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ABSTRACT 

This paper is a continuation of the paper with the same name, 
presented on the Xlth Conference on Coastal Engineering by the 
first author [1] , in which a mathematical theory was given about 
the behaviour of a coast after the construction of a groyne system. 
Now this paper extends the former paper theoretically and practi- 
cally. 

1. Theoretically a computer program has been made in which the 
influence of diffraction behind the groyne has been taken into 
account. 

2. Practically the coastal constants used in the theoretical 
model of the coast will be expressed in terms of wave height 
and wave direction, based on the theory of SVASEK [2] . 

Results are given of computations with a coastal model in which 
the coast is schematized to one line (one-line theory) and a model 
in which the coast is schematized to a beach line and on mshore- 
lme (two-line theory). 
The influence of changing wave conditions is investigated. 

INTRODUCTION 

The construction of a groyne has the following effects 
(fig. 1) 

1. Prevention of the littoral sanddrift in the area between the 
coastline and the head of the groyne. 

2. Prevention of the longshore current in the same area. 

3. Formation of a sheltered area at the lee-side of the groyne, 
caused by the diffraction. 

k.  Changing the wave height by reflection 

wave   direction 

Fig   1    The   effects   of   the    construction   of  a    groyne 
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The former paper dealt only about the first aspect, now we shall 
pay attention to the first and the third aspect. The second and 
fourth one will be investigated in the future. 

ONE-LINE THEORY 

The theory given here is an extension of the theory of 
PELNARD-CONSIDERE [3] . 
PELNARD-CONSIDERE assumes, that the profile of the coast always 
remains the equilibrium profile, so that he only needs to consi- 
der one coastline, being one of the contourlines. He assumes no 
currents, constant wave direction, small angle of wave incidence 
and a linear relation between angle of wave incidence and the 
littoral drift. 
The derivation of his theory is summarized in CD • 

For the littoral drift he finds 

0 = 0    - q -*^  (1) 
WAVE  INCIDENCE ^        ^O        H   3x 

in  which Q =  littoral  drift. 

Q = littoral  drift at 
the point,  where 

ft. 0. 
3X 

q = the  derivate Fig   2        Littoral drift along the  coast 

of the littoral 
drift Q to the angle 
of wave incidence *P. 

that the accretion is proportional to the curvature of He finds, 
the coast 

(2) 

From this equation the coastline y as a function of x and t can 
be found for many boundary conditions. Pelnard-Considere gives 
analytical solutions of his equations. The interrupted line in 
fig. 5 shows the accretion and erosion near a groyne according to 
his theory. He assumes that wave height and wave direction are 
constants along the coast. At the lee-side of the groyne however, 
the wave height is less and the waves have an other direction, as 
a result of the diffraction. 

We introduce diffraction in the theory of Pelnard-Considere 
. The equations become more complicated, that's why we have to 

give numerical solutions. The derivation of the one-line theory 
including diffraction is given in appendix As1. 
For the littoral drift the same formula of Pelnard-Considere re- 
mains of value 

%- 
12 
ax (3) 

but now Q and q are functions of x. 
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The effect of the diffraction can be splitted in a stationary 
effect and an instationary effect. This can be made clrsr an the 
following way (fig. k). 
If everywhere wave height and wave direction 
are the same, a straight coastline is stable, 
the transport is everywhere the same. If the 
wave height and the wave direction change in 
x-direction, the transport will change also 
and therefore the coastal shape has to adapt 
itself in order to make the transport every- 
where the same again and give a stable coast- \ 
line. In appendix A1 a mathematical formula- < 
tion of this problem is given. The transport 
has been taken proportional to the square of 
the wave height and to the angle of wave 
incidence. A possible stable coastline y0 as a function of x i£ 
found (appendix A1), ruled by the differential equation 

Fig U 

dx «P- - <P» eo 
in which ^ is the angle of the waves with the x-axis,*^ the 
angle of wave incidence far from the groyne and h is the ratio 
between the wave height at an arbitrary point (x,0) to the wave 
height at x =<*>, h is a function of x. 

A short analysis of CO learns, that if the wave height 
should be everywhere the same (h=l) this would give 

-r-°- = ^P -'•P"0, thus the changing of the coastal direction is equal 

to the changing of the wave direction. 
However, the problem of diffraction near a harbour mole is 

more intricate. 
As the groyne stops all the transport, and as at x = «o the 

transport remains Q0, a stable coastline can never be achieved. 
We split the coastline y into two parts, y0 being a statio- 

nary effect of the diffraction1' and y', being an unstationary 
effect 

y (x,t) = y0 (x) + y' (x,t)       (5) 

As shown in appendix A1, the equation for the unstationary part y' 
becomes about (2), but with an additional term, because q* is a 
function of x 

__ _axl+_l_ Sal    ax! 
*>4. i. , 2 D. . dx  * 3x tot 3x  tot 

in which q* = Ah^ 

(6) 

(7) 

1) yQ is the stable coastline, which would develop, if an artifi- 
cial nourishment Q0 would be administered on the lee-side of 
the groyne. 
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A is a proportionality constant, being investigated in the chapter 
"jcoastal constants". 
The amount of h and*P in CO and (?)  in the diffraction case is 
found from the simplified theory of PUTNAM and ARTHUR £**]  . 
The unstationary part y' can be found by numerical integration 
of equation (6). 
Superposition of y0 and y', according to CO gives the coastline 
y (x,t). 
For the calculation of the coastlines a computerprogram has been 
made. Fig. 5 shows the calculated development of a coast with one 
groyne. Comparison of the interrupted and the solid line gives an 
impression of the influence of diffraction. 

Wave  incidence 

Fig 5   Accretion   and   erosion   near a   groyne    numerical    solution   with   diffraction    (one    line   theory) 
The   dotted    lines   al  the   right   hand   gives   erosion   according    to    Pelnard - Considere 

With the computerprogram we calculated the behaviour of the 
coastline between two groynes with the influence of diffraction. 
The result is shown in fig. 6. 

Fig 6    Behavior  of  the  coastline   between  two  groynes (one-line   theory) 
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Fig 7 Schematized     profile 

TWO-LINE THEOEY 

Now we schematize the coastal profile to two lines, the beach 
(y.) and the inshore (y?'). This gives 

 ,  the possibility to take the off- and 
onshore transport into account. 
In top view one sees two lines at a 
distance y and y_' from the x-axis. 
The "equilibrium distance" is the 
distance y • - y' between beach and 
inshore, when the profile is an equi- 
librium profile. 
The following dynamic equations are 
assumed. 
If the distance Jrg' - y' is equal to 
the equilibrium distance W, no inter- 
action is assumed. If the distance 
v2' ~ yi is less than W, the profile 
is too steep and an offshore trans- 
port will be the result. An onshore 
transport will occur in the opposite 
case. 

We linearize this relation and take for the offshore transport Q^ 
per unit length 

y,y, > 

Fig 8 On- and    offshore      transport 

Q    = (y3 w)} 
y 

(9) 

in which qy is a  proportional constant with the dimension [l/t] . 
It is a function of x. For a simpler notation, we denote 

y2 = y2' - W      (10) 

Then   (9)  becomes 

= <i„ (y., - y2) (11) 

With respect to the littoral drift, the assumption of PELNABD- 
CONSIDEEE is applied, both for beach and inshore, the transport 
is linearized gy., 

wit «1   =   «01 «1 

*o2 - °o 

ax 

ay2 

ax 

(12a) 

.(12b) 

in which 0.  and Q _ are  respectively 

Fig 9    Littoral    drift    along 
faoach   and   inshort the  transports where 

ay1 
ax" = 0. 

Qo1   <  motion of x, Q . is a constant, q* and q~ are propor- 

tionality factors, q* is a function of x and q2 is a constant. 
In appendix A2 the derivation of the two-line theory is given. 

The beach line y is splitted into two parts, analogue to (k)• 

r^   (x,t) = yQ (x) + y-i (x,t) (13) 
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in which y (x) is the same function as given in (8). 
For the accretion along the beach and the inshore we find 

ay1' 

at 

ay., 

ax 

aq-i 

ax 
ay-, 
ax 

+ y. y2) . .Clif) 

ay2 
Ut~ 

q2 9 y2  q 

+ y„ y2) (15) 

These are two simultaneous partial differential equations. 
For the calculation of the beach line y. and the inshore line y_ 
we made a computer program in which the equations are solved 
numerically (appendix A2). In fig. 10 the development of a coast 
with one groyne is shown. 

Wave   incidence 

Fig 10 Accretion    and    erosion    near    a 

Wave   incidence 

groyne  numerical    solution   with    diffraction 
(two-line    theory) 

Fig 11      Behaviour   of   beach   and    inshore   between   two  groynes (two-line theory) 
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From a coast with an infinite row of groynes, we calculated 
the development of the coastal shape between two groynes. This is 
shown in fig. 11. 

COASTAL CONSTANTS 

In this chapter some expressions will be derived for the 
coastal constants, respectively using the one-line and the two-line 
theory. For the one-line theory the CEEC-formula will be used, for 
the two-line theory the SVASEK-variation of this [2] . 
It is assumed, that the transport is confined to the breaker-zone. 

D    = D  (16) 
tot   br 

Considering the longshore theory of BOWEN 6 it may be 
expected that the transport takes place over a distance 1 to 1,5 
times the breaker zone, and that most of the transport is confined 
to the breaker zone. Probably it is better to assume for Dtot the 
depth occurring at a distance 1-J times the width of the breaker 
zone. In this case the factor d. becomes less, for a concave pro- 
file about 100$ to 80$ of the computed value. 

co  tour  lints parallel 
to   coast I nc  in 
breaker zon* 

tour  I n*s  parallel 
to x a        outs d* 
b   akt -zone 

"v. V, 

Fig 12° 

F.s 12 

Fig 12    ptofilt 

One-line theory 

We assume the topography and notation according to fig. 12 
The CERC-formula relates the longshore transport Q to the longshore 
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component of the wave energy flux 

Q = 1.4 x 10"2 H 2 C K2 sin<P.  cos <P.     (17) o  o        or     br 

in which   HQ = wave height in deep water 
C0 = phase velocity in deep water 
K = refraction coefficient 
tfl = angle of wave incidence in the breaker zone 

From fig. 12 can be derived 

*br-V -g <g—«>      (18) 

Qo = 1.4 x 10
2 HQ

2 CQ K
2 sinlpbr' cos^'   ....  (19) 

q =• -^— = 1.4 x 10"2 H 2 C K2 cos 2Vp. '   ...  (20) 
d(ii) o  o br 

3X 

One can write 

&  = A- D, br " "2 "br   '  ' (21) and Cbr V^b7 ' • • •  (22) 

in which Ap and A-* can be taken from any wave theory or measure- 
ments (for instance, solitary wave theory [7] 

A2 = 0.78  and  A = 2 x O.78). 

Conservation of wave energy between wave rays gives 

H 2 C K2 = H. 2 Cv  = A,
2 A,g* D. 5/2 

00      br  br   2  3   br 

This makes 

%  = A1 kZ    S «* Dbr5/2 elnV C06*br'   ' ' ' '  (23) 

q = A1 A2
2 A3 g* Dbr

5/2 cos 2 ^     (24) 

in which  An = 1.4 x 102 

Often cos br can be taken equal to 1. 

Now it is easy to give numerical values to the proportionality 
constants, used elsewhere in this paper, for instance, in (7) 

A = 1.4 x 10~2 H 2 C K2 



GROYNE SYSTEM 1009 

and  in appendix A1,   (A10) 

At 
Dtot (Ax)2 

2 2 Ah * 

..        \r     (Ax)2 

A    =A,A?
2 A,g* n    5/2 h2 2 1 2       3B      br max 

At 2   .   , 2 
(A xY 

2A.   A.'" A,h" D,     \/g D,    ' 12       5    max      br V0    br 

HOW   CHANOES     THE    TRANSPORT 
I   THE   INSHORE i__Jq~l 

HOW CHANCES THE 
I SPORT 

H THE PROFILE 
CHANCES? 

[WHAT IS THF LITTORAL 
DRIFT 

THE    CONSTRUCTION 

[  ALONG THE BEACH 1 

THE   BEACH   TRANSPORT 
WHEN    THE     BEACH 
OiRECTION     CHANGES 1 

Fig 13 

Two-line theory 

In the two-line theory, 
the coastal constants mentioned 
in fig. 13 are of importance. 
The exact definitions are giver 
in (9) and (12). The constant 
q„, which defines, how the off- 
shore transport changes, when 
the profile changes, will be 
treated in a separate paper in 
the future. Some investigation 
about this constant has already 
been done  8 . 
The coefficients Q ., q., Q ? and qp will be computed with the 

SVASEK-theory  2  which only treats the longshore transport. 
SVASEK neglects the longshore transport outside the breaker-zone 
We assume, that the profile outside the breaker-zone has reached 
already its equilibrium profile, and that the on- and offshore 
transport can be neglected there. 
The assumed profile topography can be like given in fig. Ik  (see 
next page),more natural than shown in fig. 7. 
faVASEK assumes, that the littoral drift between two depth contours 
is proportional to the longshore component of the loss energy 
between these contourlmes ( 2 , formula 5-7) 

AQ= A • . A(£-£) K 2 sinvp  coslp, 1     v2   m     ' m      £ . (25) 

in which Q = littoral drift between two depth contours D - •} AD 
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and D  + IAD, A I—-)  =  difference 
contour lines 
parallel to y2 line 
on inshore 

between H2C 
on both  dept contours 

K   ,   ty       =  value  of refrac-      I mm A 

tion coefficient K and angle  of wave 
incidence M? in the  midst between  the 
depth  contours.   It appears  (appendix A3),    Z°"£>,LZ'\• 
that   A Q can be written 

AQ =  3A,A.2 A,g*D1*AD  sinlp   cos^P   ..(26) 1   d       3 m m 

and after some simplifications, treated 
in appendix A3, the following constants 
are found for small angle of wave inci- 
dence 

Pig 16       Upper   view 

*01 

«1 

,.  2 A,gV3 D "* 
12  3  1  br 

A1A2  3S  1 

rbr 

^c> 

(28) 
^o2 = A1A2 V (Dbr " D1 > Dbr S1"V 

q2 = AlA2
2 A3g* (D^ _ Dl3) ^-4 

The factor A1A2
2 A-jg* varies between 2.37 x 10" and 

3.85 x 10""2 Vm/sec, dependent of the kind of waves (harmonic or 
random). 

VARIABLE WAVE CONDITIONS 

There has to be distinguished the influence of variable wave 
conditions on the coastal constants and the influence of the boun- 
dary conditions. 

Influence variable wave conditions on coastal constants 

The derivation used for the PELNARD-CONSIDERE-formula (2) 
keeps its validity when the littoral drift 0. the stationary 
transport Q0 and the constant q are     ~ 
averages over a year instead of 
instantaneous values. However, it will  -» ^   /      ^ 
not be directly clear, which value has  — § 
to be taken for D-tot* In order to esti- 
mate Dtot it ls useful to compute first*• I 
the distribution of the littoral drift  _ " 
perpendicular to the coast. An example  — 
of such a distribution gives fig. 15.   """ 
The yearly littoral drift between two 
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depth contours D - fiD and D + £AD XS computed with the aid of 
(26), which becomes in case of variable wave conditions (coslpb 
has been taken!and Snell's law has been applied) 

3A1A2
2 A3gD

2AD 
sinip 

all wave classes 
for which D <D. 

br 

fr(H,T,<J>) (29) 

in which fr(H,T,^p) denotes the frequency of occurrence of a wave 
class for which H, T and t|) lie between certain values (for instan- 
ce i  m<H<1 m, 5 sec<T<6 sec, 30° <<P< 60°). More details 
about the computation are given in [9]  „„......., r ° D«pth of th« h«od 

From the distribution of the     i 
transport Q01 and Q02 are found 
(fig. 16) 

lo1 

*o2 

0 < D < D, 

I 
D > D1 

(30) 

"5~§" 

F,g17 

After that, q. and q^  oan De found 
by repeating the computation accor- 
ding to (29), but with a "wrong" 
coastal direction, which has been 
turned over an angle Aip, say 15°. 
This gives the interrupted line in 
fig. 17, instead of the solid line, 
which represents the transport dis- 
tribution for the original coastal 
direction. 
Now q-, equals F-j/A^P (F1 is the left- 
handed hatched area in fig. 17) and qg = Fg/A^P . 
From the transport distribution, also a reasonable guess about 
D, , can be made, 
tot 

Influence variable wave conditions 
oil the boundary 

This paper is concentrated on 
two effects of a groyne  prevention 
of the littoral sand drift and for- 
mation of a sheltered area We shall 
investigate these two effects in case 
of changing wave conditions. 
When the wave direction changes 
periodically for instance according 
to 

ip= <£ sin (JU <P (3D 

this generates a sandwave near a 
groyne (fig. 15, 1103) 
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*X, ±. 

in which 

m\fT 
-%x 

COS ( OOj. t l(p3 (32) 

v  K<P   v utot 
r*p (33) 

Tm being the period of the fluctuations of ip and X^ being the 
length of the sandwave. ? _ 
Using (24) and taking A1 = 1.4 x 10  , A2 = 0.4, A = \f 1.4', 
this gives 

A. tp = .l83Dbr3/SgT2)1/* (34) 

Taking as an example Tg> = 1 week, this makes A.ip = 324 m. 
Now the decay of this sandwave is very strong within i\ip it is 
attenuated to 4$. Thus, outside this area, no influence of the 
stopping of the littoral drift by the groyne will be observed. 
In case^of the two-line theory D.  in (34) probably can be replaced 
by Di, tp has to be replaced by ipo-|, according to (A36) 
The second influence of the groyne is the wave-shelter. We shall 
assume first, that the sheltered area is large with respect to 
iA.jp. As in (12a), Q0 and q^ become functions of x, called Q0-|* and 
q-|*. Consider fig. 19. The influence of diffraction will be neglec- 
ted with resoect to the influence of changing wave conditions. 

The computation of Q0-| and q-| in 
area A can be performed according to 
(29), (30) and fig. 14. But applying 
(44) to area B, all wave classes with 
^Po > 75° must be excluded in the 
summation, in area C all wave classes 
with ipo ^45°, and so on. 
When,for instance, the resulting 
transport in area A would be zero for 
a coastline parallel to the x-axis 
(fig. 19a), the transport 

ay-i 
Q01* (  = 0) (started because it 3x 
changes in x-direction) will be 
larger and larger (in negative direc- 
tion) in the areas B, C and D-|,and 
also q^* will change 
Now we have returned to the normal 
computer program, treated in (5) to (7) 
and in appendix 3, only with other 
values foi y0 and /' the.r .- .kn. 
diffraction cases. 
The stable coastline y0 can be found 
from continuity for y0 the trans- 
port is everywhere the same 
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O01] „ = 
Q
I—[vl lX= oo 

*ol'  " [Qoll 
:(!oi - «i s—*dx~ = ^       •      • (35) 

From (35) the stable coastline y can be found, which gives the 
initial value of the unstationary part y-|' 

In case of changing wave conditions, and no 
resultant drift, the final coastal shape near 
one single groyne will become just the stable 
shape y0, because then everywhere the resultant 
drift is zero. This will give accretion on both 
sides of the groyne, which will be withdrawn 
from a very long stretch of coast (fig. 20a). 

Fig 20b       ^n case of a row of groynes, the sand for the 
accretion near the groyne is withdrawn from 

the area in the midst between the groynes, and only near the boun- 
dary of the groyne system some real accretion can be expected 
(fig. 20b). However, after some time this sand will move to the 
areas between the groynes, and so this shelter effect may give 
some accretion (in case of no resultant drift), starting from the 
boundaries of the groyne system 

In case -jA.(p is not small with respect to the sheltered area, the 
best way of computation is a kind of "hindcasting", using the one- 
line or two-line computer program described before, and changing 
the wave conditions during the program. 
This has been done at the Coastal Research Department of Rijks- 
waterstaat. 

N B  The vertical scale of fig  5 and 6  is 5 times and of 
fig. 10 and V is 10 tines exaggerated. 
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APPENDIX 

A1*  22Srii22_5^S2EZ Assumptions_and formulae (diffraction) 

Assumptions littoral drift proportional to the angle of wave 
incidence and to the square of the wave height (fig. A1) 

Q = Ah2 (VPX - $|)        (A1) 

in which A is a proportionality constant and h is the ratio between 
the wave height at x = x and the wave height at x = co Eq (A1) is 
a special case of (3) 

Continuity ff = - ^ -§&  (A2) 

The stable coastline y0 from (5) is a solution of (A2), or (A3) 
Continuity gives Q is constant for y0. The amount of Q can be 
derived from the condition at infinity 

h = 1 ,  9x = ^Pco, |^ = 0  ,  from (A1) follows (4) 

A^=Ah2(<Px-^) 

Eq (6) can be derived from (A3) by substituting y in (A3) and 
subtracting this equation from (A3). ° 

y >£•   wave    incidence 

X 

F19 A1 \> 
B' 

F,g A 2 

-«-X 

For the determination of the values of ip, and h the simplified 
diffraction theory of PUTNAM and ARTHUR [£] is used. 
It can be shown [11] that ip is about equal to 

*x = *- - A i             (A« 
in which X - wave length diffracted wave and (- = phase difference 
of the waves between B and B' (fig. A2). B = point on x-axis, for 
which y is computed. 
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Substitution of this result in (.k)   and integration gives the 
relation between y0 and the basic data of diffraction h and © 

.... (A6) *o = -lM+ *-JL-7±*< 

The first term of the right hand side of (A 6 ) is the influence of 
the turning of the waves, the second term gives the influence of 
changing the wave height by diffraction. 

h| 0 

Fig   A3 Fig   A3b 

Fig A3 WAVE   DIFFRACTION   ACCORDING 
TO   PUTNAM   AND   ARTHUR [6] 

G and h as a function of u = ^JkB~^B'   ac o.aing to PUTNAM AND 
ARTHUR [kj  are shown in fig. A5. 

Unstationary part y1 

(6) has been taken as a difference equation, taking 

^max 
At  = D 

Ah 

tof(Ax)2/2qmax 

.  (A7) 

. . (A10) 

Substituting (A7) and (A10) in (6), from three adjacent points of 
a curve at time t one point of the curve at point t + At can be 
found (explicite method) 

y' [x,t + At ] = 

(q   [x  +   A x]/8  + q    |x]/2  -  q   [x -Ax]/8).y*[x +Ax,t]   + 

( -  q   [x]        +  1 ).y' Qc,t) + 

(-q [x +Ax]/8  + q [x]/2 + q [x -Ax]/8).y'[x -Ax,t] 
... (A11) 

in which q = 1*/q   has been introduced to avoid instability. 

Boundary conditions at x = o no transport and therefore 

_MC _JLL + JS! Jlp 
3x  dx ax fj~ .(A12) 
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Substitution of  (k)   in  (A12)   gives 

f£=*x-(*x-fr>=h% (A13) 

We  can write  this equation into differences and express y'f- x] 
in y'lAxl   This  gives  for  the boundary point at the  lee-side 

y'[b,  t + At} =  -  (- q[Ax /8 + q[oJ/2 + q[-Ax]/8) .2Ax.X-    + 

(-  qfo]   +   D.   y' [0,t]  +  q[o].y>[Ax,t] 

 (ATO 

The expression for the luffside can be found by changing every- 
where in (A14) Ax by -Ax. 

A2 Two-line_theorjr__ 
(14-J and (. 1$; can be derived by substitution of the dynamic 
equations (12S< b ) ln the continuity equations 

^   y   l9t      \  (A17) 

We state At = cD(Ax) /q1fflax and call  qy.(Ax) /q1fflax = q^ 

in which c is a coefficient to get a stable numerical process. 
Then the following difference equations are derived 

y* [x,   t  +At]  = 
Dp 

0.  D   |(q1  [x  +AxJ /k  + q1  [x]    -  q, [x  - ix] /M.y^x  +A x.f] + 

+  (D/CD,   - 2q,[x] - q1
y;.   y.   [x,tJ  + 

+(-q'1[x  + Ax]/4  +  q.|c] +  qi[x  -Ax]A).   y'px  -Ax,tJ 

~ *y  (y0Cxl " IzZ^Vj (A21; 
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y2 [x,  t + A t J  _ 

+(D2/cD - 2q2/q1max - <^> y2[x,t] + 

qy (y1 [*•*] "* >o[x]J)' ' '              -<A22> 

The boundary conditions for y', can be found by substituting 
x = o and (lee-side) 

y- [-Ax] - ,.[A,]   AX.A- 
IV!  (A23) 

A3. Coastal constants according to_the_adapted_SVASEK-theorj 
SVASEK assumes, that the littoral drift between two depth con- 
tours is proportional to the longshore component of the loss of 
energy between these contour lines (  (25)) 
We assume that in the breaker zone cos y = cos for ' and we 
neglect the influence of the refraction factor K inside the 
breaker zone 

Q = A' .A (H2C) sin IP cos 9 (A25) 

/e assume, that the relations between H and D and between C and 
according to (21) and (22) on the boundary of the breaker 

zone remain their validity inside the breakerzone  (spilling 
breaker) 

H = A D .   . .(A26) C = A   gD . .   .(A27) 

.e  d 

<* quals 

2 
Thus the difference in H C between two adjacent depth contours 

A(H2C) = *  (Af A, g* »2h  AD =f A2 . gi  DHAD # ^   m (A28) 
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Now first the stationary transport Qo will be computed, according 
to SVASEK's theory. In this case all contour lines are parallel 
and Snell's law is valid 

.einiP   = _C_ = \ /_D_    (A29) 
sin ID,    C, • br    br 

Substitution of (28) and (29) in (25) gives AQ, expressed 
in D 

AQ =-|-A1 k\  A3 g D2 D-jAD smVpbr cos q>br 

. • (A30) 
We find the total transport by integration over the depth. Again 
we assume -oslD = cos tD. 

'o = / " AQ dD = |A1 k\  A3 g* T>ll  sinVpbr cos ^  . . (A3D 

Comparison of (A31) and (23) leads to the conclusion, that for 
parallel depth contours the relation should exist 

A1 = 5"A1    (A32) 

The reason is, that SVASEK multiplies the component of the wave 
energy with sin ID instead of sin <P,  and in the breakerzone 
sin M? is less than sin^P, . 
Thus the transport between two depth contours will be, in ganeral, 
using (A25) (A29) and (A32) 

AQ = 3 An A
2 A  g* D^D smlPm cos<Pr (A33) 

In 12 has been considered in detail how the littoral drift 
changes when the beach and inshore direction change in case of 
the topography at fig. A5 (cf fig. 1*0. 

Using SVASEK's assumptions and a proper use of Snell's law, 
for the littoral drift along the inshore is found 

l2  = A 1 A2 h  g* (Dbr - Dl) \l  s-*br C0S V  - »<^) 
and for the  transport along the  beach 

,   =  A1   A2  A3  ^ °f     Sin^10  0OS^10  " I!'   °0S  2^10 
*% +JLh     (1 -lsin2q>|0 cos «Pbr)•, ^10  (A35) 

in which ^>10 is the angle of incidence   of the wave on the 
beach (fig. A5), which occurs, when the inshore is parallel with 
the x-exis 

*io = arcsin(\/^sin v') <A36) 
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in which *9br  is the breaker angle, if the inshore would be paral- 
lel to the x-axis. 

For small angle of wave incidence, (A35) can be written 

A 
Q-. = A, A2 A g 

D./D br 

Influence     direction    beach 

D2*[-*IO-I£ + i£ (I-\^) (A37) 

As would be expected, there is some 
influence of refraction on the inshore on the 
transport on the beach. The dynamic equations 
(12   ) do not account for that. With (A37) 
we afe able to estimate the inaccuracy caused 
by this neglection. (without taking the 
curvature of the inshore into account ) When 
the beach and the inshore turn over the same 
angle, the influence of the direction of the 

0 

Fig A 6 

.-l!"'"c' d'r°c''on   insnor« inshore  on  the  transport  on the  beach  is 
(1-\JD./X>   ') times  the  influence  of  the 

versus D/D br direction of the beach. This function is 
shown in fig. A6. 

ihe luinuiae for q. and q_ can be derived by differentiation 
of (A3k)  and (A35) to-f&- and ^-respectively. 
For^P   equals 

ax 3x 

M>r~   br 
ay.2 
3x 

Thus  the  derivative  to a y2   is  miru~  d<4? 3x \>r 
The influence of the inshore on the beach has been neglected. 
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