and presented in Figures 4 through 11

Each plot 1s given for one given submergence ratio As the frequency

of interest for practical application 1s mostly in the neighborhood of Ka =
1 0, the presentation 1s lhimited to a frequency range upto Ka =2 0

As discussed 1n the preceding case when the two cylinders are sema-
submerged, there are certain characteristic frequencies, around which
1n a very narrow frequency band width the added mass deviates from its
normal trend and the damping coefficient falls to zero while the radiated
wave changes phase When the two cylinders are fully submerged, al-
though the spacing distance still has a tendency to amplify the surface
waves between the two cylinders around those characteristic frequencies
as given in Table I, there 1s no physical boundary on the free surface to
characterize the wave length so that there 1s no equivalent resonant
phenomenon as described for the semi-submerged case except that the
radiated wave does change 1ts phase around the neighborhood of those
frequencies and that the damping falls to zero

Similar to the semi-submerged case, there 1s a peaked added mass
and a zero damping occurring somewhere between Ka = 0 and the first
characteristic frequency It must be noted that, for both sermi- and fully-
submerged cases, these peaked added mass and deviated damping occupy
a wide band of frequencies This 1s very important to the twin-hull vessels,
as these peaks and deviations will not be completely removed either by
the effect of three-dimensional hull form or by random input oscillations
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The Horizontal Force

The horizontal force, as well as the vertical component, added
mass and damping oscillates in the neighborhood of the characteristic
frequencies It can be shown however, all the high frequency peaks are
not larger than the first one But this 1s not the case, when f/a = 0
(semi-submerged) The high frequency peaks for the semi-submerged
case may be much larger because of the surface wave resonance Never-
theless, this 1s strictly a two-dimensional phenomenon as discussed
before and it occupres only a very narrow band of frequencies, the high
frequency peaks, therefore, are of little importance to the practical
applications

In Figure 12, the dimensionless peak amplitude of the horizontal
force are given as a function of cylinder spacing All these values 1n-
cluding those for the case f/a = 0, refer to the lowest frequency peaks
The hull spacing effect 1s clearly demonstrated in this figure for the
semi-submerged case, the maximum side force can increase by ten times
when the hull spacing ratio b/a 1s reduced from 3 0 to 1 5 For the fully
submerged cases, the hull spacing effect 1s not as strong as that for the
semi-submerged case, however, the submergence effect seems rather
evident The maximum side force may reduce approximately 70% when
the submergence depth 1s 1ncreased by one cylinder radius Based on the
computed data, the maximum force coefficient h for the fully submerged
case, can be interpolated 1n terms of the hull spacing ratio b/a and sub-
mergence ratio f/a as follows

b

2.0 22 _ 1 12t
e a a

h = l15<=<30 (42)

4 APPLICATION

A group of floating platforms (such as the Mohole) and a certain
type of the novel high speed vessels (such as the Trisec[4]) consist of two
parallel cylindrical type hulls to facilitate good maneuverability, as well
as to provide buoyancy As to these kinds of vessels, the results of the
present analysis on the fully submerged twin cylinders are to provide
good hydrodynamic information and can be used directly for the vessel
motion response estimation

As to the catamaran type surface vessels, the results obtained from
the semi-submerged twin cylinders analysis can be used to approximate
the added mass and damping 1n both heaving and pitching by means of strip
integration technique As an example, the heave motion coefficients of an
ASR (submarine rescue) catamaran are estimated The procedure of this
estimation begins with calculating the two-dimensional section added mass
and damping of one hull of the catamaran by considering it independent
from the interaction of the other hull Then these values are corrected 1n
considering the twin-hull interation effect by multiplying the following ratio
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as <-2 , Ka)

R == & (43)

[
where

a, = added mass or damping coefficient (whichever applies)
for twin-cylinder oscillation

a, = added mass or damping coefficient (whichever applies)
for single-cylinder oscillation

b

The ratio R 1s a function of the cylinder spacing ratio a and the
frequency parameter Ka, where the cylinder radius a here 1s assumed
equivalent to and substituted by the local half-beam of one hull, and b 1s
one-half of the spacing between center to center of the two hulls This
approximation tmplies that the effect of twin-hull interaction 1s not sensi-
tive to the hull shape details

The principal dimensions and the hull lines of this catamaran are
shown 1n Figure 13 A 1/16 89 scale model of this catamaran was tested by
NSRDC for the purpose of determining the added mass and damping coeffi-
cients in both pitching and heaving oscillations [5] The model tests included
investigations of the speed effects, covering a speed range up to Froude No
= 0 316 The estimated results of the added mass and damping coefficients
are compared with the experimental results for the catamaran at zero speed
and shown in Figure 14 The agreement 1s fairly good in regard to the
negative added mass 1n the neighborhood of 4y = 2 5, where pu 1s a non-
dimensional frequency defined in Figure 14 The experimental results of
damping are rather scattered This 1s essentially due to the effect of
resonance, which occurs i1n the neighborhood of 4 = 2 5
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coefficient

olv)s(x)dx
N

33 jpz s{x)d>

s(x) = sectionil area

ship length
wew g

(b) nondimensional
damping cocificieat
r
u, s0x)s(x)ds
B = f

33
I] s{\)dx

Thgwe 14 Hydiodynum ¢ cocfficients of ASR cetamalin in heiving motion

I, pernnental
(Reference [5])

Computed

C 4 on

0 125" motion unphtude
0 250" motion m1apl cude
0 375" motion unphtude






